Kumar, Dinesh; Ayant, Frédéric; Sooppy Nisar, Kottakkaran; Suthar, Daya Lal On fractional \(q\)-integral operators involving the basic analogue of multivariable aleph-function. (English) Zbl 1515.26011 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 93, No. 2, 211-218 (2023). MSC: 26A33 33C60 33D15 PDF BibTeX XML Cite \textit{D. Kumar} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 93, No. 2, 211--218 (2023; Zbl 1515.26011) Full Text: DOI
Mohan, Rakesh; Kumar, Jogendra Application of \(I\)-function of several complex variables in electric circuit theory. (English) Zbl 07690142 Gaṇita 72, No. 1, 291-297 (2022). MSC: 34C60 94C60 34A05 PDF BibTeX XML Cite \textit{R. Mohan} and \textit{J. Kumar}, Gaṇita 72, No. 1, 291--297 (2022; Zbl 07690142) Full Text: Link
D’Souza, Vilma; Kurumujji, Shantha Kumari On an integral involving \(\overline{\mathrm{I}}\)-function. (English) Zbl 1504.33005 Commun. Korean Math. Soc. 37, No. 1, 207-212 (2022). MSC: 33C20 33C60 PDF BibTeX XML Cite \textit{V. D'Souza} and \textit{S. K. Kurumujji}, Commun. Korean Math. Soc. 37, No. 1, 207--212 (2022; Zbl 1504.33005) Full Text: DOI
Sahni, Nidhi; Kumar, Dinesh; Ayant, F. Y.; Singh, Sunil A transformation involving basic multivariable I-function of Prathima. (English) Zbl 07590444 J. Ramanujan Soc. Math. Math. Sci. 8, No. 2, 95-108 (2021). MSC: 44A20 33C99 33C60 PDF BibTeX XML Cite \textit{N. Sahni} et al., J. Ramanujan Soc. Math. Math. Sci. 8, No. 2, 95--108 (2021; Zbl 07590444) Full Text: Link
Kumar, Dinesh; Ayant, Frédéric; Prakash, Amit Certain integral involving the product of Srivastava polynomials and special functions. (English) Zbl 1488.33075 Afr. Mat. 32, No. 5-6, 1111-1119 (2021). MSC: 33E30 33C60 44A20 PDF BibTeX XML Cite \textit{D. Kumar} et al., Afr. Mat. 32, No. 5--6, 1111--1119 (2021; Zbl 1488.33075) Full Text: DOI
Kumar, Dinesh; Ayant, Frédéric Application of Jacobi polynomial and multivariable aleph-function in heat conduction in non-homogeneous moving rectangular parallelepiped. (English) Zbl 1499.65598 Kragujevac J. Math. 45, No. 3, 439-448 (2021). MSC: 65M99 33C45 33C60 44A20 80A19 35Q79 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{F. Ayant}, Kragujevac J. Math. 45, No. 3, 439--448 (2021; Zbl 1499.65598) Full Text: Link
Jain, Prachi; Saxena, V. P.; Gupta, Arvind On integrals involving a product of extended Bessel Maitland function and \(I^*\)-function. (English) Zbl 1513.33034 Jñānābha 50, No. 2, 59-62 (2020). MSC: 33C60 33C45 PDF BibTeX XML Cite \textit{P. Jain} et al., Jñānābha 50, No. 2, 59--62 (2020; Zbl 1513.33034) Full Text: Link
Bhat, Altaf Ahmad; Tassaddiq, Asifa; Jain, D. K.; Naaz, Humera New generating functions of \(I\)-function satisfying Truesdell’s \(F_q\)-equation. (English) Zbl 1486.33017 Adv. Difference Equ. 2020, Paper No. 464, 12 p. (2020). MSC: 33C60 33D65 11B73 11B83 11B68 PDF BibTeX XML Cite \textit{A. A. Bhat} et al., Adv. Difference Equ. 2020, Paper No. 464, 12 p. (2020; Zbl 1486.33017) Full Text: DOI
Kumar, Dinesh; Ayant, Frédéric; Kumar, Devendra A new class of integrals involving generalized hypergeometric function and multivariable aleph-function. (English) Zbl 1488.33041 Kragujevac J. Math. 44, No. 4, 539-550 (2020). MSC: 33C60 44A20 PDF BibTeX XML Cite \textit{D. Kumar} et al., Kragujevac J. Math. 44, No. 4, 539--550 (2020; Zbl 1488.33041) Full Text: Link
Sachan, Dheerandra Shanker; Jaloree, Shailesh Generalized fractional calculus of \(I\)-function of two variables. (English) Zbl 1474.26029 Jñānābha 50, No. 1, 164-178 (2020). MSC: 26A33 33C60 33C70 PDF BibTeX XML Cite \textit{D. S. Sachan} and \textit{S. Jaloree}, Jñānābha 50, No. 1, 164--178 (2020; Zbl 1474.26029) Full Text: Link
Malik, Naseer Ahmad; Ahmad, Farooq; Jain, D. K. The theoretical overview of the Hartley transform and the generalized \(R\)-function. (English) Zbl 1488.42038 Jñānābha 50, No. 1, 158-163 (2020). MSC: 42A38 26A33 33C05 33C10 33C20 94A12 PDF BibTeX XML Cite \textit{N. A. Malik} et al., Jñānābha 50, No. 1, 158--163 (2020; Zbl 1488.42038) Full Text: Link
Kumar, D.; Ayant, F. Y.; Purohit, S. D.; Uçar, F. On partial derivatives of the \(I\)-function of \(r\)-variables. (English) Zbl 1463.33028 Azerb. J. Math. 10, No. 2, 49-61 (2020). MSC: 33C65 PDF BibTeX XML Cite \textit{D. Kumar} et al., Azerb. J. Math. 10, No. 2, 49--61 (2020; Zbl 1463.33028) Full Text: Link
