Ducrot, Arnaud; Kang, Hao; Magal, Pierre A short proof for Hopf bifurcation in Gurtin-MacCamy’s population dynamics model. (English) Zbl 07688437 Proc. Am. Math. Soc. 151, No. 8, 3561-3575 (2023). MSC: 92D25 35B32 47D62 PDF BibTeX XML Cite \textit{A. Ducrot} et al., Proc. Am. Math. Soc. 151, No. 8, 3561--3575 (2023; Zbl 07688437) Full Text: DOI arXiv OpenURL
Zhang, Hua; Wei, Junjie Hopf bifurcation analysis in a diffusive predator-prey system with spatial heterogeneity and delays. (English) Zbl 07686160 Z. Angew. Math. Phys. 74, No. 3, Paper No. 98, 21 p. (2023). MSC: 35B32 35K51 35K57 37G15 37N25 92D25 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{J. Wei}, Z. Angew. Math. Phys. 74, No. 3, Paper No. 98, 21 p. (2023; Zbl 07686160) Full Text: DOI OpenURL
Li, Danyang; Liu, Hua; Zhang, Haotian; Ma, Ming; Ye, Yong; Wei, Yumei Bifurcation analysis in a predator-prey model with an allee effect and a delayed mechanism. (English) Zbl 07682828 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1415-1438 (2023). MSC: 34C23 37G10 93C15 PDF BibTeX XML Cite \textit{D. Li} et al., Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1415--1438 (2023; Zbl 07682828) Full Text: DOI OpenURL
Yang, Rui Bifurcation analysis and spatiotemporal patterns in delayed Schnakenberg reaction-diffusion model. (English) Zbl 07681633 Appl. Anal. 102, No. 2, 672-693 (2023). MSC: 35B32 35B10 35K51 35K57 PDF BibTeX XML Cite \textit{R. Yang}, Appl. Anal. 102, No. 2, 672--693 (2023; Zbl 07681633) Full Text: DOI OpenURL
Surosh, A. H.; Khoshsiar Ghaziani, R.; Alidousti, J. Chaos control and Hopf bifurcation analysis of a three-dimensional chaotic system. (English) Zbl 07680442 J. Mahani Math. Res. Cent. 12, No. 1, 183-195 (2023). MSC: 34D05 37G10 37G15 PDF BibTeX XML Cite \textit{A. H. Surosh} et al., J. Mahani Math. Res. Cent. 12, No. 1, 183--195 (2023; Zbl 07680442) Full Text: DOI OpenURL
Nangue, Alexis; Rendall, Alan D. Phenomenology of an in-host model of hepatitis C. (English) Zbl 07680172 Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 86, 23 p. (2023). MSC: 34-XX 37-XX PDF BibTeX XML Cite \textit{A. Nangue} and \textit{A. D. Rendall}, Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 86, 23 p. (2023; Zbl 07680172) Full Text: DOI arXiv OpenURL
Cheng, Lifang; Hu, Dongpo; Zhang, Litao An investigation of the bifurcation behavior of an F-18 aircraft model. (English) Zbl 07676402 J. Nonlinear Math. Phys. 30, No. 1, 235-253 (2023). MSC: 70K50 37G10 PDF BibTeX XML Cite \textit{L. Cheng} et al., J. Nonlinear Math. Phys. 30, No. 1, 235--253 (2023; Zbl 07676402) Full Text: DOI OpenURL
Shen, Zuolin; Liu, Yang; Wei, Junjie Double Hopf bifurcation in nonlocal reaction-diffusion systems with spatial average kernel. (English) Zbl 07675773 Discrete Contin. Dyn. Syst., Ser. B 28, No. 4, 2424-2462 (2023). MSC: 35B32 35K51 35K57 37L10 45K05 PDF BibTeX XML Cite \textit{Z. Shen} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 4, 2424--2462 (2023; Zbl 07675773) Full Text: DOI arXiv OpenURL
Şengül, Taylan; Tiryakioglu, Burhan Dynamic transitions and bifurcations of 1D reaction-diffusion equations: the non-self-adjoint case. (English) Zbl 07674149 J. Math. Anal. Appl. 523, No. 1, Article ID 127114, 17 p. (2023). MSC: 35B32 35K20 35K57 37L10 PDF BibTeX XML Cite \textit{T. Şengül} and \textit{B. Tiryakioglu}, J. Math. Anal. Appl. 523, No. 1, Article ID 127114, 17 p. (2023; Zbl 07674149) Full Text: DOI OpenURL
Tzou, J. C.; Xie, S. Oscillatory translational instabilities of spot patterns in the Schnakenberg system on general 2D domains. (English) Zbl 07672508 Nonlinearity 36, No. 5, 2473-2513 (2023). MSC: 35B25 35B32 35B40 35C20 35K51 35K57 PDF BibTeX XML Cite \textit{J. C. Tzou} and \textit{S. Xie}, Nonlinearity 36, No. 5, 2473--2513 (2023; Zbl 07672508) Full Text: DOI arXiv OpenURL
Li, Yanqiu; Zhou, Yibo; Zhu, Lushuai Hopf bifurcation in a spatial heterogeneous and nonlocal delayed reaction-diffusion equation. (English) Zbl 07656604 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107098, 13 p. (2023). MSC: 35B32 35K20 35K58 35R09 PDF BibTeX XML Cite \textit{Y. Li} et al., Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107098, 13 p. (2023; Zbl 07656604) Full Text: DOI OpenURL
Wen, Tingting; Wang, Xiaoli; Zhang, Guohong Hopf bifurcation in a reaction-diffusion-advection model with two nonlocal delayed density-dependent feedback terms. (English) Zbl 07656587 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107080, 25 p. (2023). MSC: 35B32 35B35 35K20 35K58 35R09 PDF BibTeX XML Cite \textit{T. Wen} et al., Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107080, 25 p. (2023; Zbl 07656587) Full Text: DOI OpenURL
Liu, Meng; Wang, Hongbin; Jiang, Weihua Bifurcations and pattern formation in a predator-prey model with memory-based diffusion. (English) Zbl 07653523 J. Differ. Equations 350, 1-40 (2023). MSC: 35B36 35B32 35K51 35K57 37L10 PDF BibTeX XML Cite \textit{M. Liu} et al., J. Differ. Equations 350, 1--40 (2023; Zbl 07653523) Full Text: DOI OpenURL
