×

A mathematical model for the effect of obesity on cancer growth and on the immune system response. (English) Zbl 1459.92042

Summary: Several experimental studies have found that obesity is a risk factor for different types of cancer. In this work we present a mathematical model of cancer tumor growth that takes into account the immune system response and the effects of obesity on the organism with cancer. This model consists of four ordinary differential equations with a logistic equation for the growth of the amount of fat stored. We analyze the stability of the equilibria obtained using parameter values reported in the literature. Our simplified model succeeds to reproduce different scenarios reported in clinical studies, such as, the negative effect of obesity on the cancer patient and the anticancer effect of a low caloric diet.

MSC:

92C50 Medical applications (general)

Software:

AUTO-86; AUTO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rubin, H., Promotion and selection by serum growth factors drive field cancerization, which is anticipated in vivo by type 2 diabetes and obesity, Proc. Natl. Acad. Sci., 110, 34, 13927-13931 (2013)
[2] Ehsanipour, E. A.; Sheng, X.; Behan, J. W.; Wang, X.; Butturini, A.; Avramis, V. I.; Mittelman, S. D., Adipocytes cause leukemia cell resistance to l-asparaginase via release of glutamine, Cancer Res., 73, 10, 2998-3006 (2013)
[3] Taubes, G., Unraveling the obesity-cancer connection, Science, 335, 6064, 28-32 (2012)
[4] Hursting, S. D., Minireview: The year in obesity and cancer, Mol. Endocrinol., 26, 12, 1961-1966 (2012)
[5] Schwab, M., Encyclopedia of Cancer, vol. 2 (2008), Springer
[6] Wellen, K. E.; Hotamisligil, G. S., Obesity-induced inflammatory changes in adipose tissue, J. Clin. Investig., 112, 12, 1785-1788 (2003)
[7] Jódar, L.; Santonja, F. J.; González-Parra, G., Modeling dynamics of infant obesity in the region of Valencia, Spain, Comput. Math. Appl., 56, 3, 679-689 (2008) · Zbl 1155.92329
[8] Santonja, F.-J.; Villanueva, R.-J.; Jódar, L.; González-Parra, G., Mathematical modelling of social obesity epidemic in the region of Valencia, Spain, Math. Comput. Modell. Dyn. Syst., 16, 1, 23-34 (2010) · Zbl 1298.37080
[9] Jo, J.; Shreif, Z.; Periwal, V., Quantitative dynamics of adipose cells, Adipocyte, 1, 2, 80-88 (2012)
[10] Coskun, H.; Summerfield, T. L.; Kniss, D. A.; Friedman, A., Mathematical modeling of preadipocyte fate determination, J. Theor. Biol., 265, 1, 87-94 (2010) · Zbl 1406.92145
[11] Spalding, K. L.; Arner, E.; Westermark, P. O.; Bernard, S.; Buchholz, B. A.; Bergmann, O.; Blomqvist, L.; Hoffstedt, J.; Näslund, E.; Britton, T., Dynamics of fat cell turnover in humans, Nature, 453, 7196, 783-787 (2008)
[12] Vázquez, L. A.; Pazos, F.; Berrazueta, J. R.; Fernández-Escalante, C.; García-Unzueta, M. T.; Freijanes, J.; Amado, J. A., Effects of changes in body weight and insulin resistance on inflammation and endothelial function in morbid obesity after bariatric surgery, J. Clin. Endocrinol. Metab., 90, 1, 316-322 (2005)
[13] Howe, L. R.; Subbaramaiah, K.; Hudis, C. A.; Dannenberg, A. J., Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer, Clin. Cancer Res., 19, 22, 6074-6083 (2013)
[14] Gatenby, R. A.; Gillies, R. J., Glycolysis in cancer: a potential target for therapy, Int. J. Biochem. Cell Biol., 39, 7, 1358-1366 (2007)
[15] De Pillis, L. G.; Radunskaya, A., A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, Comput. Math. Methods Med., 3, 2, 79-100 (2001) · Zbl 0985.92023
[16] De Pillis, L. G.; Radunskaya, A., The dynamics of an optimally controlled tumor model: a case study, Math. Comput. Model., 37, 11, 1221-1244 (2003) · Zbl 1043.92018
[17] Kuznetsov, V. A.; Makalkin, I. A.; Taylor, M. A.; Perelson, A. S., Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56, 2, 295-321 (1994) · Zbl 0789.92019
[18] Kirschner, D.; Panetta, J. C., Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37, 3, 235-252 (1998) · Zbl 0902.92012
[19] Bellomo, N.; Li, N.; Maini, P. K., On the foundations of cancer modelling: selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18, 04, 593-646 (2008) · Zbl 1151.92014
[20] Doedel, E.; Kernevez, J. P., AUTO, Software for Continuation and Bifurcation Problems in Ordinary Differential Equations (1986), California Institute of Technology
[21] De Pillis, L. G.; Radunskaya, A. E.; Wiseman, C. L., A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65, 17, 7950-7958 (2005)
[22] Grivennikov, S. I.; Greten, F. R.; Karin, M., Immunity, inflammation, and cancer, Cell, 140, 6, 883-899 (2010)
[23] Jo, J.; Gavrilova, O.; Pack, S.; Jou, W.; Mullen, S.; Sumner, A. E.; Cushman, S. W.; Periwal, V., Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth, PLoS Comput. Biol., 5, 3, e1000324 (2009)
[24] Ho, V. W.; Leung, K.; Hsu, A.; Luk, B.; Lai, J.; Shen, S. Y.; Minchinton, A. I.; Waterhouse, D.; Bally, M. B.; Lin, W., A low carbohydrate, high protein diet slows tumor growth and prevents cancer initiation, Cancer Res., 71, 13, 4484-4493 (2011)
[25] Milner, J. J.; Beck, M. A., The impact of obesity on the immune response to infection, Proc. Nutr. Soc., 71, 298-306 (2012)
[26] Ranasinghe, C.; Gamage, P.; Katulanda, P.; Andraweera, N.; Thilakarathne, S.; Tharanga, P., Relationship between body mass index (bmi) and body fat percentage, estimated by bioelectrical impedance, in a group of sri lankan adults: a cross sectional study, BMC Public Health, 13, 1, 797 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.