Ge, Chuanfang; Geng, Jiansheng; Lou, Zhaowei KAM theory for the reversible perturbations of 2D linear beam equations. (English) Zbl 07333899 Math. Z. 297, No. 3-4, 1693-1731 (2021). MSC: 37K55 35B15 35Q72 35Q53 35B25 PDF BibTeX XML Cite \textit{C. Ge} et al., Math. Z. 297, No. 3--4, 1693--1731 (2021; Zbl 07333899) Full Text: DOI
Zhang, Zaiyun; Liu, Zhenhai; Deng, Youjun; Huang, Jianhua; Huang, Chuangxia Long time behavior of solutions to the damped forced generalized Ostrovsky equation below the energy space. (English) Zbl 07332518 Proc. Am. Math. Soc. 149, No. 4, 1527-1542 (2021). MSC: 35B41 35Q53 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Proc. Am. Math. Soc. 149, No. 4, 1527--1542 (2021; Zbl 07332518) Full Text: DOI
Mi, Yongsheng; Huang, Daiwen Well-posedness and continuity properties of the new shallow-water model with cubic nonlinearity. (English) Zbl 07332088 Ann. Mat. Pura Appl. (4) 200, No. 1, 1-34 (2021). MSC: 35Q53 PDF BibTeX XML Cite \textit{Y. Mi} and \textit{D. Huang}, Ann. Mat. Pura Appl. (4) 200, No. 1, 1--34 (2021; Zbl 07332088) Full Text: DOI
Mosincat, Razvan; Pilod, Didier; Saut, Jean-Claude Global well-posedness and scattering for the dysthe equation in \(L^2(\mathbb{R}^2)\). (English. French summary) Zbl 07331622 J. Math. Pures Appl. (9) 149, 73-97 (2021). MSC: 35A01 35Q53 35Q60 PDF BibTeX XML Cite \textit{R. Mosincat} et al., J. Math. Pures Appl. (9) 149, 73--97 (2021; Zbl 07331622) Full Text: DOI
Valet, Frédéric Asymptotic \(K\)-soliton-like solutions of the Zakharov-Kuznetsov type equations. (English) Zbl 07331120 Trans. Am. Math. Soc. 374, No. 5, 3177-3213 (2021). MSC: 35Q53 35Q35 35B40 37K40 PDF BibTeX XML Cite \textit{F. Valet}, Trans. Am. Math. Soc. 374, No. 5, 3177--3213 (2021; Zbl 07331120) Full Text: DOI
Deng, Xijun A note on blow-up criteria for a class of nonlinear dispersive wave equations with dissipation. (English) Zbl 07328623 Monatsh. Math. 194, No. 3, 503-512 (2021). MSC: 35B44 35G25 37K10 PDF BibTeX XML Cite \textit{X. Deng}, Monatsh. Math. 194, No. 3, 503--512 (2021; Zbl 07328623) Full Text: DOI
Chen, Mingjuan; Guo, Boling; Han, Lijia Global well-posedness and inviscid limit for the generalized Benjamin-Ono-Burgers equation. (English) Zbl 07327340 Appl. Anal. 100, No. 4, 804-818 (2021). MSC: 35Q53 35Q35 35A01 35A02 44A15 76B15 PDF BibTeX XML Cite \textit{M. Chen} et al., Appl. Anal. 100, No. 4, 804--818 (2021; Zbl 07327340) Full Text: DOI
Rybkin, Alexei The effect of a positive bound state on the KdV solution: a case study. (English) Zbl 07324151 Nonlinearity 34, No. 2, 1238-1261 (2021). MSC: 35Q 37K15 47B35 PDF BibTeX XML Cite \textit{A. Rybkin}, Nonlinearity 34, No. 2, 1238--1261 (2021; Zbl 07324151) Full Text: DOI
Chen, Fa; Zhang, Hai-Qiang Periodic travelling waves and rogue waves for the higher-order modified Korteweg-de Vries equation. (English) Zbl 1456.35176 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105767, 11 p. (2021). MSC: 35Q53 35Q35 76B15 PDF BibTeX XML Cite \textit{F. Chen} and \textit{H.-Q. Zhang}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105767, 11 p. (2021; Zbl 1456.35176) Full Text: DOI
Gürses, Metin; Pekcan, Aslı \((2+1)\)-dimensional AKNS \((-N)\) systems. II. (English) Zbl 07323679 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105736, 17 p. (2021). MSC: 35C08 35Q53 35Q55 PDF BibTeX XML Cite \textit{M. Gürses} and \textit{A. Pekcan}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105736, 17 p. (2021; Zbl 07323679) Full Text: DOI
Hyder, Abd-Allah; Soliman, Ahmed H. An extended Kudryashov technique for solving stochastic nonlinear models with generalized conformable derivatives. (English) Zbl 07323673 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105730, 14 p. (2021). MSC: 60 26A33 35Q53 60H15 65M70 PDF BibTeX XML Cite \textit{A.-A. Hyder} and \textit{A. H. Soliman}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105730, 14 p. (2021; Zbl 07323673) Full Text: DOI
Fendley, Paul Integrability and braided tensor categories. (English) Zbl 07321522 J. Stat. Phys. 182, No. 2, Paper No. 43, 26 p. (2021). MSC: 82B20 16T25 37K10 81R50 PDF BibTeX XML Cite \textit{P. Fendley}, J. Stat. Phys. 182, No. 2, Paper No. 43, 26 p. (2021; Zbl 07321522) Full Text: DOI
Liu, Nan; Guo, Boling Painlevé-type asymptotics of an extended modified KdV equation in transition regions. (English) Zbl 07319431 J. Differ. Equations 280, 203-235 (2021). MSC: 37K 35Q 35Q55 35Q51 37K10 37K15 35Q15 PDF BibTeX XML Cite \textit{N. Liu} and \textit{B. Guo}, J. Differ. Equations 280, 203--235 (2021; Zbl 07319431) Full Text: DOI
Pu, Xueke; Xi, Xiaoyu Derivation of the mKdV equation from the Euler-Poisson system at critical densities. (English) Zbl 07319402 J. Differ. Equations 282, 446-480 (2021). MSC: 35Q53 35Q35 76X05 PDF BibTeX XML Cite \textit{X. Pu} and \textit{X. Xi}, J. Differ. Equations 282, 446--480 (2021; Zbl 07319402) Full Text: DOI
