Yan, Yan; Li, Hengyan Linear stability of blowup solution of incompressible Keller-Segel-Navier-Stokes system. (English) Zbl 07509885 Bound. Value Probl. 2021, Paper No. 41, 23 p. (2021). MSC: 35B44 35B35 35K45 35K59 35Q30 92C17 PDF BibTeX XML Cite \textit{Y. Yan} and \textit{H. Li}, Bound. Value Probl. 2021, Paper No. 41, 23 p. (2021; Zbl 07509885) Full Text: DOI OpenURL
Jiang, Zi-wen; Wang, Li-zhen Weak solutions to the Cauchy problem of fractional time-space Keller-Segel equation. (English) Zbl 1479.35102 Math. Methods Appl. Sci. 44, No. 18, 14094-14113 (2021). MSC: 35B40 35D30 35R11 92C17 PDF BibTeX XML Cite \textit{Z.-w. Jiang} and \textit{L.-z. Wang}, Math. Methods Appl. Sci. 44, No. 18, 14094--14113 (2021; Zbl 1479.35102) Full Text: DOI OpenURL
Tan, Zhong; Wu, Zhonger Time periodic strong solutions to the Keller-Segel system coupled to Navier-Stokes equation. (English) Zbl 1470.35026 J. Differ. Equations 298, 95-131 (2021). MSC: 35B10 35D35 35K51 35K59 35Q30 92C17 PDF BibTeX XML Cite \textit{Z. Tan} and \textit{Z. Wu}, J. Differ. Equations 298, 95--131 (2021; Zbl 1470.35026) Full Text: DOI OpenURL
Jiang, Ziwen; Wang, Lizhen The existence of solutions to the generalized fractional time-space Keller-Segel equations. (English) Zbl 1474.35002 Pure Appl. Math. 36, No. 3, 312-322 (2020). MSC: 35A01 35R11 PDF BibTeX XML Cite \textit{Z. Jiang} and \textit{L. Wang}, Pure Appl. Math. 36, No. 3, 312--322 (2020; Zbl 1474.35002) Full Text: DOI OpenURL
Winkler, Michael Single-point blow-up in the Cauchy problem for the higher-dimensional Keller-Segel system. (English) Zbl 1452.35227 Nonlinearity 33, No. 10, 5007-5048 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 92C17 35B40 35B44 PDF BibTeX XML Cite \textit{M. Winkler}, Nonlinearity 33, No. 10, 5007--5048 (2020; Zbl 1452.35227) Full Text: DOI OpenURL
Mizoguchi, Noriko Determination of blowup type in the parabolic-parabolic Keller-Segel system. (English) Zbl 1435.35084 Math. Ann. 376, No. 1-2, 39-60 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35B44 35K51 35K58 92C17 PDF BibTeX XML Cite \textit{N. Mizoguchi}, Math. Ann. 376, No. 1--2, 39--60 (2020; Zbl 1435.35084) Full Text: DOI OpenURL
Zeng, Yanni; Zhao, Kun Optimal decay rates for a chemotaxis model with logistic growth, logarithmic sensitivity and density-dependent production/consumption rate. (English) Zbl 1439.35496 J. Differ. Equations 268, No. 4, 1379-1411 (2020); corrigendum ibid. 269, No. 7, 6359-6363 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B40 92C17 PDF BibTeX XML Cite \textit{Y. Zeng} and \textit{K. Zhao}, J. Differ. Equations 268, No. 4, 1379--1411 (2020; Zbl 1439.35496) Full Text: DOI OpenURL
Yang, Minghua; Fu, Zunwei; Sun, Jinyi Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces. (English) Zbl 1412.35351 J. Differ. Equations 266, No. 9, 5867-5894 (2019). MSC: 35Q92 35Q30 35Q35 35C06 35B40 76Z10 92C17 PDF BibTeX XML Cite \textit{M. Yang} et al., J. Differ. Equations 266, No. 9, 5867--5894 (2019; Zbl 1412.35351) Full Text: DOI OpenURL
Chen, Xiaoli Well-posedness of the Keller-Segel system in Fourier-Besov-Morrey spaces. (English) Zbl 1402.35141 Z. Anal. Anwend. 37, No. 4, 417-433 (2018). MSC: 35K55 47J35 PDF BibTeX XML Cite \textit{X. Chen}, Z. Anal. Anwend. 37, No. 4, 417--433 (2018; Zbl 1402.35141) Full Text: DOI OpenURL