Tang, Xiaosong; Chen, Yunshan; Pei, Xinping; Zhou, Shan Global stability and Hopf bifurcation of a delayed cooperative species model with density-dependent diffusion. (English) Zbl 1507.35026 J. Math. Anal. Appl. 521, No. 1, Article ID 126899, 13 p. (2023). MSC: 35B32 35B35 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{X. Tang} et al., J. Math. Anal. Appl. 521, No. 1, Article ID 126899, 13 p. (2023; Zbl 1507.35026) Full Text: DOI OpenURL
Chen, Mengxin; Wang, Tian Qualitative analysis and Hopf bifurcation of a generalized Lengyel-Epstein model. (English) Zbl 1506.35007 J. Math. Chem. 61, No. 1, 166-192 (2023). MSC: 35B32 35K51 35K57 92E20 PDF BibTeX XML Cite \textit{M. Chen} and \textit{T. Wang}, J. Math. Chem. 61, No. 1, 166--192 (2023; Zbl 1506.35007) Full Text: DOI OpenURL
Lv, Yehu Bogdanov-Takens bifurcation for a diffusive predator-prey system with nonlocal effect and prey refuge. (English) Zbl 07643827 Z. Angew. Math. Phys. 74, No. 1, Paper No. 40, 34 p. (2023). Reviewer: Shangjiang Guo (Changsha) MSC: 35B32 35K51 35K57 35R09 37L10 92D25 PDF BibTeX XML Cite \textit{Y. Lv}, Z. Angew. Math. Phys. 74, No. 1, Paper No. 40, 34 p. (2023; Zbl 07643827) Full Text: DOI OpenURL
Baldomá, Inmaculada; Capiński, Maciej J.; Guardia, Marcel; Seara, Tere M. Breakdown of heteroclinic connections in the analytic Hopf-zero singularity: rigorous computation of the Stokes constant. (English) Zbl 07642533 J. Nonlinear Sci. 33, No. 2, Paper No. 28, 47 p. (2023). MSC: 37G10 37G20 34C23 37C75 37M20 37M21 37D10 65G20 PDF BibTeX XML Cite \textit{I. Baldomá} et al., J. Nonlinear Sci. 33, No. 2, Paper No. 28, 47 p. (2023; Zbl 07642533) Full Text: DOI arXiv OpenURL
Shen, Hao; Song, Yongli; Wang, Hao Bifurcations in a diffusive resource-consumer model with distributed memory. (English) Zbl 1507.35025 J. Differ. Equations 347, 170-211 (2023). MSC: 35B32 35K51 35R09 PDF BibTeX XML Cite \textit{H. Shen} et al., J. Differ. Equations 347, 170--211 (2023; Zbl 1507.35025) Full Text: DOI OpenURL
Sun, Yihuan; Chen, Shanshan Stability and bifurcation in a reaction-diffusion-advection predator-prey model. (English) Zbl 07637894 Calc. Var. Partial Differ. Equ. 62, No. 2, Paper No. 61, 31 p. (2023). MSC: 35Q92 92D25 35K57 35B35 35B32 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{S. Chen}, Calc. Var. Partial Differ. Equ. 62, No. 2, Paper No. 61, 31 p. (2023; Zbl 07637894) Full Text: DOI arXiv OpenURL
Ding, Yuting; Liu, Gaoyang; Zheng, Liyuan Equivalence of MTS and CMR methods associated with the normal form of Hopf bifurcation for delayed reaction-diffusion equations. (English) Zbl 1507.35024 Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106976, 17 p. (2023). MSC: 35B32 35K51 35K57 37L10 PDF BibTeX XML Cite \textit{Y. Ding} et al., Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106976, 17 p. (2023; Zbl 1507.35024) Full Text: DOI OpenURL
Wang, Wen; Liu, Shutang Nonlocal delay driven spatiotemporal patterns in a single-species reaction-diffusion model. (English) Zbl 1504.35058 Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106899, 14 p. (2023). MSC: 35B36 35B32 35K58 35R09 92C15 92D25 PDF BibTeX XML Cite \textit{W. Wang} and \textit{S. Liu}, Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106899, 14 p. (2023; Zbl 1504.35058) Full Text: DOI OpenURL
Mu, Yu; Lo, Wing-Cheong Hopf and Turing bifurcation for a competition and cooperation system with spatial diffusion effect. (English) Zbl 1505.92261 J. Comput. Appl. Math. 422, Article ID 114924, 11 p. (2023). MSC: 92D40 92D25 35B32 35B35 PDF BibTeX XML Cite \textit{Y. Mu} and \textit{W.-C. Lo}, J. Comput. Appl. Math. 422, Article ID 114924, 11 p. (2023; Zbl 1505.92261) Full Text: DOI OpenURL
Alfifi, H. Y. Effects of diffusion and delayed immune response on dynamic behavior in a viral model. (English) Zbl 07627690 Appl. Math. Comput. 441, Article ID 127714, 15 p. (2023). MSC: 35K57 34K20 37N30 39A05 35B05 62P10 37G15 34K18 PDF BibTeX XML Cite \textit{H. Y. Alfifi}, Appl. Math. Comput. 441, Article ID 127714, 15 p. (2023; Zbl 07627690) Full Text: DOI OpenURL
Wen, Tingting; Wang, Xiaoli; Zhang, Guohong Hopf bifurcation in a reaction-diffusion-advection model with nonlocal delay effect and Dirichlet boundary condition. (English) Zbl 1503.35027 J. Math. Anal. Appl. 519, No. 2, Article ID 126823, 29 p. (2023). Reviewer: Shangjiang Guo (Changsha) MSC: 35B32 35B10 35B35 35K20 35K57 35R10 PDF BibTeX XML Cite \textit{T. Wen} et al., J. Math. Anal. Appl. 519, No. 2, Article ID 126823, 29 p. (2023; Zbl 1503.35027) Full Text: DOI OpenURL
Yan, Shuling; Du, Zengji Hopf bifurcation in a Lotka-Volterra competition-diffusion-advection model with time delay. (English) Zbl 1505.35030 J. Differ. Equations 344, 74-101 (2023). MSC: 35B32 35B35 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{S. Yan} and \textit{Z. Du}, J. Differ. Equations 344, 74--101 (2023; Zbl 1505.35030) Full Text: DOI OpenURL