Büyükaşık, Şirin A.; Bozacı, Aylin Dynamical properties of generalized traveling waves of exactly solvable forced Burgers equations with variable coefficients. (English) Zbl 07319175 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105682, 21 p. (2021). MSC: 35Q53 35C05 35K15 35C07 35A08 PDF BibTeX XML Cite \textit{Ş. A. Büyükaşık} and \textit{A. Bozacı}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105682, 21 p. (2021; Zbl 07319175) Full Text: DOI
Ali, Ijaz; Seadawy, Aly R.; Rizvi, Syed Tahir Raza; Younis, Muhammad Painlevé analysis for various nonlinear Schrödinger dynamical equations. (English) Zbl 1455.35231 Int. J. Mod. Phys. B 35, No. 3, Article ID 2150038, 10 p. (2021). MSC: 35Q55 37K10 PDF BibTeX XML Cite \textit{I. Ali} et al., Int. J. Mod. Phys. B 35, No. 3, Article ID 2150038, 10 p. (2021; Zbl 1455.35231) Full Text: DOI
Pei, Zhi-Jie; Zhang, Hai-Qiang Higher-order rational soliton solutions for the fifth-order modified KdV and KdV equations. (English) Zbl 1455.35226 Int. J. Mod. Phys. B 35, No. 3, Article ID 2150036, 14 p. (2021). MSC: 35Q53 35C08 35A22 PDF BibTeX XML Cite \textit{Z.-J. Pei} and \textit{H.-Q. Zhang}, Int. J. Mod. Phys. B 35, No. 3, Article ID 2150036, 14 p. (2021; Zbl 1455.35226) Full Text: DOI
Kumar, Sachin; Niwas, Monika; Hamid, Ihsanullah Lie symmetry analysis for obtaining exact soliton solutions of generalized Camassa-Holm-Kadomtsev-Petviashvili equation. (English) Zbl 1455.35222 Int. J. Mod. Phys. B 35, No. 2, Article ID 2150028, 24 p. (2021). MSC: 35Q53 35C08 35C05 PDF BibTeX XML Cite \textit{S. Kumar} et al., Int. J. Mod. Phys. B 35, No. 2, Article ID 2150028, 24 p. (2021; Zbl 1455.35222) Full Text: DOI
Lu, Dianchen; Suleman, Muhammad; Ramzan, Muhammad; Ul Rahman, Jamshaid Numerical solutions of coupled nonlinear fractional KdV equations using He’s fractional calculus. (English) Zbl 1455.35223 Int. J. Mod. Phys. B 35, No. 2, Article ID 2150023, 14 p. (2021). MSC: 35Q53 35R11 35A22 PDF BibTeX XML Cite \textit{D. Lu} et al., Int. J. Mod. Phys. B 35, No. 2, Article ID 2150023, 14 p. (2021; Zbl 1455.35223) Full Text: DOI
Senol, Mehmet; Akinyemi, Lanre; Ata, Ayşe; Iyiola, Olaniyi S. Approximate and generalized solutions of conformable type Coudrey-Dodd-Gibbon-Sawada-Kotera equation. (English) Zbl 1455.35228 Int. J. Mod. Phys. B 35, No. 2, Article ID 2150021, 17 p. (2021). MSC: 35Q53 35R11 35A25 PDF BibTeX XML Cite \textit{M. Senol} et al., Int. J. Mod. Phys. B 35, No. 2, Article ID 2150021, 17 p. (2021; Zbl 1455.35228) Full Text: DOI
Rizvi, Syed T. R.; Seadawy, Aly R.; Ali, Ijaz; Younis, Muhammad Painlevé analysis of a nonlinear Schrödinger equation discussing dynamics of solitons in optical fiber. (English) Zbl 1455.35241 Int. J. Mod. Phys. B 35, No. 1, Article ID 2150005, 11 p. (2021). MSC: 35Q55 37K10 PDF BibTeX XML Cite \textit{S. T. R. Rizvi} et al., Int. J. Mod. Phys. B 35, No. 1, Article ID 2150005, 11 p. (2021; Zbl 1455.35241) Full Text: DOI
Ma, Wen-Xiu Riemann-Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations. (English) Zbl 07318550 J. Math. Anal. Appl. 498, No. 2, Article ID 124980, 14 p. (2021). MSC: 35Q15 35Q53 45K05 37K15 35C08 37K10 PDF BibTeX XML Cite \textit{W.-X. Ma}, J. Math. Anal. Appl. 498, No. 2, Article ID 124980, 14 p. (2021; Zbl 07318550) Full Text: DOI
Figueira, Renata O.; Himonas, A. Alexandrou Lower bounds on the radius of analyticity for a system of modified KdV equations. (English) Zbl 07317502 J. Math. Anal. Appl. 497, No. 2, Article ID 124917, 17 p. (2021). MSC: 35Q53 30 PDF BibTeX XML Cite \textit{R. O. Figueira} and \textit{A. A. Himonas}, J. Math. Anal. Appl. 497, No. 2, Article ID 124917, 17 p. (2021; Zbl 07317502) Full Text: DOI
Muñoz, Claudio; Ponce, Gustavo; Saut, Jean-Claude On the long time behavior of solutions to the intermediate long wave equation. (English) Zbl 07317437 SIAM J. Math. Anal. 53, No. 1, 1029-1048 (2021). MSC: 37K40 37K15 37K10 35Q53 35Q51 35C07 PDF BibTeX XML Cite \textit{C. Muñoz} et al., SIAM J. Math. Anal. 53, No. 1, 1029--1048 (2021; Zbl 07317437) Full Text: DOI
Zhou, Deqin Non-homogeneous initial-boundary-value problem of the fifth-order Korteweg-de Vries equation with a nonlinear dispersive term. (English) Zbl 07317179 J. Math. Anal. Appl. 497, No. 1, Article ID 124848, 29 p. (2021). MSC: 35Q53 76 PDF BibTeX XML Cite \textit{D. Zhou}, J. Math. Anal. Appl. 497, No. 1, Article ID 124848, 29 p. (2021; Zbl 07317179) Full Text: DOI
Zhang, Guofei; He, Jingsong; Wang, Lihong; Mihalache, Dumitru Surfaces of revolution associated with the kink-type solutions of the SIdV equation. (English) Zbl 07315199 Differ. Geom. Appl. 74, Article ID 101711, 11 p. (2021). MSC: 35Q53 35C08 37K10 37K35 PDF BibTeX XML Cite \textit{G. Zhang} et al., Differ. Geom. Appl. 74, Article ID 101711, 11 p. (2021; Zbl 07315199) Full Text: DOI