Kumar, D.; Ayant, F. Y.; Singh, A.; Banerji, P. K. Finite integral formula involving aleph-function and generalized Mittag-Leffler function. (English) Zbl 1450.33013 Probl. Anal. Issues Anal. 9(27), No. 1, 96-109 (2020). MSC: 33C60 33C05 33C45 33E12 PDF BibTeX XML Cite \textit{D. Kumar} et al., Probl. Anal. Issues Anal. 9(27), No. 1, 96--109 (2020; Zbl 1450.33013) Full Text: DOI MNR
Singh, Jagdev; Kumar, Devendra; Bansal, Manish Kumar Solution of nonlinear differential equation and special functions. (English) Zbl 1448.33014 Math. Methods Appl. Sci. 43, No. 5, 2106-2116 (2020). MSC: 33C60 33C45 34A45 PDF BibTeX XML Cite \textit{J. Singh} et al., Math. Methods Appl. Sci. 43, No. 5, 2106--2116 (2020; Zbl 1448.33014) Full Text: DOI
Kharbanda, Pallavi; Agarwal, Divya Non-smooth multi-objective fractional programming problem involving higher order functions. (English) Zbl 1453.90146 Int. J. Comput. Sci. Math. 10, No. 4, 351-363 (2019). MSC: 90C29 90C32 PDF BibTeX XML Cite \textit{P. Kharbanda} and \textit{D. Agarwal}, Int. J. Comput. Sci. Math. 10, No. 4, 351--363 (2019; Zbl 1453.90146) Full Text: DOI
Jain, Prachi; Saxena, V. P. Churchill’s diffusion and Euler type integral involving an \(I^*\)-function. (English) Zbl 1463.33022 Jñānābha 49, No. 2, 113-119 (2019). MSC: 33C45 33C60 PDF BibTeX XML Cite \textit{P. Jain} and \textit{V. P. Saxena}, Jñānābha 49, No. 2, 113--119 (2019; Zbl 1463.33022)
Vyas, V. K.; Al-Jarrah, Ali A.; Purohit, S. D. \(q\)-Sumudu transforms pertaining to the product of family of \(q\)-polynomials and generalized basic hypergeometric functions. (English) Zbl 1431.33020 Appl. Appl. Math. 14, No. 2, 1099-1111 (2019). MSC: 33D45 33D60 05A30 PDF BibTeX XML Cite \textit{V. K. Vyas} et al., Appl. Appl. Math. 14, No. 2, 1099--1111 (2019; Zbl 1431.33020) Full Text: Link
Kumar, D.; Ayant, F. Y. Fractional calculus pertaining to multivariable \(I\)-function defined by Prathima. (English) Zbl 1480.33004 J. Appl. Math. Stat. Inform. 15, No. 2, 61-73 (2019). MSC: 33C45 33C60 26A33 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{F. Y. Ayant}, J. Appl. Math. Stat. Inform. 15, No. 2, 61--73 (2019; Zbl 1480.33004) Full Text: DOI
Suthar, D. L.; Agarwal, S.; Kumar, Dinesh Certain integrals involving the product of Gaussian hypergeometric function and aleph function. (English) Zbl 1426.33032 Honam Math. J. 41, No. 1, 1-17 (2019). MSC: 33C45 33C60 PDF BibTeX XML Cite \textit{D. L. Suthar} et al., Honam Math. J. 41, No. 1, 1--17 (2019; Zbl 1426.33032) Full Text: DOI
Kumar, D.; Ayant, F. Y. Some double integrals involving multivariable \(I\)-function. (English) Zbl 1438.33023 Acta Univ. Apulensis, Math. Inform. 58, 35-43 (2019). MSC: 33C60 44A20 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{F. Y. Ayant}, Acta Univ. Apulensis, Math. Inform. 58, 35--43 (2019; Zbl 1438.33023) Full Text: DOI
Ayant, Frédéric Certain classes generating functions associated with the Aleph-function of several variables. II. (English) Zbl 1429.33023 South East Asian J. Math. Math. Sci. 14, No. 1, 35-46 (2018). MSC: 33C60 44A20 PDF BibTeX XML Cite \textit{F. Ayant}, South East Asian J. Math. Math. Sci. 14, No. 1, 35--46 (2018; Zbl 1429.33023)
Ayant, Frdric; Kumar, Dinesh Fredholm type integral equation with special functions. (English) Zbl 1411.45001 Acta Univ. Sapientiae, Math. 10, No. 1, 5-17 (2018). MSC: 45B05 33C60 26A33 PDF BibTeX XML Cite \textit{F. Ayant} and \textit{D. Kumar}, Acta Univ. Sapientiae, Math. 10, No. 1, 5--17 (2018; Zbl 1411.45001) Full Text: DOI
Kumar, D.; Saxena, R. K.; Ram, J. Finite integral formulas involving aleph function. (English) Zbl 1424.33027 Bol. Soc. Parana. Mat. (3) 36, No. 1, 177-193 (2018). MSC: 33C60 33C05 33C20 33C45 PDF BibTeX XML Cite \textit{D. Kumar} et al., Bol. Soc. Parana. Mat. (3) 36, No. 1, 177--193 (2018; Zbl 1424.33027) Full Text: Link
Naz, Farha; Shrivastava, Rajeev New pathway fractional integral operator involving the product of two \(I\)-functions. (English) Zbl 1412.33022 Jñānābha 48, No. 2, 81-87 (2018). MSC: 33C60 33C70 PDF BibTeX XML Cite \textit{F. Naz} and \textit{R. Shrivastava}, Jñānābha 48, No. 2, 81--87 (2018; Zbl 1412.33022)
Bhat, Altaf Ahmad; Jain, Renu; Jain, D. K. Certain results of \((p,q)\)-analogoue of \(I\)-function with \((p,q)\)-derivative. (English) Zbl 1412.33028 Jñānābha 2018, Spec. Iss., 37-44 (2018). MSC: 33D15 PDF BibTeX XML Cite \textit{A. A. Bhat} et al., Jñānābha 2018, 37--44 (2018; Zbl 1412.33028)