Sun, Dandan; Li, Yingke; Teng, Zhidong; Zhang, Tailei Stability and Hopf bifurcation in an age-structured SIR epidemic model with relapse. (English) Zbl 1508.37120 Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 1643-1672 (2023). MSC: 37N25 37G10 92D25 92D30 PDF BibTeX XML Cite \textit{D. Sun} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 1643--1672 (2023; Zbl 1508.37120) Full Text: DOI OpenURL
Sahoo, Pradyumna Kumar; Chatterjee, Shyamal Nonlinear dynamics and control of galloping vibration under unsteady wind flow by high-frequency excitation. (English) Zbl 1502.70048 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106897, 32 p. (2023). MSC: 70K50 74H45 PDF BibTeX XML Cite \textit{P. K. Sahoo} and \textit{S. Chatterjee}, Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106897, 32 p. (2023; Zbl 1502.70048) Full Text: DOI OpenURL
Chen, Mengxin; Wu, Ranchao; Wang, Xiaohui Non-constant steady states and Hopf bifurcation of a species interaction model. (English) Zbl 1501.92106 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106846, 20 p. (2023). MSC: 92D25 35B09 35B32 34C23 PDF BibTeX XML Cite \textit{M. Chen} et al., Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106846, 20 p. (2023; Zbl 1501.92106) Full Text: DOI OpenURL
Dey, Subrata; Banerjee, Malay; Ghorai, Saktipada Analytical detection of stationary Turing pattern in a predator-prey system with generalist predator. (English) Zbl 07688726 Math. Model. Nat. Phenom. 17, Paper No. 33, 31 p. (2022). MSC: 34-XX 35B32 35B36 34C23 37G15 PDF BibTeX XML Cite \textit{S. Dey} et al., Math. Model. Nat. Phenom. 17, Paper No. 33, 31 p. (2022; Zbl 07688726) Full Text: DOI OpenURL
Zhang, Xiaowen; Huang, Wufei; Ma, Jiaxin; Yang, Ruizhi Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior. (English) Zbl 07675729 Electron Res. Arch. 30, No. 7, 2510-2523 (2022). MSC: 92D25 35Q92 35B35 35B32 PDF BibTeX XML Cite \textit{X. Zhang} et al., Electron Res. Arch. 30, No. 7, 2510--2523 (2022; Zbl 07675729) Full Text: DOI OpenURL
Yang, Hong Global dynamics of a diffusive phytoplankton-zooplankton model with toxic substances effect and delay. (English) Zbl 07657956 Math. Biosci. Eng. 19, No. 7, 6712-6730 (2022). Reviewer: Takashi Suzuki (Osaka) MSC: 92D25 92D40 35B35 35B32 35B10 PDF BibTeX XML Cite \textit{H. Yang}, Math. Biosci. Eng. 19, No. 7, 6712--6730 (2022; Zbl 07657956) Full Text: DOI OpenURL
Jafari Khanghahi, Maryam; Ghaziani, Reza Khoshsiar Bifurcation analysis of a modified May-Holling-Tanner predator-prey model with Allee effect. (English) Zbl 1507.92012 Bull. Iran. Math. Soc. 48, No. 6, 3405-3437 (2022). MSC: 92B25 34C23 37G15 PDF BibTeX XML Cite \textit{M. Jafari Khanghahi} and \textit{R. K. Ghaziani}, Bull. Iran. Math. Soc. 48, No. 6, 3405--3437 (2022; Zbl 1507.92012) Full Text: DOI OpenURL
Yang, Rui Turing-Hopf bifurcation co-induced by cross-diffusion and delay in Schnakenberg system. (English) Zbl 1508.35198 Chaos Solitons Fractals 164, Article ID 112659, 11 p. (2022). MSC: 35Q92 35B32 92D10 PDF BibTeX XML Cite \textit{R. Yang}, Chaos Solitons Fractals 164, Article ID 112659, 11 p. (2022; Zbl 1508.35198) Full Text: DOI OpenURL
Shi, Qingyan; Song, Yongli Spatiotemporal pattern formation in a pollen tube model with nonlocal effect and time delay. (English) Zbl 1507.35033 Chaos Solitons Fractals 165, Part 1, Article ID 112798, 9 p. (2022). MSC: 35B36 92B05 35B32 35K57 PDF BibTeX XML Cite \textit{Q. Shi} and \textit{Y. Song}, Chaos Solitons Fractals 165, Part 1, Article ID 112798, 9 p. (2022; Zbl 1507.35033) Full Text: DOI OpenURL
Sun, Xi; Yan, Shaohui; Zhang, Yuyan; Wang, Ertong; Wang, Qiyu; Gu, Binxian Bursting dynamics and the zero-Hopf bifurcation of simple jerk system. (English) Zbl 1506.94106 Chaos Solitons Fractals 162, Article ID 112455, 8 p. (2022). MSC: 94C05 34C23 37G10 34C60 34C28 34C29 PDF BibTeX XML Cite \textit{X. Sun} et al., Chaos Solitons Fractals 162, Article ID 112455, 8 p. (2022; Zbl 1506.94106) Full Text: DOI OpenURL
Lv, Yehu The spatially homogeneous Hopf bifurcation induced jointly by memory and general delays in a diffusive system. (English) Zbl 1506.35114 Chaos Solitons Fractals 156, Article ID 111826, 30 p. (2022). MSC: 35K57 92D25 35B32 35Q92 92C17 PDF BibTeX XML Cite \textit{Y. Lv}, Chaos Solitons Fractals 156, Article ID 111826, 30 p. (2022; Zbl 1506.35114) Full Text: DOI arXiv OpenURL
Cang, Shijian; Wang, Luo; Zhang, Yapeng; Wang, Zenghui; Chen, Zengqiang Bifurcation and chaos in a smooth 3D dynamical system extended from Nosé-Hoover oscillator. (English) Zbl 1505.34064 Chaos Solitons Fractals 158, Article ID 112016, 13 p. (2022). MSC: 34C28 37D45 34C23 34D45 34C60 37G10 PDF BibTeX XML Cite \textit{S. Cang} et al., Chaos Solitons Fractals 158, Article ID 112016, 13 p. (2022; Zbl 1505.34064) Full Text: DOI OpenURL
