Scindia, Pallavi; Tikare, Sanket; El-Deeb, Ahmed A. Ulam stability of first-order nonlinear impulsive dynamic equations. (English) Zbl 07741584 Bound. Value Probl. 2023, Paper No. 86, 13 p. (2023). MSC: 34D20 34N05 39A30 47H09 PDF BibTeX XML Cite \textit{P. Scindia} et al., Bound. Value Probl. 2023, Paper No. 86, 13 p. (2023; Zbl 07741584) Full Text: DOI
Selvan, A. Ponmana; Onitsuka, M. Ulam type stabilities of \(n\)-th order linear differential equations using Gronwall’s inequality. (English) Zbl 07726204 Result. Math. 78, No. 5, Paper No. 198, 19 p. (2023). MSC: 34A30 34D10 26D15 PDF BibTeX XML Cite \textit{A. P. Selvan} and \textit{M. Onitsuka}, Result. Math. 78, No. 5, Paper No. 198, 19 p. (2023; Zbl 07726204) Full Text: DOI
Zou, Yuqun; Fečkan, Michal; Wang, JinRong Hyers-Ulam-Rassias stability of linear recurrence over the quaternion skew yield. (English) Zbl 07725161 Rocky Mt. J. Math. 53, No. 2, 661-670 (2023). MSC: 39A30 39A06 PDF BibTeX XML Cite \textit{Y. Zou} et al., Rocky Mt. J. Math. 53, No. 2, 661--670 (2023; Zbl 07725161) Full Text: DOI Link
Graef, John R.; Tunç, Cemil; Şengun, Merve; Tunç, Osman The stability of nonlinear delay integro-differential equations in the sense of Hyers-Ulam. (English) Zbl 07724297 Nonauton. Dyn. Syst. 10, Article ID 20220169, 12 p. (2023). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45J05 45D05 45M10 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Nonauton. Dyn. Syst. 10, Article ID 20220169, 12 p. (2023; Zbl 07724297) Full Text: DOI
Tuan, Nguyen Huy; Saadati, Reza; O’Regan, Donal; Park, Choonkil Best approximations of stochastic bi-homomorphisms and bi-derivations in MC-\(\diamond\)-algebras. (English) Zbl 1515.39015 Rend. Circ. Mat. Palermo (2) 72, No. 3, 2111-2135 (2023). MSC: 39B52 39B82 47B47 47B80 47H10 46L57 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Rend. Circ. Mat. Palermo (2) 72, No. 3, 2111--2135 (2023; Zbl 1515.39015) Full Text: DOI
Inoan, Daniela; Marian, Daniela Semi-Hyers-Ulam-Rassias stability for an integro-differential equation of order \(n\). (English) Zbl 1511.45006 Demonstr. Math. 56, Article ID 20220198, 10 p. (2023). MSC: 45J05 45E10 45D05 45M10 44A10 PDF BibTeX XML Cite \textit{D. Inoan} and \textit{D. Marian}, Demonstr. Math. 56, Article ID 20220198, 10 p. (2023; Zbl 1511.45006) Full Text: DOI
Choudhury, Binayak S.; Chakraborty, Priyam Fixed point problem of a multi-valued Kannan-Geraghty type contraction via \(w\)-distance. (English) Zbl 1507.54020 J. Anal. 31, No. 1, 439-458 (2023). MSC: 54H25 PDF BibTeX XML Cite \textit{B. S. Choudhury} and \textit{P. Chakraborty}, J. Anal. 31, No. 1, 439--458 (2023; Zbl 1507.54020) Full Text: DOI
Idir, Sadani On the stability of new functional equation involving a recurrence relation. (English) Zbl 1515.39012 J. Anal. 31, No. 1, 21-29 (2023). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B22 39B82 PDF BibTeX XML Cite \textit{S. Idir}, J. Anal. 31, No. 1, 21--29 (2023; Zbl 1515.39012) Full Text: DOI
Zhang, Dongwen; Rassias, John Michael; Li, Yongjin On the Hyers-Ulam solution and stability problem for general set-valued Euler-Lagrange quadratic functional equations. (English) Zbl 07679549 Korean J. Math. 30, No. 4, 571-592 (2022). MSC: 47H10 39B82 54C60 PDF BibTeX XML Cite \textit{D. Zhang} et al., Korean J. Math. 30, No. 4, 571--592 (2022; Zbl 07679549) Full Text: DOI
Eidinejad, Zahra; Saadati, Reza Hyers-Ulam-Rassias-Kummer stability of the fractional integro-differential equations. (English) Zbl 1509.45006 Math. Biosci. Eng. 19, No. 7, 6536-6550 (2022). MSC: 45J05 45D05 45M10 26A33 33C05 47N20 PDF BibTeX XML Cite \textit{Z. Eidinejad} and \textit{R. Saadati}, Math. Biosci. Eng. 19, No. 7, 6536--6550 (2022; Zbl 1509.45006) Full Text: DOI
Abolfathi, Mohammad Ali Nearly \(k\)-th partial ternary cubic \(*\)-derivations on non-Archimedean \(\ell\)-fuzzy \(C^*\)-ternary algebras. (English) Zbl 07602412 Sahand Commun. Math. Anal. 19, No. 3, 13-33 (2022). MSC: 46S10 46S40 39B82 47B47 PDF BibTeX XML Cite \textit{M. A. Abolfathi}, Sahand Commun. Math. Anal. 19, No. 3, 13--33 (2022; Zbl 07602412) Full Text: DOI
Ciplea, Sorina Anamaria; Lungu, Nicolaie; Marian, Daniela; Rassias, Themistocles M. On Hyers-Ulam-Rassias stability of a Volterra-Hammerstein functional integral equation. (English) Zbl 1496.45004 Daras, Nicholas J. (ed.) et al., Approximation and computation in science and engineering. Cham: Springer. Springer Optim. Appl. 180, 147-156 (2022). MSC: 45G10 26D10 39B82 47H30 PDF BibTeX XML Cite \textit{S. A. Ciplea} et al., Springer Optim. Appl. 180, 147--156 (2022; Zbl 1496.45004) Full Text: DOI arXiv