Jat, Vandana; Saxena, V. P.; Sanodia, P. L. On certain special cases of existence conditions of \(I\)-function. (English) Zbl 1406.33004 Jñānābha 48, No. 1, 72-78 (2018). MSC: 33C20 33B15 PDF BibTeX XML Cite \textit{V. Jat} et al., Jñānābha 48, No. 1, 72--78 (2018; Zbl 1406.33004)
Vellaisamy, P.; Kataria, K. K. The \(I\)-function distribution and its extensions. (English) Zbl 1404.62021 Theory Probab. Appl. 63, No. 2, 227-245 (2018) and Teor. Veroyatn. Primen. 63, No. 2, 284-305 (2018). MSC: 62E15 33C60 60E05 PDF BibTeX XML Cite \textit{P. Vellaisamy} and \textit{K. K. Kataria}, Theory Probab. Appl. 63, No. 2, 227--245 (2018; Zbl 1404.62021) Full Text: DOI arXiv
Khan, Naseem A.; Singh, Yashwant Some multiple integral relations involving general class of polynomials and I-function. (English) Zbl 1393.33016 Palest. J. Math. 7, No. 2, 688-696 (2018). MSC: 33C60 PDF BibTeX XML Cite \textit{N. A. Khan} and \textit{Y. Singh}, Palest. J. Math. 7, No. 2, 688--696 (2018; Zbl 1393.33016) Full Text: Link
Ayant, Frédéric; Kumar, Dinesh Generating relations and multivariable Aleph-function. (English) Zbl 1393.33015 Analysis, München 38, No. 3, 137-143 (2018). MSC: 33C60 44A20 PDF BibTeX XML Cite \textit{F. Ayant} and \textit{D. Kumar}, Analysis, München 38, No. 3, 137--143 (2018; Zbl 1393.33015) Full Text: DOI
Ayant, Frederic Expansion formulae involving the multivariable \(I\)-function. (English) Zbl 1474.33057 South East Asian J. Math. Math. Sci. 13, No. 2, 37-46 (2017). MSC: 33C60 82C31 PDF BibTeX XML Cite \textit{F. Ayant}, South East Asian J. Math. Math. Sci. 13, No. 2, 37--46 (2017; Zbl 1474.33057) Full Text: Link
Ayant, Frederic Integrals involving the aleph-function of several variables. (English) Zbl 1453.33009 J. Ramanujan Soc. Math. Math. Sci. 6, No. 2, 61-68 (2017). MSC: 33C60 44A20 PDF BibTeX XML Cite \textit{F. Ayant}, J. Ramanujan Soc. Math. Math. Sci. 6, No. 2, 61--68 (2017; Zbl 1453.33009) Full Text: Link
Ayant, Frederic On certain polynomials associated with the multivariable aleph-function. (English) Zbl 1453.33008 J. Ramanujan Soc. Math. Math. Sci. 6, No. 2, 23-30 (2017). MSC: 33C60 44A20 PDF BibTeX XML Cite \textit{F. Ayant}, J. Ramanujan Soc. Math. Math. Sci. 6, No. 2, 23--30 (2017; Zbl 1453.33008) Full Text: Link
Suthar, D. L.; Habenom, Haile; Tadesse, Hagos Certain integrals involving aleph function and Wright’s generalized hypergeometric function. (English) Zbl 1413.33015 Acta Univ. Apulensis, Math. Inform. 52, 1-10 (2017). MSC: 33C45 33C60 PDF BibTeX XML Cite \textit{D. L. Suthar} et al., Acta Univ. Apulensis, Math. Inform. 52, 1--10 (2017; Zbl 1413.33015) Full Text: DOI
Ahmad, Altaf; Jain, D. K.; Jain, Renu Certain expansion formulae involving a basic analogue of I-function. (English) Zbl 1400.33030 J. Indian Acad. Math. 39, No. 2, 129-136 (2017). MSC: 33D60 26A33 PDF BibTeX XML Cite \textit{A. Ahmad} et al., J. Indian Acad. Math. 39, No. 2, 129--136 (2017; Zbl 1400.33030)
Ayant, F. Y. Certain class of Eulerian integrals with the multivariable I-function defined by Nambisan. (English) Zbl 1396.33018 J. Ramanujan Soc. Math. Math. Sci. 6, No. 1, 41-52 (2017). MSC: 33C45 33C60 PDF BibTeX XML Cite \textit{F. Y. Ayant}, J. Ramanujan Soc. Math. Math. Sci. 6, No. 1, 41--52 (2017; Zbl 1396.33018) Full Text: Link
Ayant, Frédéric Y. Heat conduction and the multivariable \(I\)-function. (English) Zbl 1396.33028 Int. J. Adv. Appl. Math. Mech. 4, No. 4, 15-19 (2017). MSC: 33C60 33C45 PDF BibTeX XML Cite \textit{F. Y. Ayant}, Int. J. Adv. Appl. Math. Mech. 4, No. 4, 15--19 (2017; Zbl 1396.33028) Full Text: Link
Sharma, Sunil Kumar; Shekhawat, Ashok Singh Two variable generalized \(I\)-function with application to temperature in prism. (English) Zbl 1391.33028 Jñānābha 47, No. 1, 189-194 (2017). MSC: 33C60 42A16 42A20 PDF BibTeX XML Cite \textit{S. K. Sharma} and \textit{A. S. Shekhawat}, Jñānābha 47, No. 1, 189--194 (2017; Zbl 1391.33028)
Goyal, Prakash Chand; Shekhawat, Ashok Singh \(N\)-fractional calculus of general class of \(V\)-functions, Srivastava polynomials and aleph-function. (English) Zbl 1391.26023 Jñānābha 47, No. 1, 93-102 (2017). MSC: 26A33 33C45 33C60 PDF BibTeX XML Cite \textit{P. C. Goyal} and \textit{A. S. Shekhawat}, Jñānābha 47, No. 1, 93--102 (2017; Zbl 1391.26023)