Ma, Tingting; Meng, Xinzhu Dynamic analysis of a diffusive eco-epidemiological system with fear effect and prey refuge. (English) Zbl 07637755 Dyn. Partial Differ. Equ. 19, No. 4, 247-271 (2022). Reviewer: Gabriela Marinoschi (Bucureşti) MSC: 37N25 37G15 92B05 92D30 92D40 PDF BibTeX XML Cite \textit{T. Ma} and \textit{X. Meng}, Dyn. Partial Differ. Equ. 19, No. 4, 247--271 (2022; Zbl 07637755) Full Text: DOI OpenURL
Yan, Xiang-Ping; Zhang, Cun-Hua Spatiotemporal dynamics in a diffusive predator-prey system with Beddington-DeAngelis functional response. (English) Zbl 1504.35082 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 166, 49 p. (2022). MSC: 35B40 35K57 37G15 92D25 PDF BibTeX XML Cite \textit{X.-P. Yan} and \textit{C.-H. Zhang}, Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 166, 49 p. (2022; Zbl 1504.35082) Full Text: DOI OpenURL
Boros, Balázs; Hofbauer, Josef Limit cycles in mass-conserving deficiency-one mass-action systems. (English) Zbl 07633751 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 42, 18 p. (2022). MSC: 92E20 34C23 37G15 PDF BibTeX XML Cite \textit{B. Boros} and \textit{J. Hofbauer}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 42, 18 p. (2022; Zbl 07633751) Full Text: DOI arXiv OpenURL
Du, Yanfei; Yang, Yun Stability switches and chaos in a diffusive toxic phytoplankton-zooplankton model with delay. (English) Zbl 1502.35012 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 12, Article ID 2250178, 25 p. (2022). MSC: 35B32 35K51 35K57 35Q92 PDF BibTeX XML Cite \textit{Y. Du} and \textit{Y. Yang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 12, Article ID 2250178, 25 p. (2022; Zbl 1502.35012) Full Text: DOI OpenURL
Guo, Cuiping; Guo, Shangjiang Stationary and oscillatory dynamics of Nicholson’s blowflies equation with Allee effect. (English) Zbl 1498.34187 Electron. J. Differ. Equ. 2022, Paper No. 67, 19 p. (2022). MSC: 34K18 35B32 35B35 35K57 35Q92 92D40 PDF BibTeX XML Cite \textit{C. Guo} and \textit{S. Guo}, Electron. J. Differ. Equ. 2022, Paper No. 67, 19 p. (2022; Zbl 1498.34187) Full Text: Link OpenURL
Zhang, Hua; Wei, Junjie Bifurcation analysis for a single population model with advection. (English) Zbl 1501.35044 J. Math. Biol. 85, No. 6-7, Paper No. 61, 34 p. (2022). MSC: 35B32 35K20 35K58 35R10 37G15 92D25 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{J. Wei}, J. Math. Biol. 85, No. 6--7, Paper No. 61, 34 p. (2022; Zbl 1501.35044) Full Text: DOI OpenURL
Tosato, Marco; Zhang, Xue; Wu, Jianhong A patchy model for tick population dynamics with patch-specific developmental delays. (English) Zbl 1501.92127 Math. Biosci. Eng. 19, No. 5, 5329-5360 (2022). MSC: 92D25 92D40 34K26 34K20 PDF BibTeX XML Cite \textit{M. Tosato} et al., Math. Biosci. Eng. 19, No. 5, 5329--5360 (2022; Zbl 1501.92127) Full Text: DOI OpenURL
Duan, Daifeng; Niu, Ben; Wei, Junjie Spatiotemporal dynamics in a diffusive Holling-Tanner model near codimension-two bifurcations. (English) Zbl 1500.35026 Discrete Contin. Dyn. Syst., Ser. B 27, No. 7, 3683-3706 (2022). MSC: 35B32 35K51 35K57 35B10 37G15 58J55 PDF BibTeX XML Cite \textit{D. Duan} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 7, 3683--3706 (2022; Zbl 1500.35026) Full Text: DOI OpenURL
Miao, Liangying; He, Zhiqian Hopf bifurcation and Turing instability in a diffusive predator-prey model with hunting cooperation. (English) Zbl 1500.92092 Open Math. 20, 986-997 (2022). MSC: 92D25 35K57 35B35 35B32 PDF BibTeX XML Cite \textit{L. Miao} and \textit{Z. He}, Open Math. 20, 986--997 (2022; Zbl 1500.92092) Full Text: DOI OpenURL
Luangwilai, T.; Sidhu, H. S.; Nelson, M. I. Inclusion of biological and chemical self-heating processes in compost piles model: a Semenov formulation. (English) Zbl 1498.80010 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 11, Article ID 2230027, 21 p. (2022). MSC: 80A25 80A32 92C40 37G15 PDF BibTeX XML Cite \textit{T. Luangwilai} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 11, Article ID 2230027, 21 p. (2022; Zbl 1498.80010) Full Text: DOI OpenURL
Kato, Kaito; Inaba, Naohiko; Shimizu, Kuniyasu; Kousaka, Takuji; Okazaki, Hideaki Nested mixed-mode oscillations in a canard-generating driven Bonhoeffer-van der Pol oscillator. (English) Zbl 1508.70031 Physica D 440, Article ID 133438, 13 p. (2022). MSC: 70K50 70K60 PDF BibTeX XML Cite \textit{K. Kato} et al., Physica D 440, Article ID 133438, 13 p. (2022; Zbl 1508.70031) Full Text: DOI OpenURL
Li, Shu; Li, Zhenzhen; Dai, Binxiang Stability and Hopf bifurcation in a prey-predator model with memory-based diffusion. (English) Zbl 1505.37101 Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6885-6906 (2022). MSC: 37N25 37G10 92D25 PDF BibTeX XML Cite \textit{S. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6885--6906 (2022; Zbl 1505.37101) Full Text: DOI OpenURL
Ryu, Kimun; Ko, Wonlyul On dynamics and stationary pattern formations of a diffusive predator-prey system with hunting cooperation. (English) Zbl 1498.35054 Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6679-6709 (2022). MSC: 35B36 35B32 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{K. Ryu} and \textit{W. Ko}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6679--6709 (2022; Zbl 1498.35054) Full Text: DOI OpenURL