Pilod, Didier; Saut, Jean-Claude; Selberg, Sigmund; Tesfahun, Achenef Dispersive estimates for full dispersion KP equations. (English) Zbl 07312808 J. Math. Fluid Mech. 23, No. 1, Paper No. 25, 25 p. (2021). MSC: 35B45 35Q35 35Q53 42B20 PDF BibTeX XML Cite \textit{D. Pilod} et al., J. Math. Fluid Mech. 23, No. 1, Paper No. 25, 25 p. (2021; Zbl 07312808) Full Text: DOI
Gerdjikov, Vladimir S.; Ivanov, Rossen I. Multicomponent Fokas-Lenells equations on Hermitian symmetric spaces. (English) Zbl 07312090 Nonlinearity 34, No. 2, 939-963 (2021). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 37K10 37K30 37K25 PDF BibTeX XML Cite \textit{V. S. Gerdjikov} and \textit{R. I. Ivanov}, Nonlinearity 34, No. 2, 939--963 (2021; Zbl 07312090) Full Text: DOI
Tığlay, Feride Integrating evolution equations using Fredholm determinants. (English) Zbl 07311273 Electron Res. Arch. 29, No. 2, 2141-2147 (2021). MSC: 35G25 35P05 35C15 37K10 PDF BibTeX XML Cite \textit{F. Tığlay}, Electron Res. Arch. 29, No. 2, 2141--2147 (2021; Zbl 07311273) Full Text: DOI
Zhou, Yanjie; Zhang, Yanan; Liang, Ye; Luo, Zhendong A reduced-order extrapolated model based on splitting implicit finite difference scheme and proper orthogonal decomposition for the fourth-order nonlinear Rosenau equation. (English) Zbl 07311186 Appl. Numer. Math. 162, 192-200 (2021). MSC: 35Q53 35G20 65M06 65M12 65M99 65B05 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Appl. Numer. Math. 162, 192--200 (2021; Zbl 07311186) Full Text: DOI
Fu, Yayun; Cai, Wenjun; Wang, Yushun A linearly implicit structure-preserving scheme for the fractional sine-Gordon equation based on the IEQ approach. (English) Zbl 07310780 Appl. Numer. Math. 160, 368-385 (2021). MSC: 65M06 65N06 65M12 65T50 35R11 35Q53 PDF BibTeX XML Cite \textit{Y. Fu} et al., Appl. Numer. Math. 160, 368--385 (2021; Zbl 07310780) Full Text: DOI
Xing, Zhiyong; Wen, Liping; Xiao, Hanyu A fourth-order conservative difference scheme for the Riesz space-fractional Sine-Gordon equations and its fast implementation. (English) Zbl 07310754 Appl. Numer. Math. 159, 221-238 (2021). MSC: 65M06 65M12 65H10 65T50 15B05 35R11 35Q53 PDF BibTeX XML Cite \textit{Z. Xing} et al., Appl. Numer. Math. 159, 221--238 (2021; Zbl 07310754) Full Text: DOI
Linares, Felipe; Ramos, João P. G. Maximal function estimates and local well-posedness for the generalized Zakharov-Kuznetsov equation. (English) Zbl 07309972 SIAM J. Math. Anal. 53, No. 1, 914-936 (2021). MSC: 42B25 35Q53 42B37 PDF BibTeX XML Cite \textit{F. Linares} and \textit{J. P. G. Ramos}, SIAM J. Math. Anal. 53, No. 1, 914--936 (2021; Zbl 07309972) Full Text: DOI
Gu, Jiawen; Zhou, Deqin Local controllability and stability of the periodic fifth-order KdV equation with a nonlinear dispersive term. (English) Zbl 07309706 J. Math. Anal. Appl. 494, No. 1, Article ID 124635, 17 p. (2021). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93D23 93C20 35Q53 PDF BibTeX XML Cite \textit{J. Gu} and \textit{D. Zhou}, J. Math. Anal. Appl. 494, No. 1, Article ID 124635, 17 p. (2021; Zbl 07309706) Full Text: DOI
Chen, Li; Lee, Jinyeop; Liew, Matthew Combined mean-field and semiclassical limits of large fermionic systems. (English) Zbl 07308635 J. Stat. Phys. 182, No. 2, Paper No. 24, 42 p. (2021). MSC: 81V74 81Q20 81Q05 37K10 35Q40 81P16 35Q83 81R30 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Stat. Phys. 182, No. 2, Paper No. 24, 42 p. (2021; Zbl 07308635) Full Text: DOI
Linares, F.; Pastor, A.; Drumond Silva, J. Dispersive blow-up for solutions of the Zakharov-Kuznetsov equation. (English) Zbl 07307583 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 281-300 (2021). MSC: 35Q53 35B44 PDF BibTeX XML Cite \textit{F. Linares} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 281--300 (2021; Zbl 07307583) Full Text: DOI
Jia, Ting-Ting; Gao, Yi-Tian; Yu, Xin; Li, Liu-Qing Lax pairs, infinite conservation laws, Darboux transformation, bilinear forms and solitonic interactions for a combined Calogero-Bogoyavlenskii-Schiff-type equation. (English) Zbl 07307167 Appl. Math. Lett. 114, Article ID 106702, 10 p. (2021). MSC: 35Q53 35Q51 35C08 37K35 76X05 PDF BibTeX XML Cite \textit{T.-T. Jia} et al., Appl. Math. Lett. 114, Article ID 106702, 10 p. (2021; Zbl 07307167) Full Text: DOI
Wang, Xueru; Zhu, Junyi; Qiao, Zhijun New solutions to the differential-difference KP equation. (English) Zbl 07307146 Appl. Math. Lett. 113, Article ID 106836, 8 p. (2021). MSC: 35B06 35Q53 35R09 PDF BibTeX XML Cite \textit{X. Wang} et al., Appl. Math. Lett. 113, Article ID 106836, 8 p. (2021; Zbl 07307146) Full Text: DOI