Jain, Pankaj Properties of generalized \(I\)-function (Aleph function). (English) Zbl 1391.33023 Jñānābha 47, No. 1, 31-50 (2017). MSC: 33C45 PDF BibTeX XML Cite \textit{P. Jain}, Jñānābha 47, No. 1, 31--50 (2017; Zbl 1391.33023)
Kumar, Dinesh; Gupta, R. K.; Shaktawat, B. S.; Choi, Junesang Generalized fractional calculus formulas involving the product of Aleph-function and Srivastava polynomials. (English) Zbl 1387.26013 Proc. Jangjeon Math. Soc. 20, No. 4, 701-717 (2017). MSC: 26A33 33C45 33C60 33C70 PDF BibTeX XML Cite \textit{D. Kumar} et al., Proc. Jangjeon Math. Soc. 20, No. 4, 701--717 (2017; Zbl 1387.26013)
Agarwal, Praveen; Jain, Shilpi; Karimov, Erkinjon T.; Prajapati, Jyotindra C. Certain integral formulas associated with aleph \((\aleph)\)-function. (English) Zbl 1372.33004 Commun. Korean Math. Soc. 32, No. 2, 305-319 (2017). MSC: 33C05 33C20 33C45 33C60 PDF BibTeX XML Cite \textit{P. Agarwal} et al., Commun. Korean Math. Soc. 32, No. 2, 305--319 (2017; Zbl 1372.33004) Full Text: DOI
Jiang, Yunfeng; Tseng, Hsian-Hua; You, Fenglong The quantum orbifold cohomology of toric stack bundles. (English) Zbl 1362.14058 Lett. Math. Phys. 107, No. 3, 439-465 (2017). MSC: 14N35 53D45 14M25 14A20 PDF BibTeX XML Cite \textit{Y. Jiang} et al., Lett. Math. Phys. 107, No. 3, 439--465 (2017; Zbl 1362.14058) Full Text: DOI arXiv
Bhatter, Sanjay; Bohra, Rakesh Kumar The general Eulerian integral with Aleph \(\aleph\)-function. (English) Zbl 1488.33001 South East Asian J. Math. Math. Sci. 12, No. 1, 57-66 (2016). MSC: 33B15 33C60 PDF BibTeX XML Cite \textit{S. Bhatter} and \textit{R. K. Bohra}, South East Asian J. Math. Math. Sci. 12, No. 1, 57--66 (2016; Zbl 1488.33001) Full Text: Link
Ayant, F. Y. Multivariable I-function of relating some multiples integrals. (English) Zbl 1373.33020 J. Ramanujan Soc. Math. Math. Sci. 5, No. 2, 89-98 (2016). MSC: 33C60 44A20 PDF BibTeX XML Cite \textit{F. Y. Ayant}, J. Ramanujan Soc. Math. Math. Sci. 5, No. 2, 89--98 (2016; Zbl 1373.33020) Full Text: Link
Ayant, F. Y. Fourier Bessel expansion for aleph-function of several variables. II. (English) Zbl 1373.33019 J. Ramanujan Soc. Math. Math. Sci. 5, No. 1, 39-46 (2016). MSC: 33C60 44A20 PDF BibTeX XML Cite \textit{F. Y. Ayant}, J. Ramanujan Soc. Math. Math. Sci. 5, No. 1, 39--46 (2016; Zbl 1373.33019) Full Text: Link
Gill, Vinod; Modi, Kanak Large deflection of a circular plate under non-uniformload pertaining to Aleph-functions. (English) Zbl 1367.74031 Int. J. Adv. Appl. Math. Mech. 3, No. 4, 22-28 (2016). MSC: 74K20 33C45 33C60 PDF BibTeX XML Cite \textit{V. Gill} and \textit{K. Modi}, Int. J. Adv. Appl. Math. Mech. 3, No. 4, 22--28 (2016; Zbl 1367.74031) Full Text: Link
Kumar, Dinesh; Choi, Junesang Generalized fractional kinetic equations associated with Aleph function. (English) Zbl 1343.33007 Proc. Jangjeon Math. Soc. 19, No. 1, 145-155 (2016). MSC: 33C65 26A33 33C20 33C05 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{J. Choi}, Proc. Jangjeon Math. Soc. 19, No. 1, 145--155 (2016; Zbl 1343.33007)
Kumari, Shantha K.; Nambisan, Vasudevan T. M. On a double integral involving the \(I\)-function of two variables. (English) Zbl 1342.33014 Appl. Appl. Math. 11, No. 1, 300-306 (2016). MSC: 33C20 33C60 PDF BibTeX XML Cite \textit{S. K. Kumari} and \textit{V. T. M. Nambisan}, Appl. Appl. Math. 11, No. 1, 300--306 (2016; Zbl 1342.33014) Full Text: Link
Chaurasia, V. B. L.; Singh, Yudhveer A novel computable extension of fractional kinetic equations arising in astrophysics. (English) Zbl 1359.34006 Int. J. Adv. Appl. Math. Mech. 3, No. 1, 1-9 (2015). MSC: 34A08 33E12 33C60 85A04 PDF BibTeX XML Cite \textit{V. B. L. Chaurasia} and \textit{Y. Singh}, Int. J. Adv. Appl. Math. Mech. 3, No. 1, 1--9 (2015; Zbl 1359.34006) Full Text: Link
Singh, Shekhawat Ashok; Kumar, Sharma Sunil Contiguous relations for the double and multiple half-range Fourier series and \(I\)-function. (English) Zbl 1499.42020 Int. Bull. Math. Res., IBMR 2, No. 2, 18-24 (2015). MSC: 42A16 33C60 42B05 42C05 33E50 PDF BibTeX XML Cite \textit{S. A. Singh} and \textit{S. S. Kumar}, Int. Bull. Math. Res., IBMR 2, No. 2, 18--24 (2015; Zbl 1499.42020) Full Text: Link
Bhargava, Alok; Srivastava, Amber; Mukherjee, Rohit On \(N\)-fractional calculus pertaining to \(I\)-function. (English) Zbl 1355.33009 Int. Bull. Math. Res., IBMR 2, No. 1, Spec. Iss., 87-92 (2015). MSC: 33C45 33C47 33E20 PDF BibTeX XML Cite \textit{A. Bhargava} et al., Int. Bull. Math. Res., IBMR 2, No. 1, 87--92 (2015; Zbl 1355.33009) Full Text: Link