Gong, Lulu; Yao, Weijia; Gao, Jian; Cao, Ming Limit cycles analysis and control of evolutionary game dynamics with environmental feedback. (English) Zbl 1498.91051 Automatica 145, Article ID 110536, 12 p. (2022). MSC: 91A22 37G15 PDF BibTeX XML Cite \textit{L. Gong} et al., Automatica 145, Article ID 110536, 12 p. (2022; Zbl 1498.91051) Full Text: DOI arXiv OpenURL
Yang, Ruizhi; Zhang, Xiaowen; Jin, Dan Spatiotemporal dynamics in a delayed diffusive predator-prey system with nonlocal competition in prey and schooling behavior among predators. (English) Zbl 1498.35041 Bound. Value Probl. 2022, Paper No. 56, 15 p. (2022). MSC: 35B32 35B35 35K51 35K58 35R09 35R10 92D25 PDF BibTeX XML Cite \textit{R. Yang} et al., Bound. Value Probl. 2022, Paper No. 56, 15 p. (2022; Zbl 1498.35041) Full Text: DOI OpenURL
Wei, Dan; Guo, Shangjiang Hopf bifurcation of a diffusive SIS epidemic system with delay in heterogeneous environment. (English) Zbl 1498.35040 Appl. Anal. 101, No. 16, 5906-5931 (2022). MSC: 35B32 35K51 35K57 35R10 92D30 PDF BibTeX XML Cite \textit{D. Wei} and \textit{S. Guo}, Appl. Anal. 101, No. 16, 5906--5931 (2022; Zbl 1498.35040) Full Text: DOI OpenURL
Soresina, Cinzia Hopf bifurcations in the full SKT model and where to find them. (English) Zbl 1498.35037 Discrete Contin. Dyn. Syst., Ser. S 15, No. 9, 2673-2693 (2022). MSC: 35B32 35K51 35K57 65P30 92D25 PDF BibTeX XML Cite \textit{C. Soresina}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 9, 2673--2693 (2022; Zbl 1498.35037) Full Text: DOI arXiv OpenURL
Schneider, Guido; Winter, Matthias The amplitude system for a simultaneous short-wave Turing and long-wave Hopf instability. (English) Zbl 1498.35055 Discrete Contin. Dyn. Syst., Ser. S 15, No. 9, 2657-2672 (2022). MSC: 35B36 35B32 35B45 35K57 PDF BibTeX XML Cite \textit{G. Schneider} and \textit{M. Winter}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 9, 2657--2672 (2022; Zbl 1498.35055) Full Text: DOI OpenURL
Ju, Xiaowei; Yang, Yu Turing instability of the periodic solution for a generalized diffusive Maginu model. (English) Zbl 07592301 Comput. Appl. Math. 41, No. 6, Paper No. 290, 16 p. (2022). MSC: 35B32 PDF BibTeX XML Cite \textit{X. Ju} and \textit{Y. Yang}, Comput. Appl. Math. 41, No. 6, Paper No. 290, 16 p. (2022; Zbl 07592301) Full Text: DOI OpenURL
Alfifi, H. Y. Stability analysis for Schnakenberg reaction-diffusion model with gene expression time delay. (English) Zbl 1498.35330 Chaos Solitons Fractals 155, Article ID 111730, 11 p. (2022). MSC: 35K57 34C05 34K18 35B10 35B32 39A33 93B52 PDF BibTeX XML Cite \textit{H. Y. Alfifi}, Chaos Solitons Fractals 155, Article ID 111730, 11 p. (2022; Zbl 1498.35330) Full Text: DOI OpenURL
Liu, Haicheng; Ge, Bin; Liang, Qiyuan; Chen, Jiaqi Bifurcation analysis of the cancer virotherapy system with time delay and diffusion. (English) Zbl 1495.92031 Int. J. Biomath. 15, No. 8, Article ID 2250056, 31 p. (2022). MSC: 92C50 34K18 35B32 PDF BibTeX XML Cite \textit{H. Liu} et al., Int. J. Biomath. 15, No. 8, Article ID 2250056, 31 p. (2022; Zbl 1495.92031) Full Text: DOI OpenURL
Shi, Qingyan; Shi, Junping; Song, Yongli Effect of spatial average on the spatiotemporal pattern formation of reaction-diffusion systems. (English) Zbl 1498.35036 J. Dyn. Differ. Equations 34, No. 3, 2123-2156 (2022). MSC: 35B32 35B36 35K51 35K57 35R09 92B05 PDF BibTeX XML Cite \textit{Q. Shi} et al., J. Dyn. Differ. Equations 34, No. 3, 2123--2156 (2022; Zbl 1498.35036) Full Text: DOI arXiv OpenURL
Liu, Hongxia; Wu, Ranchao; Chen, Mengxin Hopf bifurcation in a delayed Brusselator model with network structure. (English) Zbl 1497.35463 J. Appl. Nonlinear Dyn. 11, No. 4, 897-914 (2022). MSC: 35Q79 80A32 92E20 35K57 35B32 35B35 35R02 35R07 PDF BibTeX XML Cite \textit{H. Liu} et al., J. Appl. Nonlinear Dyn. 11, No. 4, 897--914 (2022; Zbl 1497.35463) Full Text: DOI OpenURL
Chen, Hongyu; Zhang, Chunrui Dynamic analysis of a Leslie-Gower-type predator-prey system with the fear effect and ratio-dependent Holling III functional response. (English) Zbl 1498.92150 Nonlinear Anal., Model. Control 27, No. 5, 904-926 (2022). MSC: 92D25 35B32 PDF BibTeX XML Cite \textit{H. Chen} and \textit{C. Zhang}, Nonlinear Anal., Model. Control 27, No. 5, 904--926 (2022; Zbl 1498.92150) Full Text: DOI OpenURL
Shu, Hongying; Xu, Wanxiao; Wang, Xiang-Sheng; Wu, Jianhong Spatiotemporal patterns of a structured spruce budworm diffusive model. (English) Zbl 1497.35302 J. Differ. Equations 336, 427-455 (2022). MSC: 35K57 35B32 35B36 35K20 35R10 35Q92 PDF BibTeX XML Cite \textit{H. Shu} et al., J. Differ. Equations 336, 427--455 (2022; Zbl 1497.35302) Full Text: DOI OpenURL