Erbay, Husnuata A.; Erbay, Saadet; Erkip, Albert A semi-discrete numerical method for convolution-type unidirectional wave equations. (English) Zbl 1456.35180 J. Comput. Appl. Math. 387, Article ID 112496, 14 p. (2021). MSC: 35Q53 35C08 65M12 65M15 65L06 65M20 65Z05 PDF BibTeX XML Cite \textit{H. A. Erbay} et al., J. Comput. Appl. Math. 387, Article ID 112496, 14 p. (2021; Zbl 1456.35180) Full Text: DOI
Eidnes, Sølve; Li, Lu; Sato, Shun Linearly implicit structure-preserving schemes for Hamiltonian systems. (English) Zbl 1456.65063 J. Comput. Appl. Math. 387, Article ID 112489, 13 p. (2021). MSC: 65M06 65P10 35Q53 PDF BibTeX XML Cite \textit{S. Eidnes} et al., J. Comput. Appl. Math. 387, Article ID 112489, 13 p. (2021; Zbl 1456.65063) Full Text: DOI
Gaillard, Pierre Degenerate Riemann theta functions, Fredholm and Wronskian representations of the solutions to the KdV equation and the degenerate rational case. (English) Zbl 07303908 J. Geom. Phys. 161, Article ID 104059, 13 p. (2021). MSC: 35Q53 PDF BibTeX XML Cite \textit{P. Gaillard}, J. Geom. Phys. 161, Article ID 104059, 13 p. (2021; Zbl 07303908) Full Text: DOI
Hryniv, Rostyslav; Melnyk, Bohdan; Mykytyuk, Yaroslav Inverse scattering for reflectionless Schrödinger operators with integrable potentials and generalized soliton solutions for the KdV equation. (English) Zbl 07303662 Ann. Henri Poincaré 22, No. 2, 487-527 (2021). MSC: 47A40 34L25 34L40 35C08 81U40 37K15 37K40 37K60 37J35 37K10 PDF BibTeX XML Cite \textit{R. Hryniv} et al., Ann. Henri Poincaré 22, No. 2, 487--527 (2021; Zbl 07303662) Full Text: DOI
Benzoni-Gavage, Sylvie; Mietka, Colin; Rodrigues, Luis Miguel Modulated equations of Hamiltonian PDEs and dispersive shocks. (English) Zbl 07303411 Nonlinearity 34, No. 1, 578-641 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35Q35 35C07 35C08 35B10 35B40 37K45 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage} et al., Nonlinearity 34, No. 1, 578--641 (2021; Zbl 07303411) Full Text: DOI
Ahn, Jaeseop; Kim, Jimyeong; Seo, Ihyeok Lower bounds on the radius of spatial analyticity for the Kawahara equation. (English) Zbl 07301490 Anal. Math. Phys. 11, No. 1, Paper No. 28, 22 p. (2021). MSC: 32D15 35Q53 PDF BibTeX XML Cite \textit{J. Ahn} et al., Anal. Math. Phys. 11, No. 1, Paper No. 28, 22 p. (2021; Zbl 07301490) Full Text: DOI
Kang, Zhou-Zheng; Xia, Tie-Cheng; Ma, Wen-Xiu Riemann-Hilbert method for multi-soliton solutions of a fifth-order nonlinear Schrödinger equation. (English) Zbl 07301278 Anal. Math. Phys. 11, No. 1, Paper No. 14, 13 p. (2021). MSC: 35Q55 35Q15 37K10 35C08 82D40 PDF BibTeX XML Cite \textit{Z.-Z. Kang} et al., Anal. Math. Phys. 11, No. 1, Paper No. 14, 13 p. (2021; Zbl 07301278) Full Text: DOI
Liu, Jian-Gen; Yang, Xiao-Jun; Feng, Yi-Ying; Cui, Ping; Geng, Lu-Lu On integrability of the higher dimensional time fractional KdV-type equation. (English) Zbl 07299633 J. Geom. Phys. 160, Article ID 104000, 16 p. (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 37K10 26A33 35Q53 35R11 PDF BibTeX XML Cite \textit{J.-G. Liu} et al., J. Geom. Phys. 160, Article ID 104000, 16 p. (2021; Zbl 07299633) Full Text: DOI
Chen, Si-Jia; Lü, Xing; Tang, Xian-Feng Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients. (English) Zbl 1456.35072 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105628, 12 p. (2021). MSC: 35C08 35K58 35A25 37K10 PDF BibTeX XML Cite \textit{S.-J. Chen} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105628, 12 p. (2021; Zbl 1456.35072) Full Text: DOI
Yang, Yunqing; Suzuki, Takashi; Wang, Jianyong Bäcklund transformation and localized nonlinear wave solutions of the nonlocal defocusing coupled nonlinear Schrödinger equation. (English) Zbl 07299030 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105626, 12 p. (2021). MSC: 35Q55 35Q41 37K35 37K10 35C08 PDF BibTeX XML Cite \textit{Y. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105626, 12 p. (2021; Zbl 07299030) Full Text: DOI
Kinoshita, Shinya; Schippa, Robert Loomis-Whitney-type inequalities and low regularity well-posedness of the periodic Zakharov-Kuznetsov equation. (English) Zbl 07298638 J. Funct. Anal. 280, No. 6, Article ID 108904, 54 p. (2021). MSC: 35Q53 42B37 35A01 35A02 PDF BibTeX XML Cite \textit{S. Kinoshita} and \textit{R. Schippa}, J. Funct. Anal. 280, No. 6, Article ID 108904, 54 p. (2021; Zbl 07298638) Full Text: DOI
Castelli, M.; Doronin, G. Modified and subcritical Zakharov-Kuznetsov equations posed on rectangles. (English) Zbl 1456.35090 J. Differ. Equations 275, 554-580 (2021). MSC: 35G31 35Q53 PDF BibTeX XML Cite \textit{M. Castelli} and \textit{G. Doronin}, J. Differ. Equations 275, 554--580 (2021; Zbl 1456.35090) Full Text: DOI