Xiang, Tian Chemotactic aggregation versus logistic damping on boundedness in the 3D minimal Keller-Segel model. (English) Zbl 1397.35125 SIAM J. Appl. Math. 78, No. 5, 2420-2438 (2018). Reviewer: Piotr Biler (Wrocław) MSC: 35K51 35Q92 35K57 35B30 35B44 35A01 92C17 PDF BibTeX XML Cite \textit{T. Xiang}, SIAM J. Appl. Math. 78, No. 5, 2420--2438 (2018; Zbl 1397.35125) Full Text: DOI OpenURL
Yang, Minghua; Fu, Zunwei; Liu, Suying Analyticity and existence of the Keller-Segel-Navier-Stokes equations in critical Besov spaces. (English) Zbl 1397.35186 Adv. Nonlinear Stud. 18, No. 3, 517-535 (2018). MSC: 35Q30 35Q35 76D03 35E15 42B37 35Q92 92C17 35B65 PDF BibTeX XML Cite \textit{M. Yang} et al., Adv. Nonlinear Stud. 18, No. 3, 517--535 (2018; Zbl 1397.35186) Full Text: DOI OpenURL
Espejo, Elio; Suzuki, Takashi Reaction terms avoiding aggregation in slow fluids. (English) Zbl 1302.35102 Nonlinear Anal., Real World Appl. 21, 110-126 (2015). MSC: 35D30 92C17 35Q35 35K58 PDF BibTeX XML Cite \textit{E. Espejo} and \textit{T. Suzuki}, Nonlinear Anal., Real World Appl. 21, 110--126 (2015; Zbl 1302.35102) Full Text: DOI OpenURL
Antonyan, Sergey A.; Jonard-Pérez, Natalia; Juárez-Ordóñez, Saúl Hyperspaces of Keller compacta and their orbit spaces. (English) Zbl 1341.57015 J. Math. Anal. Appl. 412, No. 2, 613-619 (2014). Reviewer: Jan van Mill (Amsterdam) MSC: 57N20 37C85 54H20 PDF BibTeX XML Cite \textit{S. A. Antonyan} et al., J. Math. Anal. Appl. 412, No. 2, 613--619 (2014; Zbl 1341.57015) Full Text: DOI OpenURL
Montaru, Alexandre Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. (English) Zbl 1286.35005 Discrete Contin. Dyn. Syst., Ser. B 19, No. 1, 231-256 (2014). MSC: 35A01 35A02 35A09 35B44 35K40 35K51 35K65 92C17 PDF BibTeX XML Cite \textit{A. Montaru}, Discrete Contin. Dyn. Syst., Ser. B 19, No. 1, 231--256 (2014; Zbl 1286.35005) Full Text: DOI arXiv OpenURL
Deng, Chao; Villavert, John Ill-posedness of the two-dimensional Keller-Segel model in Triebel-Lizorkin spaces. (English) Zbl 1285.35128 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95, 38-49 (2014). MSC: 35R25 35K55 47J06 92C17 PDF BibTeX XML Cite \textit{C. Deng} and \textit{J. Villavert}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95, 38--49 (2014; Zbl 1285.35128) Full Text: DOI OpenURL
Ochsenius, Herminia; Olivos, Elena A generalized Keller space over a field with a valuation of rank \(\alpha>\omega\). (English) Zbl 1323.30063 Shamseddine, Khodr (ed.), Advances in ultrametric analysis. Selected papers based on the presentations at the 12th international conference on \(p\)-adic functional analysis, Winnipeg, MB, Canada, July 2–6, 2012. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-9142-1/pbk; 978-1-4704-1024-7/ebook). Contemporary Mathematics 596, 205-213 (2013). MSC: 30G06 30B10 46S10 PDF BibTeX XML Cite \textit{H. Ochsenius} and \textit{E. Olivos}, Contemp. Math. 596, 205--213 (2013; Zbl 1323.30063) Full Text: DOI OpenURL