Dai, Qinrui; Duan, Daifeng; Guo, Yuxiao Dynamical analysis of a melanoma model with immune response. (English) Zbl 1497.92051 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 9, Article ID 2250129, 28 p. (2022). MSC: 92C32 34C23 35B32 PDF BibTeX XML Cite \textit{Q. Dai} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 9, Article ID 2250129, 28 p. (2022; Zbl 1497.92051) Full Text: DOI OpenURL
Zhu, Linhe; Zheng, Wenxin; Zhang, Xuebing Bifurcation analysis of a reaction-diffusion rumor spreading model with nonsmooth control. (English) Zbl 1497.91250 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 8, Article ID 2250109, 19 p. (2022). MSC: 91D30 35K57 35B32 PDF BibTeX XML Cite \textit{L. Zhu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 8, Article ID 2250109, 19 p. (2022; Zbl 1497.91250) Full Text: DOI OpenURL
Wei, Meihua; He, Yinnian; Azam, Muhammad Spatiotemporal patterns and bifurcations with degeneration in a symmetry glycolysis model. (English) Zbl 1495.35026 Commun. Nonlinear Sci. Numer. Simul. 114, Article ID 106644, 26 p. (2022). MSC: 35B36 35B32 35K51 35K57 35Q92 PDF BibTeX XML Cite \textit{M. Wei} et al., Commun. Nonlinear Sci. Numer. Simul. 114, Article ID 106644, 26 p. (2022; Zbl 1495.35026) Full Text: DOI OpenURL
Wu, Shuhao; Song, Yongli; Shi, Qingyan Normal forms of double Hopf bifurcation for a reaction-diffusion system with delay and nonlocal spatial average and applications. (English) Zbl 07566249 Comput. Math. Appl. 119, 174-192 (2022). MSC: 35B32 92D25 35K57 35Q92 35R10 PDF BibTeX XML Cite \textit{S. Wu} et al., Comput. Math. Appl. 119, 174--192 (2022; Zbl 07566249) Full Text: DOI OpenURL
Blé, Gamaliel; Loreto-Hernández, Iván Limit cycles in a tritrophic food chain model with general functional responses. (English) Zbl 07565160 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 3-4, 449-460 (2022). MSC: 37G15 37C75 92D25 PDF BibTeX XML Cite \textit{G. Blé} and \textit{I. Loreto-Hernández}, Int. J. Nonlinear Sci. Numer. Simul. 23, No. 3--4, 449--460 (2022; Zbl 07565160) Full Text: DOI OpenURL
Sun, Guangxun; Dai, Binxiang; Wang, Lin Turing-Hopf bifurcation and its normal form in a diffusive three-species food chain system with strong Allee effect. (English) Zbl 1497.92351 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 7, Article ID 2250105, 21 p. (2022). MSC: 92D40 92D25 34C23 35B32 PDF BibTeX XML Cite \textit{G. Sun} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 7, Article ID 2250105, 21 p. (2022; Zbl 1497.92351) Full Text: DOI OpenURL
Jang, Juhi; Kukavica, Igor; Li, Linfeng Mach limits in analytic spaces on exterior domains. (English) Zbl 1504.35259 Discrete Contin. Dyn. Syst. 42, No. 8, 3629-3659 (2022). MSC: 35Q31 76N10 35A01 35A02 35B32 28A80 PDF BibTeX XML Cite \textit{J. Jang} et al., Discrete Contin. Dyn. Syst. 42, No. 8, 3629--3659 (2022; Zbl 1504.35259) Full Text: DOI arXiv OpenURL
Farshid, Marzieh; Jalilian, Yaghoub Turing instability in a modified cross-diffusion Leslie-Gower predator-prey model with Beddington-DeAngelis functional response. (English) Zbl 1492.35028 Bound. Value Probl. 2022, Paper No. 20, 20 p. (2022). MSC: 35B32 35B36 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{M. Farshid} and \textit{Y. Jalilian}, Bound. Value Probl. 2022, Paper No. 20, 20 p. (2022; Zbl 1492.35028) Full Text: DOI OpenURL
Simpson, D. J. W. Twenty Hopf-like bifurcations in piecewise-smooth dynamical systems. (English) Zbl 1508.37065 Phys. Rep. 970, 1-80 (2022). MSC: 37G15 37G10 34C23 34C05 34C07 PDF BibTeX XML Cite \textit{D. J. W. Simpson}, Phys. Rep. 970, 1--80 (2022; Zbl 1508.37065) Full Text: DOI arXiv OpenURL
Nie, Hua; Shi, Yao; Wu, Jianhua The effect of diffusion on the dynamics of a predator-prey chemostat model. (English) Zbl 1491.35025 SIAM J. Appl. Math. 82, No. 3, 821-848 (2022). MSC: 35B32 35B35 35K51 35K57 92C17 92D25 PDF BibTeX XML Cite \textit{H. Nie} et al., SIAM J. Appl. Math. 82, No. 3, 821--848 (2022; Zbl 1491.35025) Full Text: DOI OpenURL
Tian, Canrong; Liu, Yong Delay-driven Hopf bifurcation in a networked Malaria model. (English) Zbl 1504.35589 Appl. Math. Lett. 132, Article ID 108092, 6 p. (2022). MSC: 35Q92 92D30 35B32 35B40 PDF BibTeX XML Cite \textit{C. Tian} and \textit{Y. Liu}, Appl. Math. Lett. 132, Article ID 108092, 6 p. (2022; Zbl 1504.35589) Full Text: DOI OpenURL
Li, Haixia; Yang, Wenbin; Wei, Meihua; Wang, Aili Dynamics in a diffusive predator-prey system with double Allee effect and modified Leslie-Gower scheme. (English) Zbl 1491.35024 Int. J. Biomath. 15, No. 3, Article ID 2250001, 29 p. (2022). MSC: 35B32 35B09 35B35 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{H. Li} et al., Int. J. Biomath. 15, No. 3, Article ID 2250001, 29 p. (2022; Zbl 1491.35024) Full Text: DOI OpenURL
Jia, Lan; Li, Liang Stability and dynamic transition of vegetation model for flat arid terrains. (English) Zbl 1490.35030 Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3375-3398 (2022). MSC: 35B32 35B35 35B09 35K51 35K58 37L10 PDF BibTeX XML Cite \textit{L. Jia} and \textit{L. Li}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3375--3398 (2022; Zbl 1490.35030) Full Text: DOI OpenURL