Saxena, R. K.; Kumar, D. Generalized fractional calculus of the aleph-function involving a general class of polynomials. (English) Zbl 1349.26018 Acta Math. Sci., Ser. B, Engl. Ed. 35, No. 5, 1095-1110 (2015). MSC: 26A33 33C45 33C60 PDF BibTeX XML Cite \textit{R. K. Saxena} and \textit{D. Kumar}, Acta Math. Sci., Ser. B, Engl. Ed. 35, No. 5, 1095--1110 (2015; Zbl 1349.26018) Full Text: DOI
Kataria, K. K.; Vellaisamy, P. Some fractional calculus results associated with the \(I\)-function. (English) Zbl 1342.26022 Matematiche 70, No. 2, 173-190 (2015). MSC: 26A33 44A20 33C60 33C65 PDF BibTeX XML Cite \textit{K. K. Kataria} and \textit{P. Vellaisamy}, Matematiche 70, No. 2, 173--190 (2015; Zbl 1342.26022) Full Text: DOI arXiv
Jain, D. K.; Jain, Renu; Thakur, Anjali Pathway fractional integral images of product of some generalized hypergeometric functions. (English) Zbl 1325.26023 J. Indian Acad. Math. 37, No. 1, 113-126 (2015). MSC: 26A33 33E20 33E12 PDF BibTeX XML Cite \textit{D. K. Jain} et al., J. Indian Acad. Math. 37, No. 1, 113--126 (2015; Zbl 1325.26023)
Bhatt, S. K.; Shrivastava, Rajeev Application of \(I\)-function in one-dimensional heat equation. (English) Zbl 1325.33015 J. Indian Acad. Math. 37, No. 1, 25-29 (2015). MSC: 33E20 33B15 PDF BibTeX XML Cite \textit{S. K. Bhatt} and \textit{R. Shrivastava}, J. Indian Acad. Math. 37, No. 1, 25--29 (2015; Zbl 1325.33015)
Jain, D. K.; Jain, Renu; Thakur, Anjali Marichev-Saigo-Maeda operational relationships of generalized hypergeometric functions. (English) Zbl 1327.33006 Jñānābha 44, 141-151 (2014). MSC: 33D60 PDF BibTeX XML Cite \textit{D. K. Jain} et al., Jñānābha 44, 141--151 (2014; Zbl 1327.33006)
Jat, Vandana; Saxena, V. P. Solution of certain integral equation involving \(I\)-function. (English) Zbl 1327.33004 Jñānābha 44, 43-52 (2014). MSC: 33C70 45E05 PDF BibTeX XML Cite \textit{V. Jat} and \textit{V. P. Saxena}, Jñānābha 44, 43--52 (2014; Zbl 1327.33004)
Kumari, Shantha K.; Nambisan, T. M. Vasudevan; Rathie, Arjun K. A study of I-functions of two variables. (English) Zbl 1318.33025 Matematiche 69, No. 1, 285-305 (2014). MSC: 33C60 33C20 PDF BibTeX XML Cite \textit{S. K. Kumari} et al., Matematiche 69, No. 1, 285--305 (2014; Zbl 1318.33025) Full Text: arXiv Link
Shrivastava, S. S.; Sikarwar, Pinkey Temperatures in the prism involving \(I\)-function of several variables. (English) Zbl 1318.33011 J. Indian Acad. Math. 36, No. 2, 233-238 (2014). MSC: 33C20 33C60 33C50 PDF BibTeX XML Cite \textit{S. S. Shrivastava} and \textit{P. Sikarwar}, J. Indian Acad. Math. 36, No. 2, 233--238 (2014; Zbl 1318.33011)
Prathima, J.; Nambisan, T. M. Vasudevan Multiple integral transforms involving \(I\)-function of several complex variables. (English) Zbl 1312.44002 J. Inequal. Spec. Funct. 5, No. 1, 13-20 (2014). MSC: 44A10 44A20 33E20 PDF BibTeX XML Cite \textit{J. Prathima} and \textit{T. M. V. Nambisan}, J. Inequal. Spec. Funct. 5, No. 1, 13--20 (2014; Zbl 1312.44002)
Ramm, A. G. Recovery of the potential from \(I\)-function. (English) Zbl 1310.47062 Rep. Math. Phys. 74, No. 2, 135-143 (2014). MSC: 47E05 34A55 47A40 PDF BibTeX XML Cite \textit{A. G. Ramm}, Rep. Math. Phys. 74, No. 2, 135--143 (2014; Zbl 1310.47062) Full Text: DOI
Kumari, Shantha K.; Nambisan, Vasudevan T. M. On some summation formulae for the I-function of two variables. (English) Zbl 1301.33009 Appl. Appl. Math. 9, No. 1, 362-370 (2014). MSC: 33C20 33C60 PDF BibTeX XML Cite \textit{S. K. Kumari} and \textit{V. T. M. Nambisan}, Appl. Appl. Math. 9, No. 1, 362--370 (2014; Zbl 1301.33009) Full Text: Link
Chaurasia, V. B. L.; Singh, Yudhveer Generalized elliptic-type integrals and generating functions. (English) Zbl 1294.33024 Demonstr. Math. 47, No. 2, 310-323 (2014). MSC: 33E05 33C75 33C70 PDF BibTeX XML Cite \textit{V. B. L. Chaurasia} and \textit{Y. Singh}, Demonstr. Math. 47, No. 2, 310--323 (2014; Zbl 1294.33024) Full Text: DOI
Khan, Arif M. Certain properties of the \(I\)-function of \(r\)-variables and its multiple Stieltjes transform. (English) Zbl 1488.42035 J. Fract. Calc. Appl. 4, No. 1, 99-104 (2013). MSC: 42A38 26A42 PDF BibTeX XML Cite \textit{A. M. Khan}, J. Fract. Calc. Appl. 4, No. 1, 99--104 (2013; Zbl 1488.42035) Full Text: Link