Abdeljawad, Thabet; Gopal, Dhananjay Erratum to: “Meir-Keeler \(\alpha\)-contractive fixed and common fixed point theorems”. (English) Zbl 1423.54064 Fixed Point Theory Appl. 2013, Paper No. 110, 3 p. (2013). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{T. Abdeljawad} and \textit{D. Gopal}, Fixed Point Theory Appl. 2013, Paper No. 110, 3 p. (2013; Zbl 1423.54064) Full Text: DOI OpenURL
Abdeljawad, Thabet Meir-Keeler \(\alpha\)-contractive fixed and common fixed point theorems. (English) Zbl 1295.54038 Fixed Point Theory Appl. 2013, Paper No. 19, 10 p. (2013); erratum ibid. 2013, Paper No. 110, 3 p. (2013). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{T. Abdeljawad}, Fixed Point Theory Appl. 2013, Paper No. 19, 10 p. (2013; Zbl 1295.54038) Full Text: DOI OpenURL
Nagai, Toshitaka; Ogawa, Takayoshi Brezis-Merle inequalities and application to the global existence of the Cauchy problem of the Keller-Segel system. (English) Zbl 1254.35111 Commun. Contemp. Math. 13, No. 5, 795-812 (2011). MSC: 35K46 35Q92 35Q70 35K58 92C17 35B40 PDF BibTeX XML Cite \textit{T. Nagai} and \textit{T. Ogawa}, Commun. Contemp. Math. 13, No. 5, 795--812 (2011; Zbl 1254.35111) Full Text: DOI OpenURL
Pogan, Alin; Scheel, Arnd Instability of spikes in the presence of conservation laws. (English) Zbl 1233.35027 Z. Angew. Math. Phys. 61, No. 6, 979-998 (2010). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35B35 37L15 35K45 35K59 35L65 PDF BibTeX XML Cite \textit{A. Pogan} and \textit{A. Scheel}, Z. Angew. Math. Phys. 61, No. 6, 979--998 (2010; Zbl 1233.35027) Full Text: DOI Link OpenURL
Biler, Piotr; Brandolese, Lorenzo On the parabolic-elliptic limit of the doubly parabolic Keller–Segel system modelling chemotaxis. (English) Zbl 1167.35316 Stud. Math. 193, No. 3, 241-261 (2009). MSC: 35B40 35K57 92C17 35K50 PDF BibTeX XML Cite \textit{P. Biler} and \textit{L. Brandolese}, Stud. Math. 193, No. 3, 241--261 (2009; Zbl 1167.35316) Full Text: DOI arXiv OpenURL
Raczyński, Andrzej Stability property of the two-dimensional Keller-Segel model. (English) Zbl 1184.35153 Asymptotic Anal. 61, No. 1, 35-59 (2009). Reviewer: Philippe Laurençot (Toulouse) MSC: 35K45 35B20 92C17 35B25 35K58 PDF BibTeX XML Cite \textit{A. Raczyński}, Asymptotic Anal. 61, No. 1, 35--59 (2009; Zbl 1184.35153) OpenURL
Guilfoyle, Brendan; Klingenberg, Wilhelm An indefinite Kähler metric on the space of oriented lines. (English) Zbl 1084.53017 J. Lond. Math. Soc., II. Ser. 72, No. 2, 497-509 (2005). Reviewer: Richard Koch (München) MSC: 53B30 53A25 53C30 PDF BibTeX XML Cite \textit{B. Guilfoyle} and \textit{W. Klingenberg}, J. Lond. Math. Soc., II. Ser. 72, No. 2, 497--509 (2005; Zbl 1084.53017) Full Text: DOI arXiv OpenURL
Chen, Hua; Zhong, Xin-Hua Global existence and blow-up for the solutions to nonlinear parabolic-elliptic system modelling chemotaxis. (English) Zbl 1103.35039 IMA J. Appl. Math. 70, No. 2, 221-240 (2005). Reviewer: Dirk Horstmann (Köln) MSC: 35K55 92C17 35K50 35B40 PDF BibTeX XML Cite \textit{H. Chen} and \textit{X.-H. Zhong}, IMA J. Appl. Math. 70, No. 2, 221--240 (2005; Zbl 1103.35039) Full Text: DOI OpenURL
De Simone, Anna; Morales, Pedro Keller spaces: an introduction. (English) Zbl 1439.46016 Atti Semin. Mat. Fis. Univ. Modena 51, No. 2, 313-368 (2003). MSC: 46C99 28C20 46G12 52A07 46N50 46-01 PDF BibTeX XML Cite \textit{A. De Simone} and \textit{P. Morales}, Atti Semin. Mat. Fis. Univ. Modena 51, No. 2, 313--368 (2003; Zbl 1439.46016) OpenURL