Simões, Alberto; Selvan, Ponmana Hyers-Ulam stability of a certain Fredholm integral equation. (English) Zbl 1493.45002 Turk. J. Math. 46, No. 1, 87-98 (2022). MSC: 45B05 PDF BibTeX XML Cite \textit{A. Simões} and \textit{P. Selvan}, Turk. J. Math. 46, No. 1, 87--98 (2022; Zbl 1493.45002) Full Text: DOI
Bohner, Martin; Scindia, Pallavi S.; Tikare, Sanket Qualitative results for nonlinear integro-dynamic equations via integral inequalities. (English) Zbl 1500.45004 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 106, 29 p. (2022). Reviewer: Eze Raymond Nwaeze (Montgomery) MSC: 45J05 26E70 26D10 26D15 45M10 PDF BibTeX XML Cite \textit{M. Bohner} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 106, 29 p. (2022; Zbl 1500.45004) Full Text: DOI
Wang, Chao; Li, Zhien; Agarwal, Ravi P. Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. (English) Zbl 1482.34010 Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 359-386 (2022). MSC: 34A07 34N05 11R52 PDF BibTeX XML Cite \textit{C. Wang} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 359--386 (2022; Zbl 1482.34010) Full Text: DOI
Murali, Ramdoss; Selvan, Arumugam Ponmana; Park, Choonkil; Lee, Jung Rye Aboodh transform and the stability of second order linear differential equations. (English) Zbl 1494.34128 Adv. Difference Equ. 2021, Paper No. 296, 18 p. (2021). MSC: 34D20 34A30 PDF BibTeX XML Cite \textit{R. Murali} et al., Adv. Difference Equ. 2021, Paper No. 296, 18 p. (2021; Zbl 1494.34128) Full Text: DOI
Wang, Chun; Xu, Tianzhou Hyers-Ulam-Rassias stability on a class of generalized fractional systems. (Chinese. English summary) Zbl 07572496 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 6, 1791-1804 (2021). MSC: 34A08 44A10 26A33 34D20 PDF BibTeX XML Cite \textit{C. Wang} and \textit{T. Xu}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 6, 1791--1804 (2021; Zbl 07572496) Full Text: Link
Koh, Heejeong A new generalized cubic functional equation and its stability problems. (English) Zbl 1493.39027 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 28, No. 1, 15-26 (2021). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{H. Koh}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 28, No. 1, 15--26 (2021; Zbl 1493.39027) Full Text: DOI
Rana, Anshul; Sharma, Ravinder Kumar; Chandok, Sumit Stability of complex functional equations in 2-Banach spaces. (English) Zbl 1492.39018 J. Math. Phys. Anal. Geom. 17, No. 3, 341-368 (2021). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{A. Rana} et al., J. Math. Phys. Anal. Geom. 17, No. 3, 341--368 (2021; Zbl 1492.39018) Full Text: DOI
Li, Z.; Wang, C.; Agarwal, R. P.; Sakthivel, R. Hyers-Ulam-Rassias stability of quaternion multidimensional fuzzy nonlinear difference equations with impulses. (English) Zbl 1505.34004 Iran. J. Fuzzy Syst. 18, No. 3, 143-160 (2021). MSC: 34A07 34A37 PDF BibTeX XML Cite \textit{Z. Li} et al., Iran. J. Fuzzy Syst. 18, No. 3, 143--160 (2021; Zbl 1505.34004) Full Text: DOI
Alam, Mehboob; Shah, Dildar Hyers-Ulam stability of coupled implicit fractional integro-differential equations with Riemann-Liouville derivatives. (English) Zbl 1498.34207 Chaos Solitons Fractals 150, Article ID 111122, 31 p. (2021). MSC: 34K37 26A33 34K60 PDF BibTeX XML Cite \textit{M. Alam} and \textit{D. Shah}, Chaos Solitons Fractals 150, Article ID 111122, 31 p. (2021; Zbl 1498.34207) Full Text: DOI
Majani, Hamid Stability of a system of Euler-Lagrange type cubic functional equations in non-Archimedean 2-normed spaces. (Persian. English summary) Zbl 1499.39122 JAMM, J. Adv. Math. Model. 11, No. 1, 11-24 (2021). MSC: 39B82 39B72 46S10 PDF BibTeX XML Cite \textit{H. Majani}, JAMM, J. Adv. Math. Model. 11, No. 1, 11--24 (2021; Zbl 1499.39122) Full Text: DOI
Murali, Ramdoss; Selvan, Arumugam Ponmana; Baskaran, Sanmugam; Park, Choonkil; Lee, Jung Rye Hyers-Ulam stability of first-order linear differential equations using Aboodh transform. (English) Zbl 1504.34129 J. Inequal. Appl. 2021, Paper No. 133, 18 p. (2021). MSC: 34D10 34A30 34G10 34D20 PDF BibTeX XML Cite \textit{R. Murali} et al., J. Inequal. Appl. 2021, Paper No. 133, 18 p. (2021; Zbl 1504.34129) Full Text: DOI
Saha, Parbati; Mondal, Pratap; Chqudhury, Binayak S. A fixed point approach to the Hyers-Ulam-Rassias stability problem of pexiderized functional equation in modular spaces. (English) Zbl 1481.39024 Tatra Mt. Math. Publ. 78, 59-72 (2021). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{P. Saha} et al., Tatra Mt. Math. Publ. 78, 59--72 (2021; Zbl 1481.39024) Full Text: DOI
Shah, Khadija Ali; Zada, Akbar Controllability and stability analysis of an oscillating system with two delays. (English) Zbl 1478.93063 Math. Methods Appl. Sci. 44, No. 18, 14733-14765 (2021). MSC: 93B05 93D40 93C23 93C27 34K45 93C43 PDF BibTeX XML Cite \textit{K. A. Shah} and \textit{A. Zada}, Math. Methods Appl. Sci. 44, No. 18, 14733--14765 (2021; Zbl 1478.93063) Full Text: DOI