Koch, Herbert; Liao, Xian Conserved energies for the one dimensional Gross-Pitaevskii equation. (English) Zbl 1455.35236 Adv. Math. 377, Article ID 107467, 84 p. (2021). MSC: 35Q55 35Q53 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{H. Koch} and \textit{X. Liao}, Adv. Math. 377, Article ID 107467, 84 p. (2021; Zbl 1455.35236) Full Text: DOI
Cunha, Alysson; Pastor, Ademir Persistence properties for the dispersion generalized BO-ZK equation in weighted anisotropic Sobolev spaces. (English) Zbl 1455.35034 J. Differ. Equations 274, 1067-1114 (2021). MSC: 35B60 35G25 35A01 35Q53 35R11 PDF BibTeX XML Cite \textit{A. Cunha} and \textit{A. Pastor}, J. Differ. Equations 274, 1067--1114 (2021; Zbl 1455.35034) Full Text: DOI
Novruzov, Emil Construction of peakon-antipeakon solutions and ill-posedness for the b-family of equations. (English) Zbl 1455.35225 J. Differ. Equations 272, 544-559 (2021). MSC: 35Q53 37K10 35R25 PDF BibTeX XML Cite \textit{E. Novruzov}, J. Differ. Equations 272, 544--559 (2021; Zbl 1455.35225) Full Text: DOI
Cen, Dakang; Wang, Zhibo; Mo, Yan Second order difference schemes for time-fractional KdV-Burgers’ equation with initial singularity. (English) Zbl 1453.65210 Appl. Math. Lett. 112, Article ID 106829, 7 p. (2021). MSC: 65M06 65N06 65M12 35R11 26A33 35Q53 PDF BibTeX XML Cite \textit{D. Cen} et al., Appl. Math. Lett. 112, Article ID 106829, 7 p. (2021; Zbl 1453.65210) Full Text: DOI
Zhang, Qifeng; Qin, Yifan; Wang, Xuping; Sun, Zhi-zhong The study of exact and numerical solutions of the generalized viscous Burgers’ equation. (English) Zbl 1453.65240 Appl. Math. Lett. 112, Article ID 106719, 9 p. (2021). MSC: 65M06 65M12 65M15 65J08 35Q53 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Appl. Math. Lett. 112, Article ID 106719, 9 p. (2021; Zbl 1453.65240) Full Text: DOI
Benoudina, Nardjess; Zhang, Yi; Khalique, Chaudry Masood Lie symmetry analysis, optimal system, new solitary wave solutions and conservation laws of the Pavlov equation. (English) Zbl 1454.35318 Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105560, 19 p. (2021). MSC: 35Q53 35C08 35R03 PDF BibTeX XML Cite \textit{N. Benoudina} et al., Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105560, 19 p. (2021; Zbl 1454.35318) Full Text: DOI
Liu, Hanze; Bai, Cheng-Lin; Xin, Xiangpeng Painlevé test, complete symmetry classifications and exact solutions to R-D types of equations. (English) Zbl 1456.37083 Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105547, 12 p. (2021). MSC: 37L20 37K35 37K10 35K57 PDF BibTeX XML Cite \textit{H. Liu} et al., Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105547, 12 p. (2021; Zbl 1456.37083) Full Text: DOI
Gao, Xin-Yi; Guo, Yong-Jiang; Shan, Wen-Rui; Yuan, Yu-Qiang; Zhang, Chen-Rong; Chen, Su-Su Magneto-optical/ferromagnetic-material computation: Bäcklund transformations, bilinear forms and \(N\) solitons for a generalized \((3+1)\)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system. (English) Zbl 1455.35248 Appl. Math. Lett. 111, Article ID 106627, 8 p. (2021). Reviewer: Eric Stachura (Marietta) MSC: 35Q60 35Q53 78A25 78A60 78A40 78A50 76X05 76Q05 76B25 82D40 82D10 74K35 37K35 35C08 68W30 PDF BibTeX XML Cite \textit{X.-Y. Gao} et al., Appl. Math. Lett. 111, Article ID 106627, 8 p. (2021; Zbl 1455.35248) Full Text: DOI
Moon, Byungsoo Single peaked traveling wave solutions to a generalized \(\mu\)-Novikov equation. (English) Zbl 1440.35276 Adv. Nonlinear Anal. 10, 66-75 (2021). MSC: 35Q35 37K45 37K40 37K10 PDF BibTeX XML Cite \textit{B. Moon}, Adv. Nonlinear Anal. 10, 66--75 (2021; Zbl 1440.35276) Full Text: DOI
Carvajal, Xavier A remark on the local well-posedness for a coupled system of mKdV type equations in \(H^s \times H^k\). (English) Zbl 07332061 Differ. Equ. Appl. 12, No. 4, 443-456 (2020). MSC: 35Q35 35Q53 PDF BibTeX XML Cite \textit{X. Carvajal}, Differ. Equ. Appl. 12, No. 4, 443--456 (2020; Zbl 07332061) Full Text: DOI
Ren, Bo; Lin, Ji; Lou, Zhi-Mei Lumps and their interaction solutions of a (2+1)-dimensional generalized potential Kadomtsev-Petviashvili equation. (English) Zbl 07331964 J. Appl. Anal. Comput. 10, No. 3, 935-945 (2020). MSC: 35Q51 35Q53 37K40 PDF BibTeX XML Cite \textit{B. Ren} et al., J. Appl. Anal. Comput. 10, No. 3, 935--945 (2020; Zbl 07331964) Full Text: DOI
Cai, Benzhi; Wang, Zhenli; Zhang, Lihua; Liu, Hanze Lump solutions to the generalized (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. (English) Zbl 07331948 J. Appl. Anal. Comput. 10, No. 3, 1038-1046 (2020). MSC: 35Q51 37K10 37K40 PDF BibTeX XML Cite \textit{B. Cai} et al., J. Appl. Anal. Comput. 10, No. 3, 1038--1046 (2020; Zbl 07331948) Full Text: DOI