Dvurečenskij, Anatolij States on subspaces of inner product spaces with the Gleason property. (English) Zbl 1040.81004 Int. J. Theor. Phys. 42, No. 7, 1403-1411 (2003). MSC: 81P10 PDF BibTeX XML Cite \textit{A. Dvurečenskij}, Int. J. Theor. Phys. 42, No. 7, 1403--1411 (2003; Zbl 1040.81004) Full Text: DOI OpenURL
Grygor’jeva, Tetyana On equidistant and generalized equidistant parabolic Keller spaces. (Ukrainian. English summary) Zbl 0987.46051 Visn. L’viv. Univ., Ser. Mekh.-Mat. 58, 76-82 (2000). MSC: 46S10 12J25 PDF BibTeX XML Cite \textit{T. Grygor'jeva}, Visn. L'viv. Univ., Ser. Mekh.-Mat. 58, 76--82 (2000; Zbl 0987.46051) OpenURL
Ochsenius, H.; Schikhof, W. H. Banach spaces over fields with an infinite rank valuation. (English) Zbl 0938.46056 Kąkol, J. (ed.) et al., \(p\)-adic functional analysis. Proceedings of the 5th international conference in Poznań, Poland, June 1-5, 1998. New York, NY: Marcel Dekker. Lect. Notes Pure Appl. Math. 207, 233-293 (1999). Reviewer: Anatoly N.Kochubei (Kiev) MSC: 46S10 12J25 06C15 PDF BibTeX XML Cite \textit{H. Ochsenius} and \textit{W. H. Schikhof}, Lect. Notes Pure Appl. Math. 207, 233--293 (1999; Zbl 0938.46056) OpenURL
Ageev, S. M. Topological proofs of Keller’s theorem and an equivariant version of it. (English. Russian original) Zbl 0822.46020 Russ. Acad. Sci., Izv., Math. 42, No. 3, 621-629 (1994); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 57, No. 3, 213-224 (1993). MSC: 46C05 46A55 PDF BibTeX XML Cite \textit{S. M. Ageev}, Russ. Acad. Sci., Izv., Math. 42, No. 3, 213--224 (1993; Zbl 0822.46020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 57, No. 3, 213--224 (1993) Full Text: DOI OpenURL
Bensch, F.; Korsch, H. J.; Mirbach, B.; Ben-Tal, N. EBK quantization of quasi-energies. (English) Zbl 0771.58021 J. Phys. A, Math. Gen. 25, No. 24, 6761-6777 (1992). MSC: 53D50 81Q20 PDF BibTeX XML Cite \textit{F. Bensch} et al., J. Phys. A, Math. Gen. 25, No. 24, 6761--6777 (1992; Zbl 0771.58021) Full Text: DOI OpenURL
Corrádi, K.; Szabó, S. A combinatorial approach for Keller’s conjecture. (English) Zbl 0718.52017 Period. Math. Hung. 21, No. 2, 95-100 (1990). Reviewer: H.Martini (Dresden) MSC: 52C22 11H31 20K01 05B45 PDF BibTeX XML Cite \textit{K. Corrádi} and \textit{S. Szabó}, Period. Math. Hung. 21, No. 2, 95--100 (1990; Zbl 0718.52017) Full Text: DOI OpenURL
Khrennikov, A. Yu. Feynman measure in the phase space and symbols of infinite-dimensional pseudodifferential operators. (English. Russian original) Zbl 0607.35090 Math. Notes 37, 404-409 (1985); translation from Mat. Zametki 37, No. 5, 734-742 (1985). Reviewer: A.Tsutsumi MSC: 35S05 28C20 70G10 PDF BibTeX XML Cite \textit{A. Yu. Khrennikov}, Math. Notes 37, 404--409 (1985; Zbl 0607.35090); translation from Mat. Zametki 37, No. 5, 734--742 (1985) Full Text: DOI OpenURL
Lawrence, Jim Tiling R(d) by translates of the orthants. (English) Zbl 0483.52012 Convexity and related combinatorial geometry, Proc. 2nd Conf., Oklahoma 1980, Lect. Notes Pure Appl. Math. 76, 203-207 (1982). MSC: 52C17 05B45 PDF BibTeX XML OpenURL