Arasu, V.; Angayarkanni, M. Stability of \(n\)-dimensional additive functional equation in fuzzy normed spaces. (English) Zbl 1488.39069 Sarajevo J. Math. 17(30), No. 1, 79-91 (2021). MSC: 39B82 39B52 26E50 46S50 PDF BibTeX XML Cite \textit{V. Arasu} and \textit{M. Angayarkanni}, Sarajevo J. Math. 17(30), No. 1, 79--91 (2021; Zbl 1488.39069)
Ciplea, Sorina Anamaria; Marian, Daniela; Lungu, Nicolaie; Rassias, Themistocles M. Hyers-Ulam stability for differential equations and partial differential equations via Gronwall lemma. (English) Zbl 1486.34107 Rassias, Themistocles M. (ed.), Approximation theory and analytic inequalities. Cham: Springer. 59-69 (2021). MSC: 34D10 26D10 35B20 PDF BibTeX XML Cite \textit{S. A. Ciplea} et al., in: Approximation theory and analytic inequalities. Cham: Springer. 59--69 (2021; Zbl 1486.34107) Full Text: DOI arXiv
Saha, P.; Mondal, Pratap; Choudhury, B. S. Stability property of functional equations in modular spaces: a fixed-point approach. (English) Zbl 1483.39014 Math. Notes 109, No. 2, 262-269 (2021). Reviewer: Bilal Bilalov (Baku) MSC: 39B82 39B52 46A80 47H10 PDF BibTeX XML Cite \textit{P. Saha} et al., Math. Notes 109, No. 2, 262--269 (2021; Zbl 1483.39014) Full Text: DOI
Alghamdi, Maryam A.; Alharbi, Mymonah; Bohner, Martin; Hamza, Alaa E. Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order nonlinear dynamic equations. (English) Zbl 1471.34171 Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 45, 14 p. (2021). MSC: 34N05 34G20 34D10 PDF BibTeX XML Cite \textit{M. A. Alghamdi} et al., Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 45, 14 p. (2021; Zbl 1471.34171) Full Text: DOI
Choubin, Mehdi; Javanshiri, Hossein A new approach to the Hyers-Ulam-Rassias stability of differential equations. (English) Zbl 1471.34049 Result. Math. 76, No. 1, Paper No. 11, 14 p. (2021). MSC: 34B15 34D10 35J25 PDF BibTeX XML Cite \textit{M. Choubin} and \textit{H. Javanshiri}, Result. Math. 76, No. 1, Paper No. 11, 14 p. (2021; Zbl 1471.34049) Full Text: DOI
Wang, Chun Hyers-Ulam-Rassias stability of the generalized fractional systems and the \(\rho\)-Laplace transform method. (English) Zbl 1481.34013 Mediterr. J. Math. 18, No. 4, Paper No. 129, 22 p. (2021). Reviewer: Hristo S. Kiskinov (Plovdiv) MSC: 34A08 34D10 34A30 34B10 PDF BibTeX XML Cite \textit{C. Wang}, Mediterr. J. Math. 18, No. 4, Paper No. 129, 22 p. (2021; Zbl 1481.34013) Full Text: DOI
Alghamdi, Maryam A.; Aljehani, Alaa; Bohner, Martin; Hamza, Alaa E. Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear dynamic equations. (English) Zbl 1474.34624 Publ. Inst. Math., Nouv. Sér. 109(123), 83-93 (2021). MSC: 34N05 34D10 34G10 PDF BibTeX XML Cite \textit{M. A. Alghamdi} et al., Publ. Inst. Math., Nouv. Sér. 109(123), 83--93 (2021; Zbl 1474.34624) Full Text: DOI
Moharramnia, A.; Eghbali, N.; Rassias, J. M. Mittag-Leffler-Hyers-Ulam-Rassias stability of deterministic semilinear fractional Volterra integral equation of stochastic systems driven by Brownian motion. (English) Zbl 1513.45039 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 82, No. 1, 103-110 (2020). MSC: 45M10 45R05 45D05 60H20 PDF BibTeX XML Cite \textit{A. Moharramnia} et al., Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 82, No. 1, 103--110 (2020; Zbl 1513.45039) Full Text: Link
Senthil Kumar, B. V.; Dutta, Hemen; Sabarinathan, S. Fuzzy approximations of a multiplicative inverse cubic functional equation. (English) Zbl 1491.39014 Soft Comput. 24, No. 17, 13285-13292 (2020). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{B. V. Senthil Kumar} et al., Soft Comput. 24, No. 17, 13285--13292 (2020; Zbl 1491.39014) Full Text: DOI
Hammachukiattikul, Porpattama; Mohanapriya, Arusamy; Ganesh, Anumanthappa; Rajchakit, Grienggrai; Govindan, Vediyappan; Gunasekaran, Nallappan; Lim, Chee Peng A study on fractional differential equations using the fractional Fourier transform. (English) Zbl 1485.35387 Adv. Difference Equ. 2020, Paper No. 691, 22 p. (2020). MSC: 35R11 33E12 44A15 PDF BibTeX XML Cite \textit{P. Hammachukiattikul} et al., Adv. Difference Equ. 2020, Paper No. 691, 22 p. (2020; Zbl 1485.35387) Full Text: DOI
Turab, Ali; Sintunavarat, Wutiphol On the existence and uniqueness of the solution of a probabilistic functional equation approached by the Banach fixed point theorem. (English) Zbl 07449562 Thai J. Math. 18, No. 4, 1983-1994 (2020). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{A. Turab} and \textit{W. Sintunavarat}, Thai J. Math. 18, No. 4, 1983--1994 (2020; Zbl 07449562) Full Text: Link