Wang, Hui; Tian, Shou-Fu; Zhang, Tian-Tian; Chen, Yi The breather wave solutions, M-lump solutions and semi-rational solutions to a (2+1)-dimensional generalized Korteweg-de Vries equation. (English) Zbl 07331940 J. Appl. Anal. Comput. 10, No. 1, 118-130 (2020). MSC: 35Q51 35Q53 35C99 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Appl. Anal. Comput. 10, No. 1, 118--130 (2020; Zbl 07331940) Full Text: DOI
Mi, Lufang; Cui, Wenyan; You, Honglian Periodic and quasi-periodic solutions for the complex Swift-Hohenberg equation. (English) Zbl 07331928 J. Appl. Anal. Comput. 10, No. 1, 297-313 (2020). MSC: 37K55 35Q53 PDF BibTeX XML Cite \textit{L. Mi} et al., J. Appl. Anal. Comput. 10, No. 1, 297--313 (2020; Zbl 07331928) Full Text: DOI
Li, Yihao; Li, Ruomeng; Xue, Bo; Geng, Xianguo A generalized complex mKdV equation: Darboux transformations and explicit solutions. (English) Zbl 07328377 Wave Motion 98, Article ID 102639, 13 p. (2020). MSC: 35Q51 37K10 35Q58 35L65 PDF BibTeX XML Cite \textit{Y. Li} et al., Wave Motion 98, Article ID 102639, 13 p. (2020; Zbl 07328377) Full Text: DOI
Erbay, H. A.; Erbay, S.; Erkip, A. Numerical computation of solitary wave solutions of the Rosenau equation. (English) Zbl 07328370 Wave Motion 98, Article ID 102618, 10 p. (2020). MSC: 35Q53 65M99 74J35 74S30 PDF BibTeX XML Cite \textit{H. A. Erbay} et al., Wave Motion 98, Article ID 102618, 10 p. (2020; Zbl 07328370) Full Text: DOI
Nascimento, A. C. On special regularity properties of solutions of the Benjamin-Ono-Zakharov-Kuznetsov (BO-ZK) equation. (English) Zbl 07326892 Commun. Pure Appl. Anal. 19, No. 9, 4285-4325 (2020). MSC: 35Q53 35G31 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{A. C. Nascimento}, Commun. Pure Appl. Anal. 19, No. 9, 4285--4325 (2020; Zbl 07326892) Full Text: DOI
Mendez, Argenis J. On the propagation of regularity for solutions of the dispersion generalized Benjamin-Ono equation. (English) Zbl 07324220 Anal. PDE 13, No. 8, 2399-2440 (2020). MSC: 35Q53 35Q05 PDF BibTeX XML Cite \textit{A. J. Mendez}, Anal. PDE 13, No. 8, 2399--2440 (2020; Zbl 07324220) Full Text: DOI
Vinodh, D.; Asokan, R. Multi-soliton, rogue wave and periodic wave solutions of generalized \((2+1)\) dimensional Boussinesq equation. (English) Zbl 07322680 Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 15, 16 p. (2020). MSC: 35Q35 35Q51 35Q53 76B15 76B25 PDF BibTeX XML Cite \textit{D. Vinodh} and \textit{R. Asokan}, Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 15, 16 p. (2020; Zbl 07322680) Full Text: DOI
Ahmad, Hijaz; Seadawy, Aly R.; Khan, Tufail A. Study on numerical solution of dispersive water wave phenomena by using a reliable modification of variational iteration algorithm. (English) Zbl 07318085 Math. Comput. Simul. 177, 13-23 (2020). MSC: 76B 76M PDF BibTeX XML Cite \textit{H. Ahmad} et al., Math. Comput. Simul. 177, 13--23 (2020; Zbl 07318085) Full Text: DOI
Li, Chuanzhong Ghost symmetries and multi-fold Darboux transformations of extended Toda hierarchy. (English) Zbl 07316410 Chin. Ann. Math., Ser. B 41, No. 5, 697-716 (2020). MSC: 37K06 37K10 37K35 PDF BibTeX XML Cite \textit{C. Li}, Chin. Ann. Math., Ser. B 41, No. 5, 697--716 (2020; Zbl 07316410) Full Text: DOI
Li, Jibin; Han, Maoan Exact peakon solutions given by the generalized hyperbolic functions for some nonlinear wave equations. (English) Zbl 07315435 J. Appl. Anal. Comput. 10, No. 4, 1708-1719 (2020). MSC: 35C07 35Q53 35Q55 34A34 37L45 PDF BibTeX XML Cite \textit{J. Li} and \textit{M. Han}, J. Appl. Anal. Comput. 10, No. 4, 1708--1719 (2020; Zbl 07315435) Full Text: DOI
Feng, Wen; Stanislavova, Milena On the spectral stability of standing waves of nonlocal \(\mathcal{PT}\) symmetric systems. (English) Zbl 07315222 Dörfler, Willy (ed.) et al., Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23–27, 2018. Cham: Birkhäuser (ISBN 978-3-030-47173-6/hbk; 978-3-030-47174-3/ebook). Trends in Mathematics, 145-162 (2020). MSC: 35Q55 35Q41 35Q53 35P99 35B35 15A18 65M70 PDF BibTeX XML Cite \textit{W. Feng} and \textit{M. Stanislavova}, in: Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23--27, 2018. Cham: Birkhäuser. 145--162 (2020; Zbl 07315222) Full Text: DOI
Zhuang, Jinsen; Zhou, Yan Bifurcations and exact traveling wave solutions of the equivalent complex short-pulse equations. (English) Zbl 1455.35230 J. Appl. Anal. Comput. 10, No. 2, 795-815 (2020). MSC: 35Q53 35B32 35Q51 35C05 35C07 35C08 PDF BibTeX XML Cite \textit{J. Zhuang} and \textit{Y. Zhou}, J. Appl. Anal. Comput. 10, No. 2, 795--815 (2020; Zbl 1455.35230) Full Text: DOI
Wang, Jingqun; Tian, Lixin Boundary controllability for the time-fractional nonlinear Korteweg-de Vries (KdV) equation. (English) Zbl 07315119 J. Appl. Anal. Comput. 10, No. 2, 411-426 (2020). MSC: 93B05 93C20 35Q53 PDF BibTeX XML Cite \textit{J. Wang} and \textit{L. Tian}, J. Appl. Anal. Comput. 10, No. 2, 411--426 (2020; Zbl 07315119) Full Text: DOI