Ho, Shun-Chin Sufficiency and duality in multiobjective fractional programming problems involving generalized type I functions. (English) Zbl 1291.90297 J. Inequal. Appl. 2013, Paper No. 435, 13 p. (2013). MSC: 90C46 90C32 90C30 PDF BibTeX XML Cite \textit{S.-C. Ho}, J. Inequal. Appl. 2013, Paper No. 435, 13 p. (2013; Zbl 1291.90297) Full Text: DOI
Saxena, Ram Kishore; Ram, Jeta; Kumar, Dinesh Generalized fractional integration of the product of two \(\aleph\)-functions associated with the Appell function \(F_3\). (English) Zbl 1299.26014 ROMAI J. 9, No. 1, 147-158 (2013). MSC: 26A33 33E20 33C20 33C45 PDF BibTeX XML Cite \textit{R. K. Saxena} et al., ROMAI J. 9, No. 1, 147--158 (2013; Zbl 1299.26014)
Saxena, R. K.; Ram, J.; Kumar, D. Generalized fractional integral of the product of two aleph-functions. (English) Zbl 1282.26011 Appl. Appl. Math. 8, No. 2, 631-646 (2013). MSC: 26A33 33E20 33C20 33C45 PDF BibTeX XML Cite \textit{R. K. Saxena} et al., Appl. Appl. Math. 8, No. 2, 631--646 (2013; Zbl 1282.26011) Full Text: Link
Jain, D. K.; Jain, Renu; Ahmad, Farooq Relationship between \(q\)-Weyl operator and basic analogue of I-function in preview of \(q\)-Laplace transform. (English) Zbl 1445.33048 J. Ramanujan Soc. Math. Math. Sci. 1, No. 2, 27-32 (2012). MSC: 33D60 33D90 26A33 PDF BibTeX XML Cite \textit{D. K. Jain} et al., J. Ramanujan Soc. Math. Math. Sci. 1, No. 2, 27--32 (2012; Zbl 1445.33048) Full Text: Link
Jain, Renu; Tripathi, Satendra Kumar Solution of generalized fractional reaction-diffusion equation involving Saigo Maeda operations. (English) Zbl 1292.26022 Jñānābha 42, 155-162 (2012). MSC: 26A33 45K05 PDF BibTeX XML Cite \textit{R. Jain} and \textit{S. K. Tripathi}, Jñānābha 42, 155--162 (2012; Zbl 1292.26022)
Singh, Giriraj; Jaloree, Shailesh; Goyal, Anil On \(I\)-function transform. (English) Zbl 1292.33017 Jñānābha 42, 81-84 (2012). MSC: 33C60 26A33 PDF BibTeX XML Cite \textit{G. Singh} et al., Jñānābha 42, 81--84 (2012; Zbl 1292.33017)
Jain, D. K.; Yadav, Pushplata Some fractional integral involving product of \(I\)-function and hypergeometric function. (English) Zbl 1292.26021 J. Indian Acad. Math. 34, No. 2, 481-486 (2012). MSC: 26A33 33C60 33E20 PDF BibTeX XML Cite \textit{D. K. Jain} and \textit{P. Yadav}, J. Indian Acad. Math. 34, No. 2, 481--486 (2012; Zbl 1292.26021)
Agarwal, Praveen; Jain, Shilpi New integral formulas involving polynomials and Ī-function. (English) Zbl 1277.33014 J. Appl. Math. Stat. Inform. 8, No. 1, 79-88 (2012). MSC: 33C60 26A33 PDF BibTeX XML Cite \textit{P. Agarwal} and \textit{S. Jain}, J. Appl. Math. Stat. Inform. 8, No. 1, 79--88 (2012; Zbl 1277.33014) Full Text: DOI
Chaurasia, V. B. L.; Kumar, Devendra On the solutions of integral equations of Fredholm type with special functions. (English) Zbl 1275.33033 Tamsui Oxf. J. Inf. Math. Sci. 28, No. 1, 49-61 (2012). MSC: 33E30 45B05 26A33 PDF BibTeX XML Cite \textit{V. B. L. Chaurasia} and \textit{D. Kumar}, Tamsui Oxf. J. Inf. Math. Sci. 28, No. 1, 49--61 (2012; Zbl 1275.33033)
Jain, D. K.; Jain, Renu; Ahmad, Farooq Certain results of basic analogue of \(l\)-function based on fractional \(q\)-integral operators. (English) Zbl 1275.33025 Investig. Math. Sci. 2, No. 2, 307-314 (2012). MSC: 33D60 PDF BibTeX XML Cite \textit{D. K. Jain} et al., Investig. Math. Sci. 2, No. 2, 307--314 (2012; Zbl 1275.33025)
Mishra, S. K.; Singh, A. K. On optimality and duality for nondifferentiable multiobjective fractional programming involving \((C, \alpha, p, d)\)-type I function. (English) Zbl 1258.49032 Investig. Math. Sci. 1, 103-115 (2011). MSC: 49K27 49N15 90C32 90C46 PDF BibTeX XML Cite \textit{S. K. Mishra} and \textit{A. K. Singh}, Investig. Math. Sci. 1, 103--115 (2011; Zbl 1258.49032)
Singh, Harendra; Yadav, V. S. Fractional integrals involving general polynomials, \(\bar{H}\)-function and multivariable \(I\)-function. (English) Zbl 1238.26009 Int. J. Math. Anal., Ruse 5, No. 13-16, 713-722 (2011). MSC: 26A33 33C20 PDF BibTeX XML Cite \textit{H. Singh} and \textit{V. S. Yadav}, Int. J. Math. Anal., Ruse 5, No. 13--16, 713--722 (2011; Zbl 1238.26009) Full Text: Link
Saxena, Ram K.; Pogány, Tibor K. On fractional integration formulae for Aleph functions. (English) Zbl 1242.33021 Appl. Math. Comput. 218, No. 3, 985-990 (2011). MSC: 33C60 26A33 PDF BibTeX XML Cite \textit{R. K. Saxena} and \textit{T. K. Pogány}, Appl. Math. Comput. 218, No. 3, 985--990 (2011; Zbl 1242.33021) Full Text: DOI