Kaskasem, Prondanai; Klin-eam, Chakkrid; Noytabtim, Boriwat Stability of the general mixed additive and quadratic functional equation in quasi Banach spaces. (English) Zbl 1480.39022 Thai J. Math. 18, No. 3, 1299-1322 (2020). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{P. Kaskasem} et al., Thai J. Math. 18, No. 3, 1299--1322 (2020; Zbl 1480.39022) Full Text: Link
Idir, Sadani On the stability of the functional equation \(f(2x+y)+f \left(\frac{x+y}{2}\right)=\frac{2f(x)f(y)}{f(x)+f(y)}+\frac{2f(x+y)f(y-x)}{3f(y-x)-f(x+y)}\). (English) Zbl 1479.39033 Tatra Mt. Math. Publ. 76, 71-80 (2020). MSC: 39B82 PDF BibTeX XML Cite \textit{S. Idir}, Tatra Mt. Math. Publ. 76, 71--80 (2020; Zbl 1479.39033) Full Text: DOI
Murali, R.; Selvan, A. Ponmana Hyers-Ulam stability of a free and forced vibrations. (English) Zbl 1488.34316 Kragujevac J. Math. 44, No. 2, 299-312 (2020). MSC: 34D10 34C15 70K40 PDF BibTeX XML Cite \textit{R. Murali} and \textit{A. P. Selvan}, Kragujevac J. Math. 44, No. 2, 299--312 (2020; Zbl 1488.34316) Full Text: Link
Kaskasem, Prondanai; Janchada, Aekarach; Klin-eam, Chakkrid On approximate solutions of the generalized radical cubic functional equation in quasi-\(\beta\)-Banach spaces. (English) Zbl 1474.39062 Sahand Commun. Math. Anal. 17, No. 1, 69-90 (2020). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{P. Kaskasem} et al., Sahand Commun. Math. Anal. 17, No. 1, 69--90 (2020; Zbl 1474.39062) Full Text: DOI
Ahmad, Manzoor; Zada, Akbar; Wang, Xiaoming Existence, uniqueness and stability of implicit switched coupled fractional differential equations of \(\psi \)-Hilfer type. (English) Zbl 07336601 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3-4, 327-337 (2020). MSC: 26A33 34A08 34B27 PDF BibTeX XML Cite \textit{M. Ahmad} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3--4, 327--337 (2020; Zbl 07336601) Full Text: DOI
Wang, Chun; Xu, Tianzhou Hyers-Ulam-Rassias stability of a mixed type cubic-quartic functional equation in 2-Banach spaces. (Chinese. English summary) Zbl 1463.39067 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 352-368 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{C. Wang} and \textit{T. Xu}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 352--368 (2020; Zbl 1463.39067)
Zada, Akbar; Pervaiz, Bakhtawar; Alzabut, Jehad; Shah, Syed Omar Further results on Ulam stability for a system of first-order nonsingular delay differential equations. (English) Zbl 1456.34074 Demonstr. Math. 53, 225-235 (2020). MSC: 34K27 34K20 PDF BibTeX XML Cite \textit{A. Zada} et al., Demonstr. Math. 53, 225--235 (2020; Zbl 1456.34074) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu; Rassias, John Michael Best constant for Ulam stability of first-order \(h\)-difference equations with periodic coefficient. (English) Zbl 1451.39014 J. Math. Anal. Appl. 491, No. 2, Article ID 124363, 14 p. (2020). MSC: 39A30 39B82 PDF BibTeX XML Cite \textit{D. R. Anderson} et al., J. Math. Anal. Appl. 491, No. 2, Article ID 124363, 14 p. (2020; Zbl 1451.39014) Full Text: DOI arXiv
Başcı, Yasemin; Öğrekçi, Süleyman; Mısır, Adil On Ulam’s type stability criteria for fractional integral equations including Hadamard type singular kernel. (English) Zbl 1463.45020 Turk. J. Math. 44, No. 4, 1498-1509 (2020). MSC: 45G05 26A33 39B82 PDF BibTeX XML Cite \textit{Y. Başcı} et al., Turk. J. Math. 44, No. 4, 1498--1509 (2020; Zbl 1463.45020) Full Text: DOI
Ramdoss, Murali; Pachaiyappan, Divyakumari; Dutta, Hemen Euler-Lagrange radical functional equations with solution and stability. (English) Zbl 1463.39055 Miskolc Math. Notes 21, No. 1, 351-365 (2020). MSC: 39B52 39B72 39B82 PDF BibTeX XML Cite \textit{M. Ramdoss} et al., Miskolc Math. Notes 21, No. 1, 351--365 (2020; Zbl 1463.39055) Full Text: DOI
Kaskasem, P.; Klin-eam, C. Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in \(C^*\)-ternary algebras. (English) Zbl 1442.39030 J. Linear Topol. Algebra 9, No. 1, 1-15 (2020). MSC: 39B52 39B82 47H10 PDF BibTeX XML Cite \textit{P. Kaskasem} and \textit{C. Klin-eam}, J. Linear Topol. Algebra 9, No. 1, 1--15 (2020; Zbl 1442.39030) Full Text: Link
Başcı, Yasemin; Mısır, Adil; Öğrekçi, Süleyman On the stability problem of differential equations in the sense of Ulam. (English) Zbl 1439.34061 Result. Math. 75, No. 1, Paper No. 6, 13 p. (2020). MSC: 34D10 47N20 PDF BibTeX XML Cite \textit{Y. Başcı} et al., Result. Math. 75, No. 1, Paper No. 6, 13 p. (2020; Zbl 1439.34061) Full Text: DOI
Falihi, Sanam; Shojaee, Behrouz; Bodaghi, Abasalt; Zivari-Kazempour, Abbas Approximation on the mixed type additive-quadratic-sextic functional equation. (English) Zbl 1513.39070 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 81, No. 3, 13-22 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{S. Falihi} et al., Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 81, No. 3, 13--22 (2019; Zbl 1513.39070)