Kang, Zhou-Zheng; Xia, Tie-Cheng Multiwave solutions to the negative-order KdV equation in \((3+1)\)-dimensions. (English) Zbl 1455.35221 J. Appl. Anal. Comput. 10, No. 2, 729-739 (2020). MSC: 35Q53 35Q51 PDF BibTeX XML Cite \textit{Z.-Z. Kang} and \textit{T.-C. Xia}, J. Appl. Anal. Comput. 10, No. 2, 729--739 (2020; Zbl 1455.35221) Full Text: DOI
Ionescu, Carmen; Constantinescu, Radu; Stoicescu, Mihail Functional expansions for finding traveling wave solutions. (English) Zbl 1455.35220 J. Appl. Anal. Comput. 10, No. 2, 569-583 (2020). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{C. Ionescu} et al., J. Appl. Anal. Comput. 10, No. 2, 569--583 (2020; Zbl 1455.35220) Full Text: DOI
Foadian, Saedeh; Pourgholi, Reza; Tabasi, S. Hashem; Zeidabadi, Hamed Solving an inverse problem for a generalized time-delayed Burgers-Fisher equation by Haar wavelet method. (English) Zbl 07315108 J. Appl. Anal. Comput. 10, No. 2, 391-410 (2020). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65N21 65N20 65J20 65N15 65N12 65T60 65M32 35K05 35R30 35R25 35R07 35Q53 PDF BibTeX XML Cite \textit{S. Foadian} et al., J. Appl. Anal. Comput. 10, No. 2, 391--410 (2020; Zbl 07315108) Full Text: DOI
Alharbi, Abdulghani R.; Almatrafi, M. B.; Seadawy, Aly R. Construction of the numerical and analytical wave solutions of the Joseph-Egri dynamical equation for the long waves in nonlinear dispersive systems. (English) Zbl 1454.35316 Int. J. Mod. Phys. B 34, No. 30, Article ID 2050289, 10 p. (2020). MSC: 35Q53 35A25 35C08 35C07 PDF BibTeX XML Cite \textit{A. R. Alharbi} et al., Int. J. Mod. Phys. B 34, No. 30, Article ID 2050289, 10 p. (2020; Zbl 1454.35316) Full Text: DOI
Yokuş, Asıf; Kaya, Doğan Comparison exact and numerical simulation of the traveling wave solution in nonlinear dynamics. (English) Zbl 1454.35329 Int. J. Mod. Phys. B 34, No. 29, Article ID 2050282, 22 p. (2020). MSC: 35Q53 35A22 35C07 65M06 PDF BibTeX XML Cite \textit{A. Yokuş} and \textit{D. Kaya}, Int. J. Mod. Phys. B 34, No. 29, Article ID 2050282, 22 p. (2020; Zbl 1454.35329) Full Text: DOI
Muda, Yuslenita; Akbar, Fiki T.; Kusdiantara, Rudy; Gunara, Bobby E.; Susanto, Hadi Reduction of a damped, driven Klein-Gordon equation into a discrete nonlinear Schrödinger equation: justification and numerical comparison. (English) Zbl 07311878 Asymptotic Anal. 120, No. 1-2, 73-86 (2020). MSC: 35Q55 35Q51 35Q53 35C08 35A01 65L06 PDF BibTeX XML Cite \textit{Y. Muda} et al., Asymptotic Anal. 120, No. 1--2, 73--86 (2020; Zbl 07311878) Full Text: DOI
Kawamoto, Masaki \(L^2\)-properties for linearized KdV equation around small solutions. (English) Zbl 07311577 SUT J. Math. 56, No. 1, 1-19 (2020). MSC: 35Q53 47A45 35P25 35B40 35B35 PDF BibTeX XML Cite \textit{M. Kawamoto}, SUT J. Math. 56, No. 1, 1--19 (2020; Zbl 07311577)
Masaki, Satoshi; Segata, Jun-ichi Refinement of Strichartz estimates for Airy equation and application. (English) Zbl 07311510 RIMS Kôkyûroku Bessatsu B80, 11-25 (2020). MSC: 35Q53 35B40 35B30 PDF BibTeX XML Cite \textit{S. Masaki} and \textit{J.-i. Segata}, RIMS Kôkyûroku Bessatsu B80, 11--25 (2020; Zbl 07311510) Full Text: Link
Klamka, Jerzy; Avetisyan, Ara S.; Khurshudyan, Asatur Zh. Exact and approximate distributed controllability of processes described by KdV and Boussinesq equations: the Green’s function approach. (English) Zbl 07308271 Arch. Control Sci. 30, No. 1, 177-193 (2020). MSC: 93B05 93C20 35Q53 93C10 93C15 34B27 PDF BibTeX XML Cite \textit{J. Klamka} et al., Arch. Control Sci. 30, No. 1, 177--193 (2020; Zbl 07308271) Full Text: DOI
Chukkol, Yusuf Buba; Muminov, Mukhiddin Kink wave solutions to KdV-Burgers equation with forcing term. (English) Zbl 07308184 Commun. Korean Math. Soc. 35, No. 2, 685-695 (2020). MSC: 35Q53 35Q51 35L67 35L75 35C07 35C08 PDF BibTeX XML Cite \textit{Y. B. Chukkol} and \textit{M. Muminov}, Commun. Korean Math. Soc. 35, No. 2, 685--695 (2020; Zbl 07308184) Full Text: DOI
Alam, Md Nur; Tunc, Cemil Construction of soliton and multiple soliton solutions to the longitudinal wave motion equation in a magneto-electro-elastic circular rod and the Drinfeld-Sokolov-Wilson equation. (English) Zbl 07307821 Miskolc Math. Notes 21, No. 2, 545-561 (2020). MSC: 35C07 35C08 35Q53 PDF BibTeX XML Cite \textit{M. N. Alam} and \textit{C. Tunc}, Miskolc Math. Notes 21, No. 2, 545--561 (2020; Zbl 07307821) Full Text: DOI
Dong, Huanhe; Fang, Yong; Guo, Baoyong; Liu, Yu Lie point symmetry, conservation laws and exact power series solutions to the Fujimoto-Watanabe equation. (English) Zbl 07307650 Quaest. Math. 43, No. 10, 1349-1365 (2020). MSC: 35Q51 35Q53 76B25 76M60 35R03 PDF BibTeX XML Cite \textit{H. Dong} et al., Quaest. Math. 43, No. 10, 1349--1365 (2020; Zbl 07307650) Full Text: DOI