Sun, Gui-Quan; Zhang, Hong-Tao; Song, Yong-Li; Li, Li; Jin, Zhen Dynamic analysis of a plant-water model with spatial diffusion. (English) Zbl 1490.35033 J. Differ. Equations 329, 395-430 (2022). MSC: 35B32 35K51 35K57 92C80 37L10 PDF BibTeX XML Cite \textit{G.-Q. Sun} et al., J. Differ. Equations 329, 395--430 (2022; Zbl 1490.35033) Full Text: DOI OpenURL
Goh, Ryan; Kaper, Tasso J.; Vo, Theodore Delayed Hopf bifurcation and space-time buffer curves in the complex Ginzburg-Landau equation. (English) Zbl 1492.35020 IMA J. Appl. Math. 87, No. 2, 131-186 (2022). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35B25 35B32 35Q56 PDF BibTeX XML Cite \textit{R. Goh} et al., IMA J. Appl. Math. 87, No. 2, 131--186 (2022; Zbl 1492.35020) Full Text: DOI arXiv OpenURL
Gan, Wenzhen; Lin, Zhigui; Pedersen, Michael Delay-driven spatial patterns in a predator-prey model with constant prey harvesting. (English) Zbl 1490.35029 Z. Angew. Math. Phys. 73, No. 3, Paper No. 120, 18 p. (2022). MSC: 35B32 35B36 35K51 35K57 35R10 92D30 PDF BibTeX XML Cite \textit{W. Gan} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 120, 18 p. (2022; Zbl 1490.35029) Full Text: DOI OpenURL
Barge, Héctor; Sanjurjo, José M. R. Higher dimensional topology and generalized Hopf bifurcations for discrete dynamical systems. (English) Zbl 1500.37040 Discrete Contin. Dyn. Syst. 42, No. 6, 2585-2601 (2022). Reviewer: Valery A. Gaiko (Minsk) MSC: 37G35 37B35 37C70 39A28 PDF BibTeX XML Cite \textit{H. Barge} and \textit{J. M. R. Sanjurjo}, Discrete Contin. Dyn. Syst. 42, No. 6, 2585--2601 (2022; Zbl 1500.37040) Full Text: DOI arXiv OpenURL
Shi, Qingyan; Song, Yongli Spatially nonhomogeneous periodic patterns in a delayed predator-prey model with predator-taxis diffusion. (English) Zbl 1491.92098 Appl. Math. Lett. 131, Article ID 108062, 8 p. (2022). MSC: 92D25 92C15 35B32 35B36 PDF BibTeX XML Cite \textit{Q. Shi} and \textit{Y. Song}, Appl. Math. Lett. 131, Article ID 108062, 8 p. (2022; Zbl 1491.92098) Full Text: DOI OpenURL
Asheghi, Rasoul Hopf bifurcation in a diffusive predator-prey model with a square-root singularity. (English) Zbl 1487.35044 Topol. Methods Nonlinear Anal. 59, No. 1, 193-220 (2022). MSC: 35B32 35K51 35K57 92D25 70K50 PDF BibTeX XML Cite \textit{R. Asheghi}, Topol. Methods Nonlinear Anal. 59, No. 1, 193--220 (2022; Zbl 1487.35044) Full Text: DOI OpenURL
Rodrigues, Alexandre A. P. Unfolding a Bykov attractor: from an attracting torus to strange attractors. (English) Zbl 1498.34155 J. Dyn. Differ. Equations 34, No. 2, 1643-1677 (2022). MSC: 34D45 34C37 37D45 37G35 34C45 PDF BibTeX XML Cite \textit{A. A. P. Rodrigues}, J. Dyn. Differ. Equations 34, No. 2, 1643--1677 (2022; Zbl 1498.34155) Full Text: DOI arXiv OpenURL
Wang, Yujia; Fan, Dejun; Wang, Chuncheng Dynamics of a single population model with memory effect and spatial heterogeneity. (English) Zbl 1487.35046 J. Dyn. Differ. Equations 34, No. 2, 1433-1452 (2022). MSC: 35B32 35B35 35K20 35K57 35R10 92D25 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Dyn. Differ. Equations 34, No. 2, 1433--1452 (2022; Zbl 1487.35046) Full Text: DOI arXiv OpenURL
Hu, Jing; Zhang, Qimin; Meyer-Baese, Anke; Ye, Ming Bifurcation analysis and finite-time contraction stability of an Alzheimer disease model. (English) Zbl 1489.92039 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 4, Article ID 2250060, 26 p. (2022). MSC: 92C32 35B32 35B35 93D40 PDF BibTeX XML Cite \textit{J. Hu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 4, Article ID 2250060, 26 p. (2022; Zbl 1489.92039) Full Text: DOI OpenURL
Yang, Rui; Yu, Xiao-Qing Turing-Hopf bifurcation in diffusive Gierer-Meinhardt model. (English) Zbl 1487.35047 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 4, Article ID 2250046, 20 p. (2022). MSC: 35B32 35B36 35K51 35K57 37L10 92C15 PDF BibTeX XML Cite \textit{R. Yang} and \textit{X.-Q. Yu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 4, Article ID 2250046, 20 p. (2022; Zbl 1487.35047) Full Text: DOI OpenURL
Ding, Yuting; Liu, Gaoyang; An, Yong Stability and bifurcation analysis of a tumor-immune system with two delays and diffusion. (English) Zbl 1489.92035 Math. Biosci. Eng. 19, No. 2, 1154-1173 (2022). MSC: 92C32 35K57 35B32 PDF BibTeX XML Cite \textit{Y. Ding} et al., Math. Biosci. Eng. 19, No. 2, 1154--1173 (2022; Zbl 1489.92035) Full Text: DOI OpenURL
Xiang, Nan; Wan, Aying; Lin, Hongyan Diffusion-driven instability of both the equilibrium solution and the periodic solutions for the diffusive sporns-seelig model. (English) Zbl 1486.35039 Electron Res. Arch. 30, No. 3, 813-829 (2022). MSC: 35B32 35B10 35B36 35K51 35K57 92E20 PDF BibTeX XML Cite \textit{N. Xiang} et al., Electron Res. Arch. 30, No. 3, 813--829 (2022; Zbl 1486.35039) Full Text: DOI OpenURL