Isife, K. I. Existence and uniqueness of solution for some two-point boundary value fractional differential equations. (English) Zbl 1485.34037 J. Fract. Calc. Appl. 10, No. 1, 24-32 (2019). MSC: 34A08 34B15 34D10 47N20 26A33 PDF BibTeX XML Cite \textit{K. I. Isife}, J. Fract. Calc. Appl. 10, No. 1, 24--32 (2019; Zbl 1485.34037) Full Text: Link
Nuino, Ahmed; Almahalebi, Muaadh; Charifi, Ahmed Measure zero stability problem for Drygas functional equation with complex involution. (English) Zbl 1459.39054 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 183-193 (2019). Reviewer: Stefan Czerwik (Gliwice) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{A. Nuino} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 183--193 (2019; Zbl 1459.39054) Full Text: DOI
Ramdoss, Murali; Aruldass, Antony Raj General solution and Hyers-Ulam stability of duotrigintic functional equation in multi-Banach spaces. (English) Zbl 1459.39050 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 125-141 (2019). Reviewer: Stefan Czerwik (Gliwice) MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{M. Ramdoss} and \textit{A. R. Aruldass}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 125--141 (2019; Zbl 1459.39050) Full Text: DOI
Găvruţa, Paşc; Manolescu, Laura Approximation by cubic mappings. (English) Zbl 1447.39015 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 153-165 (2019). Reviewer: Mohammad Sajid (Buraidah) MSC: 39B52 39B82 39B12 PDF BibTeX XML Cite \textit{P. Găvruţa} and \textit{L. Manolescu}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 153--165 (2019; Zbl 1447.39015) Full Text: DOI
Şahin, Aynur; Arısoy, Hakan; Kalkan, Zeynep On the stability of two functional equations arising in mathematical biology and theory of learning. (English) Zbl 1474.39074 Creat. Math. Inform. 28, No. 1, 91-95 (2019). MSC: 39B82 47H10 PDF BibTeX XML Cite \textit{A. Şahin} et al., Creat. Math. Inform. 28, No. 1, 91--95 (2019; Zbl 1474.39074)
Murali, R.; Selvan, A. Hyers-Ulam stability of \(n\)th order linear differential equation. (English) Zbl 1448.34114 Proyecciones 38, No. 3, 553-566 (2019). Reviewer: Olusola Akinyele (Bowie) MSC: 34D10 34B15 34A30 PDF BibTeX XML Cite \textit{R. Murali} and \textit{A. Selvan}, Proyecciones 38, No. 3, 553--566 (2019; Zbl 1448.34114) Full Text: DOI
Kucche, K. D.; Shikhare, P. U. Ulam stabilities for nonlinear Volterra delay integro-differential equations. (English) Zbl 1443.45009 J. Contemp. Math. Anal., Armen. Acad. Sci. 54, No. 5, 276-287 (2019) and Izv. Nats. Akad. Nauk Armen., Mat. 2019, No. 5, 27-43 (2019). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45J05 45M10 34K20 35A23 PDF BibTeX XML Cite \textit{K. D. Kucche} and \textit{P. U. Shikhare}, J. Contemp. Math. Anal., Armen. Acad. Sci. 54, No. 5, 276--287 (2019; Zbl 1443.45009) Full Text: DOI
Lee, Yang-Hi On the Hyers-Ulam-Rassias stability of an additive-cubic-quartic functional equation. (English) Zbl 1434.39025 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 247-254 (2019). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 247--254 (2019; Zbl 1434.39025) Full Text: DOI
Zada, Akbar; Ali, Wajid; Park, Choonkil Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type. (English) Zbl 1428.34087 Appl. Math. Comput. 350, 60-65 (2019). MSC: 34K05 39B82 34D10 PDF BibTeX XML Cite \textit{A. Zada} et al., Appl. Math. Comput. 350, 60--65 (2019; Zbl 1428.34087) Full Text: DOI
Rassias, John Michael; Dutta, Hemen; Pasupathi, Narasimman Stability of general \(A\)-quartic functional equations in non-Archimedean intuitionistic fuzzy normed spaces. (English) Zbl 1490.39036 Proc. Jangjeon Math. Soc. 22, No. 2, 281-290 (2019). MSC: 39B52 39B72 39B82 46B03 46S40 47S40 PDF BibTeX XML Cite \textit{J. M. Rassias} et al., Proc. Jangjeon Math. Soc. 22, No. 2, 281--290 (2019; Zbl 1490.39036)
Wang, Chun Stability of some fractional systems and Laplace transform. (Chinese. English summary) Zbl 1438.34055 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 1, 49-58 (2019). MSC: 34A08 34D10 44A10 PDF BibTeX XML Cite \textit{C. Wang}, Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 1, 49--58 (2019; Zbl 1438.34055)
Akkouchi, Mohamed On the Hyers-Ulam-Rassias stability of a nonlinear integral equation. (English) Zbl 1434.45007 Appl. Sci. 21, 1-10 (2019). MSC: 45N05 39B52 45P05 45G10 47G10 PDF BibTeX XML Cite \textit{M. Akkouchi}, Appl. Sci. 21, 1--10 (2019; Zbl 1434.45007) Full Text: Link
Kaskasem, Prondanai; Klin-Eam, Chakkrid On approximation solutions of the Cauchy-Jensen and the additive-quadratic functional equation in paranormed spaces. (English) Zbl 1438.39048 Int. J. Anal. Appl. 17, No. 3, 369-387 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{P. Kaskasem} and \textit{C. Klin-Eam}, Int. J. Anal. Appl. 17, No. 3, 369--387 (2019; Zbl 1438.39048) Full Text: Link