Gupta, Kantesh; Agrawal, Vandana Applications of unified integral formulae involving the product of \(I\)-function and general polynomials. (English) Zbl 1244.33005 J. Indian Acad. Math. 32, No. 1, 121-130 (2010). MSC: 33C50 33C60 PDF BibTeX XML Cite \textit{K. Gupta} and \textit{V. Agrawal}, J. Indian Acad. Math. 32, No. 1, 121--130 (2010; Zbl 1244.33005)
Singh, Yashwant; Kamarujjama, M.; Naseem Ahmad, Khan \(N\)-fractional calculus of generalized \(H\)-function. (English) Zbl 1240.33014 Southeast Asian Bull. Math. 34, No. 1, 181-184 (2010). MSC: 33C60 PDF BibTeX XML Cite \textit{Y. Singh} et al., Southeast Asian Bull. Math. 34, No. 1, 181--184 (2010; Zbl 1240.33014)
Saxena, Ram K.; Pogany, Tibor K. Mathieu-type series for the aleph-function occurring in Fokker-Planck equation. (English) Zbl 1216.33017 Eur. J. Pure Appl. Math. 3, No. 6, 980-988 (2010). MSC: 33C20 33C60 40G99 44A20 PDF BibTeX XML Cite \textit{R. K. Saxena} and \textit{T. K. Pogany}, Eur. J. Pure Appl. Math. 3, No. 6, 980--988 (2010; Zbl 1216.33017) Full Text: Link
Chaurasia, V. B. L.; Kumar, Devendra A family of fractional integrals pertaining to multivariable I-function. (English) Zbl 1207.26012 Appl. Math. Sci., Ruse 4, No. 29-32, 1535-1545 (2010). MSC: 26A33 33C20 44A10 PDF BibTeX XML Cite \textit{V. B. L. Chaurasia} and \textit{D. Kumar}, Appl. Math. Sci., Ruse 4, No. 29--32, 1535--1545 (2010; Zbl 1207.26012) Full Text: Link
Gupta, Kantesh; Agrawal, Vandana; Gupta, Raj Kumar Integrals involving the I-function, Gauss hypergeometric function, a general multivariable polynomial and Fourier series associated with them. (English) Zbl 1210.33005 J. Rajasthan Acad. Phys. Sci. 9, No. 2, 125-132 (2010). MSC: 33C05 33C20 PDF BibTeX XML Cite \textit{K. Gupta} et al., J. Rajasthan Acad. Phys. Sci. 9, No. 2, 125--132 (2010; Zbl 1210.33005)
Bhatter, Sanjay; Shekhawat, Shalini The general Eulerian integral. (English) Zbl 1197.33012 Int. J. Math. Anal., Ruse 4, No. 5-8, 393-402 (2010). MSC: 33C60 33C45 PDF BibTeX XML Cite \textit{S. Bhatter} and \textit{S. Shekhawat}, Int. J. Math. Anal., Ruse 4, No. 5--8, 393--402 (2010; Zbl 1197.33012) Full Text: Link
Vasudevan, Nambisan T. M.; Roshina, K. V. A Fourier series for \(I\)-function. (English) Zbl 1304.33007 Math. Educ. 43, No. 1, 57-59 (2009). MSC: 33C60 42B05 PDF BibTeX XML Cite \textit{N. T. M. Vasudevan} and \textit{K. V. Roshina}, Math. Educ. 43, No. 1, 57--59 (2009; Zbl 1304.33007)
Ronghe, A. K.; Baurase, Arti; Shrivastava, Rajesh; Verma, Kirti Certain double integrals involving \(I\)-function. (English) Zbl 1290.26018 Math. Educ. 43, No. 1, 1-9 (2009). MSC: 26B15 33C70 PDF BibTeX XML Cite \textit{A. K. Ronghe} et al., Math. Educ. 43, No. 1, 1--9 (2009; Zbl 1290.26018)
Chaurasia, V. B. L.; Agnihotri, Mukesh Use of some transcendental functions to nonlinear differential equations with \(I\)-function. (English) Zbl 1223.33020 Jñānābha 39, 35-42 (2009). MSC: 33C60 26A33 PDF BibTeX XML Cite \textit{V. B. L. Chaurasia} and \textit{M. Agnihotri}, Jñānābha 39, 35--42 (2009; Zbl 1223.33020)
Patel, Raman; Naik, R. K. Optimality and duality for multiobjective programming involving generalized b-index functions. (English) Zbl 1191.90062 Far East J. Appl. Math. 30, No. 3, 385-407 (2008). MSC: 90C29 90C32 PDF BibTeX XML Cite \textit{R. Patel} and \textit{R. K. Naik}, Far East J. Appl. Math. 30, No. 3, 385--407 (2008; Zbl 1191.90062) Full Text: Link
Jain, R.; Jain, D. K.; Chaturvedi, P. K. A pair of unsymmetrical Fourier kernels involving \(I\)-functions. (English) Zbl 1154.33011 South East Asian J. Math. Math. Sci. 6, No. 1, 105-110 (2007). Reviewer: Youssef Ben Cheikh (Monastir) MSC: 33E20 PDF BibTeX XML Cite \textit{R. Jain} et al., South East Asian J. Math. Math. Sci. 6, No. 1, 105--110 (2007; Zbl 1154.33011)
Pinsky, Ross G. Regularity properties of the Donsker-Varadhan rate functional for non-reversible diffusions and random evolutions. (English) Zbl 1131.60019 Stoch. Dyn. 7, No. 2, 123-140 (2007). Reviewer: Anatoliy Swishchuk (Calgary) MSC: 60F10 60J60 58J65 60J25 PDF BibTeX XML Cite \textit{R. G. Pinsky}, Stoch. Dyn. 7, No. 2, 123--140 (2007; Zbl 1131.60019) Full Text: DOI