Doliwa, Adam; Noumi, Masatoshi The Coxeter relations and KP map for non-commuting symbols. (English) Zbl 07305695 Lett. Math. Phys. 110, No. 10, 2743-2762 (2020). MSC: 37K30 37K10 37K60 16T25 39A14 39A36 14E07 12E15 PDF BibTeX XML Cite \textit{A. Doliwa} and \textit{M. Noumi}, Lett. Math. Phys. 110, No. 10, 2743--2762 (2020; Zbl 07305695) Full Text: DOI
Kamiya, Ryo; Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji Algebraic entropy of a multi-term recurrence of the Hietarinta-Viallet type. (English) Zbl 07304004 RIMS Kôkyûroku Bessatsu B78, 121-153 (2020). MSC: 39A36 39A14 37K60 37J70 PDF BibTeX XML Cite \textit{R. Kamiya} et al., RIMS Kôkyûroku Bessatsu B78, 121--153 (2020; Zbl 07304004) Full Text: Link
Lü, Feng Meromorphic solutions of generalized inviscid Burgers’ equations and related PDEs. (English) Zbl 1456.35009 C. R., Math., Acad. Sci. Paris 358, No. 11-12, 1169-1178 (2020). MSC: 35B08 35F20 32A15 32A22 35Q53 PDF BibTeX XML Cite \textit{F. Lü}, C. R., Math., Acad. Sci. Paris 358, No. 11--12, 1169--1178 (2020; Zbl 1456.35009) Full Text: DOI
Nguyen, Nghiem V.; Liu, Chuangye Some models for the interaction of long and short waves in dispersive media. I: Derivation. (English) Zbl 1456.35157 Water Waves 2, No. 2, 327-359 (2020). MSC: 35Q31 35Q55 35Q41 35Q53 35A15 35B35 76B15 PDF BibTeX XML Cite \textit{N. V. Nguyen} and \textit{C. Liu}, Water Waves 2, No. 2, 327--359 (2020; Zbl 1456.35157) Full Text: DOI
Rao, Jiguang; Cheng, Yi; Porsezian, Kuppuswamy; Mihalache, Dumitru; He, Jingsong \(P T\)-symmetric nonlocal Davey-Stewartson I equation: soliton solutions with nonzero background. (English) Zbl 1453.37068 Physica D 401, Article ID 132180, 28 p. (2020). MSC: 37K40 37K10 35C08 PDF BibTeX XML Cite \textit{J. Rao} et al., Physica D 401, Article ID 132180, 28 p. (2020; Zbl 1453.37068) Full Text: DOI
Amodio, Pierluigi; Budd, Chris J.; Koch, Othmar; Rottschäfer, Vivi; Settanni, Giuseppina; Weinmüller, Ewa Near critical, self-similar, blow-up solutions of the generalised Korteweg-de Vries equation: asymptotics and computations. (English) Zbl 1453.37064 Physica D 401, Article ID 132179, 16 p. (2020). MSC: 37K40 37K10 35B44 35Q53 65L60 PDF BibTeX XML Cite \textit{P. Amodio} et al., Physica D 401, Article ID 132179, 16 p. (2020; Zbl 1453.37064) Full Text: DOI
Zhang, Guoqiang; Yan, Zhenya Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. (English) Zbl 1453.37069 Physica D 402, Article ID 132170, 14 p. (2020). MSC: 37K40 37K15 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{Z. Yan}, Physica D 402, Article ID 132170, 14 p. (2020; Zbl 1453.37069) Full Text: DOI
He, Cheng; Qu, Changzheng Global weak solutions for the two-component Novikov equation. (English) Zbl 07300756 Electron Res. Arch. 28, No. 4, 1545-1562 (2020). MSC: 37K10 37K40 35Q51 35Q35 35D30 PDF BibTeX XML Cite \textit{C. He} and \textit{C. Qu}, Electron Res. Arch. 28, No. 4, 1545--1562 (2020; Zbl 07300756) Full Text: DOI
Liu, Li-Bin; Liang, Ying; Zhang, Jian; Bao, Xiaobing A robust adaptive grid method for singularly perturbed Burger-Huxley equations. (English) Zbl 1456.65072 Electron Res. Arch. 28, No. 4, 1439-1457 (2020). MSC: 65M06 65M12 65M50 65H10 35Q53 PDF BibTeX XML Cite \textit{L.-B. Liu} et al., Electron Res. Arch. 28, No. 4, 1439--1457 (2020; Zbl 1456.65072) Full Text: DOI
Chen, Wankun; Yuan, Chunxin Application of variable coefficient KdV equation to solitary waves in the ocean. (Chinese. English summary) Zbl 07296154 Period. Ocean Univ. China 50, No. 8, 19-24 (2020). MSC: 35Q53 PDF BibTeX XML Cite \textit{W. Chen} and \textit{C. Yuan}, Period. Ocean Univ. China 50, No. 8, 19--24 (2020; Zbl 07296154) Full Text: DOI
Zhang, Yan; Chen, Zhaohui New exact solutions of the space-time fractional mKdV-ZK equation by the first integral method. (Chinese. English summary) Zbl 07296063 Math. Pract. Theory 50, No. 13, 243-250 (2020). MSC: 35Q53 35R11 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Z. Chen}, Math. Pract. Theory 50, No. 13, 243--250 (2020; Zbl 07296063)
Shi, Tingting; Zhang, Shunli Residual symmetries and interaction solutions for modified Broer-Kaup-Kupershmidt equation. (Chinese. English summary) Zbl 07295960 J. Zhengzhou Univ., Nat. Sci. Ed. 52, No. 3, 92-97 (2020). MSC: 35B06 35Q53 PDF BibTeX XML Cite \textit{T. Shi} and \textit{S. Zhang}, J. Zhengzhou Univ., Nat. Sci. Ed. 52, No. 3, 92--97 (2020; Zbl 07295960) Full Text: DOI
Zhao, Xin; Xia, Shanlei Exact traveling wave solutions for the time fractional nonlinear evolution equation by sub-equation method. (Chinese. English summary) Zbl 07295569 J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 2, 26-29 (2020). MSC: 35C07 35Q53 35R11 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{S. Xia}, J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 2, 26--29 (2020; Zbl 07295569) Full Text: DOI