Dung, Nguyen Van; Hang, Vo Thi Le; Sintunavarat, Wutiphol Revision and extension on Hyers-Ulam stability of homomorphisms in quasi-Banach algebras. (English) Zbl 1422.39061 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 1773-1784 (2019). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{N. Van Dung} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 1773--1784 (2019; Zbl 1422.39061) Full Text: DOI
Wang, Xiaoming; Arif, Muhammad; Zada, Akbar \(\beta\)-Hyers-Ulam-Rassias stability of semilinear nonautonomous impulsive system. (English) Zbl 1416.34013 Symmetry 11, No. 2, Paper No. 231, 18 p. (2019). MSC: 34A37 34D20 PDF BibTeX XML Cite \textit{X. Wang} et al., Symmetry 11, No. 2, Paper No. 231, 18 p. (2019; Zbl 1416.34013) Full Text: DOI
Liu, Yachai; Yang, Xiuzhong; Liu, Guofen Stability of an AQCQ functional equation in non-Archimedean \((n, \beta)\)-normed spaces. (English) Zbl 1464.39020 Demonstr. Math. 52, 130-146 (2019). MSC: 39B52 39B82 39B72 PDF BibTeX XML Cite \textit{Y. Liu} et al., Demonstr. Math. 52, 130--146 (2019; Zbl 1464.39020) Full Text: DOI
Senthil Kumar, B. V.; Dutta, Hemen; Sabarinathan, S. Approximation of a system of rational functional equations of three variables. (English) Zbl 1410.39048 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 39, 16 p. (2019). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{B. V. Senthil Kumar} et al., Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 39, 16 p. (2019; Zbl 1410.39048) Full Text: DOI
Majani, H. System of AQC functional equations in non-Archimedean normed spaces. (English) Zbl 1408.39023 J. Linear Topol. Algebra 8, No. 1, 41-52 (2019). MSC: 39B52 39B82 39B72 37P20 PDF BibTeX XML Cite \textit{H. Majani}, J. Linear Topol. Algebra 8, No. 1, 41--52 (2019; Zbl 1408.39023) Full Text: Link
Kaskasem, Prondanai; Klin-eam, Chakkrid Approximation of the generalized Cauchy-Jensen functional equation in \(C^\ast\)-algebras. (English) Zbl 1498.39029 J. Inequal. Appl. 2018, Paper No. 236, 19 p. (2018). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{P. Kaskasem} and \textit{C. Klin-eam}, J. Inequal. Appl. 2018, Paper No. 236, 19 p. (2018; Zbl 1498.39029) Full Text: DOI
Zada, Akbar; Shah, Syed Omar Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses. (English) Zbl 1488.34396 Hacet. J. Math. Stat. 47, No. 5, 1196-1205 (2018). MSC: 34K27 34K45 PDF BibTeX XML Cite \textit{A. Zada} and \textit{S. O. Shah}, Hacet. J. Math. Stat. 47, No. 5, 1196--1205 (2018; Zbl 1488.34396) Full Text: Link
Murali, R.; Selvan, A. Ponmana Hyers-Ulam-Rassias stability for the linear ordinary differential equation of third order. (English) Zbl 1488.34081 Kragujevac J. Math. 42, No. 4, 579-590 (2018). MSC: 34A30 34D10 PDF BibTeX XML Cite \textit{R. Murali} and \textit{A. P. Selvan}, Kragujevac J. Math. 42, No. 4, 579--590 (2018; Zbl 1488.34081) Full Text: Link
Nikoufar, Ismail A correction to approximation of generalized homomorphisms in quasi-Banach algebras. (English) Zbl 1463.39054 Miskolc Math. Notes 19, No. 1, 423-430 (2018). MSC: 39B52 46H05 PDF BibTeX XML Cite \textit{I. Nikoufar}, Miskolc Math. Notes 19, No. 1, 423--430 (2018; Zbl 1463.39054)
Arslan, Berna; Arslan, Okan On the stability of homomorphisms and \(k\)-derivations on \(\Gamma\)-Banach algebras. (English) Zbl 1424.39053 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80, No. 2, 69-78 (2018). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{B. Arslan} and \textit{O. Arslan}, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80, No. 2, 69--78 (2018; Zbl 1424.39053)
Shah, Rahim; Zada, Akbar A fixed point approach to the stability of a nonlinear Volterra integrodifferential equation with delay. (English) Zbl 07033240 Hacet. J. Math. Stat. 47, No. 3, 615-623 (2018). MSC: 47H10 45J05 45M10 PDF BibTeX XML Cite \textit{R. Shah} and \textit{A. Zada}, Hacet. J. Math. Stat. 47, No. 3, 615--623 (2018; Zbl 07033240)
Rostami, Razieh Farokhzad Lie ternary \((\sigma,\tau,\xi)\)-derivations on Banach ternary algebras. (English) Zbl 1412.39030 Int. J. Nonlinear Anal. Appl. 9, No. 1, 41-53 (2018). MSC: 39B52 39B82 46B99 17A40 PDF BibTeX XML Cite \textit{R. F. Rostami}, Int. J. Nonlinear Anal. Appl. 9, No. 1, 41--53 (2018; Zbl 1412.39030) Full Text: DOI
Biçer, Emel; Tunç, Cemil New theorems for Hyers-Ulam stability of Lienard equation with variable time lags. (English) Zbl 1408.34055 Int. J. Math. Comput. Sci. 13, No. 2, 231-242 (2018). MSC: 34K27 47N20 PDF BibTeX XML Cite \textit{E. Biçer} and \textit{C. Tunç}, Int. J. Math. Comput. Sci. 13, No. 2, 231--242 (2018; Zbl 1408.34055) Full Text: Link