Yuan, Dehui; Chinchuluun, Altannar; Liu, Xiaoling; Pardalos, Panos M. Optimality conditions and duality for multiobjective programming involving \((C,\alpha,\rho,d)\) type-I functions. (English) Zbl 1132.49027 Konnov, Igor V. (ed.) et al., Generalized convexity and related topics. Proceedings of the 8th international symposium on generalized convexity and monotonicity, Varese, Italy, July 4–8, 2005. Berlin: Springer (ISBN 3-540-37006-4/pbk). Lecture Notes in Economics and Mathematical Systems 583, 73-87 (2007). MSC: 49N15 49J52 90C29 49K10 PDF BibTeX XML Cite \textit{D. Yuan} et al., Lect. Notes Econ. Math. Syst. 583, 73--87 (2007; Zbl 1132.49027)
Nguyen Xuan Thao; Trinh Tuan Basic analogue of \(I\)-function of several matrix arguments. (English) Zbl 1087.44504 Vietnam J. Math. 32, No. 4, 419-431 (2004). MSC: 44A35 33D60 33C65 PDF BibTeX XML Cite \textit{Nguyen Xuan Thao} and \textit{Trinh Tuan}, Vietnam J. Math. 32, No. 4, 419--431 (2004; Zbl 1087.44504)
Ram, Chena; Singh, Hoshiyar Definite integrals of multivariate \(I\)-function. (English) Zbl 1223.33024 Acta Cienc. Indica, Math. 29, No. 4, 791-796 (2003). MSC: 33C60 26A33 PDF BibTeX XML Cite \textit{C. Ram} and \textit{H. Singh}, Acta Cienc. Indica, Math. 29, No. 4, 791--796 (2003; Zbl 1223.33024)
Mishra, Shweta Generating functions for the systems in several variables. (English) Zbl 1082.33502 Bull. Pure Appl. Sci., Sect. E, Math. Stat. 20, No. 1, 215-216 (2001). MSC: 33C70 05A15 PDF BibTeX XML Cite \textit{S. Mishra}, Bull. Pure Appl. Sci. E, Math. Stat. 20, No. 1, 215--216 (2001; Zbl 1082.33502)
Kumbhat, R. K.; Khan, Arif M. Convolution of an integral equation with the \(I\)-function as it’s kernel. (English) Zbl 1027.45005 J. Indian Acad. Math. 23, No. 2, 173-186 (2001). MSC: 45E10 PDF BibTeX XML Cite \textit{R. K. Kumbhat} and \textit{A. M. Khan}, J. Indian Acad. Math. 23, No. 2, 173--186 (2001; Zbl 1027.45005)
Goyal, Anil; Agrawal, R. D. On Fourier series for \(I\)-function of two variables. (English) Zbl 0998.33009 Dwivedi, A. P. (ed.) et al., Mathematical analysis and applications. Papers presented at the 7th annual conference of Vijnana Parishad of India, Kanpur, India, October 24-26, 1997. New Delhi: Narosa Publishing House. 70-76 (2000). Reviewer: Som Prakash Goyal (Jaipur) MSC: 33C60 42B05 PDF BibTeX XML Cite \textit{A. Goyal} and \textit{R. D. Agrawal}, in: Mathematical analysis and applications. Papers presented at the 7th annual conference of Vijnana Parishad of India, Kanpur, India, October 24-26, 1997. New Delhi: Narosa Publishing House. 70--76 (2000; Zbl 0998.33009)
Gupta, Ram Kumar; Saxena, V. P. On certain recurrence relation of \(I\)-function of one variable. (English) Zbl 0977.33009 Dwivedi, A. P. (ed.) et al., Mathematical analysis and applications. Papers presented at the 7th annual conference of Vijnana Parishad of India, Kanpur, India, October 24-26, 1997. New Delhi: Narosa Publishing House. 52-55 (2000). Reviewer: Robert G.Buschman (Langlois) MSC: 33C60 PDF BibTeX XML Cite \textit{R. K. Gupta} and \textit{V. P. Saxena}, in: Mathematical analysis and applications. Papers presented at the 7th annual conference of Vijnana Parishad of India, Kanpur, India, October 24-26, 1997. New Delhi: Narosa Publishing House. 52--55 (2000; Zbl 0977.33009)
García del Amo, Alejandro; Hernández, Francisco L.; Sánchez, Víctor M.; Semenov, Evgueni M. Disjointly strictly-singular inclusions between rearrangement invariant spaces. (English) Zbl 0956.46021 J. Lond. Math. Soc., II. Ser. 62, No. 1, 239-252 (2000). Reviewer: F.L.Hernández (Madrid) MSC: 46E30 PDF BibTeX XML Cite \textit{A. García del Amo} et al., J. Lond. Math. Soc., II. Ser. 62, No. 1, 239--252 (2000; Zbl 0956.46021) Full Text: DOI
Srivastava, S. S. Application of \(I\)-function in diffusion problem. (English) Zbl 0980.33007 J. M.A.C.T. 32, 163-168 (1999). Reviewer: Ajendra Nath Srivastava (Puna) MSC: 33C60 33C90 80A20 PDF BibTeX XML Cite \textit{S. S. Srivastava}, J. M.A.C.T. 32, 163--168 (1999; Zbl 0980.33007)
Nyuen, Suan Thao A cone \(I\)-function. (Russian. English summary) Zbl 0953.33007 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 1999, No. 11, 30-34 (1999). MSC: 33C60 44A15 PDF BibTeX XML Cite \textit{S. T. Nyuen}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 1999, No. 11, 30--34 (1999; Zbl 0953.33007)
Shrivastava, Rajeev P.; Goyal, Anil; Agrawal, R. D. Application of \(I\)-function of two variables in problem of vibration in a string. (English) Zbl 0927.33009 J. Indian Acad. Math. 20, No. 2, 163-168 (1998). Reviewer: Robert G.Buschman (Langlois) MSC: 33C60 PDF BibTeX XML Cite \textit{R. P. Shrivastava} et al., J. Indian Acad. Math. 20, No. 2, 163--168 (1998; Zbl 0927.33009)