Matano, Hiroshi; Mori, Yoichiro; Nara, Mitsunori; Sakakibara, Koya Asymptotic behavior of fronts and pulses of the bidomain model. (English) Zbl 1486.35116 SIAM J. Appl. Dyn. Syst. 21, No. 1, 616-649 (2022). MSC: 35C07 35B32 35K58 65M06 92C30 PDF BibTeX XML Cite \textit{H. Matano} et al., SIAM J. Appl. Dyn. Syst. 21, No. 1, 616--649 (2022; Zbl 1486.35116) Full Text: DOI arXiv OpenURL
Lu, Min; Xiang, Chuang; Huang, Jicai; Wang, Hao Bifurcations in the diffusive Bazykin model. (English) Zbl 1486.35036 J. Differ. Equations 323, 280-311 (2022). MSC: 35B32 35B36 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{M. Lu} et al., J. Differ. Equations 323, 280--311 (2022; Zbl 1486.35036) Full Text: DOI OpenURL
Kalyakin, L. A. Asymptotics of Andronov-Hopf dynamic bifurcations. (English. Russian original) Zbl 1496.37044 J. Math. Sci., New York 260, No. 6, 756-773 (2022); translation from Probl. Mat. Anal. 113, 45-59 (2022). MSC: 37G10 34C23 PDF BibTeX XML Cite \textit{L. A. Kalyakin}, J. Math. Sci., New York 260, No. 6, 756--773 (2022; Zbl 1496.37044); translation from Probl. Mat. Anal. 113, 45--59 (2022) Full Text: DOI OpenURL
Liu, Jie; Chen, Shanshan Delay-induced instability in a reaction-diffusion model with a general advection term. (English) Zbl 1486.35040 J. Math. Anal. Appl. 512, No. 2, Article ID 126160, 20 p. (2022). MSC: 35B35 35B32 35K20 35K57 35R10 PDF BibTeX XML Cite \textit{J. Liu} and \textit{S. Chen}, J. Math. Anal. Appl. 512, No. 2, Article ID 126160, 20 p. (2022; Zbl 1486.35040) Full Text: DOI OpenURL
Uecker, Hannes Continuation and bifurcation in nonlinear PDEs - algorithms, applications, and experiments. (English) Zbl 1490.35002 Jahresber. Dtsch. Math.-Ver. 124, No. 1, 43-80 (2022). Reviewer: Alois Steindl (Wien) MSC: 35-02 35B32 35B36 35B60 65M99 65-04 PDF BibTeX XML Cite \textit{H. Uecker}, Jahresber. Dtsch. Math.-Ver. 124, No. 1, 43--80 (2022; Zbl 1490.35002) Full Text: DOI OpenURL
Chen, Mengxin; Wu, Ranchao; Xu, Yancong Dynamics of a depletion-type Gierer-Meinhardt model with Langmuir-Hinshelwood reaction scheme. (English) Zbl 1492.35357 Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2275-2312 (2022). MSC: 35Q92 92D25 92C15 35K57 35B32 35B45 35B35 PDF BibTeX XML Cite \textit{M. Chen} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2275--2312 (2022; Zbl 1492.35357) Full Text: DOI OpenURL
Li, Jing; Sun, Gui-Quan; Jin, Zhen Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. (English) Zbl 1485.35035 Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2147-2172 (2022). MSC: 35B32 35B10 35K51 35K57 PDF BibTeX XML Cite \textit{J. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2147--2172 (2022; Zbl 1485.35035) Full Text: DOI OpenURL
Yuan, Pei; Zhu, Huaiping The nilpotent bifurcations in a model for generalist predatory mite and pest leafhopper with stage structure. (English) Zbl 1504.34125 J. Differ. Equations 321, 99-129 (2022). Reviewer: Gheorghe Tigan (Timișoara) MSC: 34C60 92D25 34C05 34D20 34C23 34C37 PDF BibTeX XML Cite \textit{P. Yuan} and \textit{H. Zhu}, J. Differ. Equations 321, 99--129 (2022; Zbl 1504.34125) Full Text: DOI OpenURL
Kosovalić, Nemanja; Pigott, Brian Symmetric vibrations of higher dimensional nonlinear wave equations. (English) Zbl 1486.35299 Sel. Math., New Ser. 28, No. 3, Paper No. 48, 38 p. (2022). MSC: 35L71 35B10 35L20 37K50 35B32 PDF BibTeX XML Cite \textit{N. Kosovalić} and \textit{B. Pigott}, Sel. Math., New Ser. 28, No. 3, Paper No. 48, 38 p. (2022; Zbl 1486.35299) Full Text: DOI OpenURL
Bılazeroğlu, Şeyma; Merdan, Huseyin; Guerrini, Luca Hopf bifurcations of a Lengyel-Epstein model involving two discrete time delays. (English) Zbl 1482.34162 Discrete Contin. Dyn. Syst., Ser. S 15, No. 3, 535-554 (2022). MSC: 34K13 34K18 34K20 37C75 37G15 PDF BibTeX XML Cite \textit{Ş. Bılazeroğlu} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 3, 535--554 (2022; Zbl 1482.34162) Full Text: DOI OpenURL
Du, Yan-fei; Niu, Ben; Wei, Jun-jie Diffusion-induced spatio-temporal oscillations in an epidemic model with two delays. (English) Zbl 1485.35034 Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 128-153 (2022). MSC: 35B32 35K51 35K57 37L10 PDF BibTeX XML Cite \textit{Y.-f. Du} et al., Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 128--153 (2022; Zbl 1485.35034) Full Text: DOI arXiv OpenURL
Tao, Yiwen; Ren, Jingli The stability and bifurcation of homogeneous diffusive predator-prey systems with spatio-temporal delays. (English) Zbl 1480.35021 Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 229-243 (2022). MSC: 35B32 35B35 35K51 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{J. Ren}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 229--243 (2022; Zbl 1480.35021) Full Text: DOI OpenURL
Geng, Dongxu; Wang, Hongbin Normal form formulations of double-Hopf bifurcation for partial functional differential equations with nonlocal effect. (English) Zbl 1480.35020 J. Differ. Equations 309, 741-785 (2022). MSC: 35B32 35B15 35K20 35K58 35R10 37L10 PDF BibTeX XML Cite \textit{D. Geng} and \textit{H. Wang}, J. Differ. Equations 309, 741--785 (2022; Zbl 1480.35020) Full Text: DOI OpenURL