Kenary, Hassan Azadi; Rassias, Themistocles M. NAN-RN approximately generalized additive functional equations. (English) Zbl 1405.39013 Rassias, Themistocles M. (ed.), Applications of nonlinear analysis. Cham: Springer (ISBN 978-3-319-89814-8/hbk; 978-3-319-89815-5/ebook). Springer Optimization and Its Applications 134, 483-506 (2018). MSC: 39B82 PDF BibTeX XML Cite \textit{H. A. Kenary} and \textit{T. M. Rassias}, Springer Optim. Appl. 134, 483--506 (2018; Zbl 1405.39013) Full Text: DOI
Castro, L. P.; Simões, A. M. Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric. (English) Zbl 1405.45010 Math. Methods Appl. Sci. 41, No. 17, 7367-7383 (2018). MSC: 45M10 45D05 34K20 47H10 PDF BibTeX XML Cite \textit{L. P. Castro} and \textit{A. M. Simões}, Math. Methods Appl. Sci. 41, No. 17, 7367--7383 (2018; Zbl 1405.45010) Full Text: DOI Link
Kenary, Hassan Azadi Fixed point and nearly \(m\)-dimensional Euler-Lagrange-type additive mappings. (English) Zbl 1402.39014 Daras, Nicholas J. (ed.) et al., Modern discrete mathematics and analysis. With applications in cryptography, information systems and modeling. Cham: Springer (ISBN 978-3-319-74324-0/hbk; 978-3-319-74325-7/ebook). Springer Optimization and Its Applications 131, 235-249 (2018). MSC: 39B82 47H10 PDF BibTeX XML Cite \textit{H. A. Kenary}, Springer Optim. Appl. 131, 235--249 (2018; Zbl 1402.39014) Full Text: DOI
Wang, JinRong; Zada, Akbar; Ali, Wajid Ulam’s-type stability of first-order impulsive differential equations with variable delay in quasi-Banach spaces. (English) Zbl 1401.34091 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 5, 553-560 (2018). MSC: 34K45 34K20 34K30 39B82 PDF BibTeX XML Cite \textit{J. Wang} et al., Int. J. Nonlinear Sci. Numer. Simul. 19, No. 5, 553--560 (2018; Zbl 1401.34091) Full Text: DOI
Kaskasem, Prondanai; Klin-eam, Chakkrid; Cho, Yeol Je On the stability of the generalized Cauchy-Jensen set-valued functional equations. (English) Zbl 1512.39023 J. Fixed Point Theory Appl. 20, No. 2, Paper No. 76, 14 p. (2018). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{P. Kaskasem} et al., J. Fixed Point Theory Appl. 20, No. 2, Paper No. 76, 14 p. (2018; Zbl 1512.39023) Full Text: DOI
Vanterler da C. Sousa, J.; de Oliveira, E. Capelas Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. (English) Zbl 1475.45020 Appl. Math. Lett. 81, 50-56 (2018). MSC: 45M10 45J05 39B82 26A33 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} and \textit{E. C. de Oliveira}, Appl. Math. Lett. 81, 50--56 (2018; Zbl 1475.45020) Full Text: DOI arXiv
Modarres Mosadegh, Seyed Mohammad Sadegh; Movahednia, Ehsan Stability of preserving lattice cubic functional equation in Menger probabilistic normed Riesz spaces. (English) Zbl 1390.39064 J. Fixed Point Theory Appl. 20, No. 1, Paper No. 34, 15 p. (2018). MSC: 39B05 39B82 46B09 46B42 PDF BibTeX XML Cite \textit{S. M. S. Modarres Mosadegh} and \textit{E. Movahednia}, J. Fixed Point Theory Appl. 20, No. 1, Paper No. 34, 15 p. (2018; Zbl 1390.39064) Full Text: DOI
Castro, L. P.; Simões, A. M. Different types of Hyers-Ulam-Rassias stabilities for a class of integro-differential equations. (English) Zbl 1499.45034 Filomat 31, No. 17, 5379-5390 (2017). MSC: 45M10 39B82 45J05 PDF BibTeX XML Cite \textit{L. P. Castro} and \textit{A. M. Simões}, Filomat 31, No. 17, 5379--5390 (2017; Zbl 1499.45034) Full Text: DOI
Kang, Dongseung; Koh, Heejeong A fixed point approach to the stability of sextic Lie \(\ast\)-derivations. (English) Zbl 1499.39120 Filomat 31, No. 15, 4933-4944 (2017). MSC: 39B82 39B52 16W25 17B40 46L57 PDF BibTeX XML Cite \textit{D. Kang} and \textit{H. Koh}, Filomat 31, No. 15, 4933--4944 (2017; Zbl 1499.39120) Full Text: DOI
Zada, Akbar; Shah, Syed Omar; Li, Yongjin Hyers-Ulam stability of nonlinear impulsive Volterra integro-delay dynamic system on time scales. (English) Zbl 1412.34247 J. Nonlinear Sci. Appl. 10, No. 11, 5701-5711 (2017). MSC: 34N05 34A37 45M10 45J05 PDF BibTeX XML Cite \textit{A. Zada} et al., J. Nonlinear Sci. Appl. 10, No. 11, 5701--5711 (2017; Zbl 1412.34247) Full Text: DOI
Zada, Akbar; Faisal, Shah; Li, Yongjin Hyers-Ulam-Rassias stability of non-linear delay differential equations. (English) Zbl 1412.35032 J. Nonlinear Sci. Appl. 10, No. 2, 504-510 (2017). MSC: 35B35 PDF BibTeX XML Cite \textit{A. Zada} et al., J. Nonlinear Sci. Appl. 10, No. 2, 504--510 (2017; Zbl 1412.35032) Full Text: DOI
Jin, Sun-Sook; Lee, Yang-Hi Hyers-Ulam-Rassias stability of a functional equation related to general quadratic mappings. (English) Zbl 1402.39013 Honam Math. J. 39, No. 3, 417-430 (2017). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{S.-S. Jin} and \textit{Y.-H. Lee}, Honam Math. J. 39, No. 3, 417--430 (2017; Zbl 1402.39013) Full Text: DOI
Atalan, Yunus; Karakaya, Vatan Stability of nonlinear Volterra-Fredholm integro differential equation: a fixed point approach. (English) Zbl 1413.45011 Creat. Math. Inform. 26, No. 3, 247-254 (2017). MSC: 45J05 45M10 45D05 45B05 47H10 PDF BibTeX XML Cite \textit{Y. Atalan} and \textit{V. Karakaya}, Creat. Math. Inform. 26, No. 3, 247--254 (2017; Zbl 1413.45011)
Cheng, Lihua Stability of a mixed type functional equation in Banach spaces. (Chinese. English summary) Zbl 1399.39064 Acta Sci. Nat. Univ. Sunyatseni 56, No. 6, 68-71 (2017). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{L. Cheng}, Acta Sci. Nat. Univ. Sunyatseni 56, No. 6, 68--71 (2017; Zbl 1399.39064) Full Text: DOI
Wang, Chun; Xu, Tianzhou Solution and Hyers-Ulam-Rassias stability of a mixed type quadratic-additive functional equation with a parameter in quasi-Banach spaces. (Chinese. English summary) Zbl 1399.39072 Acta Math. Sci., Ser. A, Chin. Ed. 37, No. 5, 846-859 (2017). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{C. Wang} and \textit{T. Xu}, Acta Math. Sci., Ser. A, Chin. Ed. 37, No. 5, 846--859 (2017; Zbl 1399.39072)
Kenary, H. Azadi Direct method and approximation of the reciprocal difference functional equations in various normed spaces. (English) Zbl 1399.39068 An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 63, No. 2, 245-263 (2017). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{H. A. Kenary}, An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 63, No. 2, 245--263 (2017; Zbl 1399.39068)
Koh, Heejeong; Kang, Dongseung On the fuzzy stability problem of generalized cubic mappings. (English) Zbl 1375.39045 J. Intell. Fuzzy Syst. 32, No. 3, 2477-2484 (2017). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{H. Koh} and \textit{D. Kang}, J. Intell. Fuzzy Syst. 32, No. 3, 2477--2484 (2017; Zbl 1375.39045) Full Text: DOI
Martynyuk, A. A. The conditions of Hyers - Ulam - Rassias stability of a set of equations. (Russian. English summary) Zbl 1389.39049 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2017, No. 8, 11-16 (2017). MSC: 39B82 PDF BibTeX XML Cite \textit{A. A. Martynyuk}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2017, No. 8, 11--16 (2017; Zbl 1389.39049) Full Text: DOI
Chung, Jaeyoung Stability of d’Alembert’s functional equation with perturbations of all variables. (English) Zbl 1381.39026 Result. Math. 71, No. 3-4, 1015-1021 (2017). Reviewer: Andrzej Smajdor (Kraków) MSC: 39B82 39B22 39B52 PDF BibTeX XML Cite \textit{J. Chung}, Result. Math. 71, No. 3--4, 1015--1021 (2017; Zbl 1381.39026) Full Text: DOI
Mohiuddine, S. A.; Rassias, John Michael; Alotaibi, Abdullah Solution of the Ulam stability problem for Euler-Lagrange-Jensen \(k\)-quintic mappings. (English) Zbl 1369.39029 Math. Methods Appl. Sci. 40, No. 8, 3017-3025 (2017). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{S. A. Mohiuddine} et al., Math. Methods Appl. Sci. 40, No. 8, 3017--3025 (2017; Zbl 1369.39029) Full Text: DOI
Zhao, Xiangkui; Zhang, Xingjuan; Ge, Weigao Hyers-Ulam stability of a class second differential equation \(y''(x)+p(x)y'(x)+q(x)y(x)=F(y(x))\). (English) Zbl 1368.34069 Bull. Malays. Math. Sci. Soc. (2) 40, No. 2, 891-906 (2017). Reviewer: Ba-Khiet Le (Santiago de Chile) MSC: 34D10 47N20 47H10 PDF BibTeX XML Cite \textit{X. Zhao} et al., Bull. Malays. Math. Sci. Soc. (2) 40, No. 2, 891--906 (2017; Zbl 1368.34069) Full Text: DOI
Zhang, Zhi; Wang, JinRong Existence and stability of Stieltjes quadratic functional integral equations. (English) Zbl 1361.45003 J. Appl. Math. Comput. 53, No. 1-2, 183-199 (2017). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 45G10 45M05 26A33 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{J. Wang}, J. Appl. Math. Comput. 53, No. 1--2, 183--199 (2017; Zbl 1361.45003) Full Text: DOI
Khanehgir, M.; Hasanvand, F. Asymptotic aspect of quadratic functional equations and super stability of higher derivations in multi-fuzzy normed spaces. (English) Zbl 1424.46104 J. Linear Topol. Algebra 5, No. 2, 67-81 (2016). MSC: 46S40 39B82 39B52 PDF BibTeX XML Cite \textit{M. Khanehgir} and \textit{F. Hasanvand}, J. Linear Topol. Algebra 5, No. 2, 67--81 (2016; Zbl 1424.46104)
Charifi, A.; Kabbaj, S.; Zeglami, D. Non-Archimedian stability of generalized Jensen’s and quadratic equations. (English) Zbl 1413.39054 Acta Univ. Apulensis, Math. Inform. 45, 11-29 (2016). MSC: 39B82 39B72 39B52 PDF BibTeX XML Cite \textit{A. Charifi} et al., Acta Univ. Apulensis, Math. Inform. 45, 11--29 (2016; Zbl 1413.39054)
Lu, Gang; Liu, Qi; Jin, Yuanfeng; Xie, Jun 3-variable Jensen \(\rho\)-functional inequalities and equations. (English) Zbl 1379.39016 J. Nonlinear Sci. Appl. 9, No. 12, 5995-6003 (2016). MSC: 39B62 39B52 39B82 PDF BibTeX XML Cite \textit{G. Lu} et al., J. Nonlinear Sci. Appl. 9, No. 12, 5995--6003 (2016; Zbl 1379.39016) Full Text: DOI Link