Girardi, Giovanni; Wirth, Jens Decay estimates for a Klein-Gordon model with time-periodic coefficients. (English) Zbl 07332030 Cicognani, Massimo (ed.) et al., Anomalies in partial differential equations. Based on talks given at the INDAM workshop, University of Rome “La Sapienza”, Rome, Italy, September 9–13, 2019. Cham: Springer (ISBN 978-3-030-61345-7/hbk; 978-3-030-61346-4/ebook). Springer INdAM Series 43, 313-330 (2021). MSC: 35 PDF BibTeX XML Cite \textit{G. Girardi} and \textit{J. Wirth}, Springer INdAM Ser. 43, 313--330 (2021; Zbl 07332030) Full Text: DOI
Grishin, Denis V.; Pavlovskiy, Yan Yu. Representation of solutions of the Cauchy problem for a one-dimensional Schrödinger equation with a smooth bounded potential by quasi-Feynman formulae. (English. Russian original) Zbl 07326746 Izv. Math. 85, No. 1, 24-60 (2021); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 85, No. 1, 27-65 (2021). MSC: 81Q05 47D08 35C15 35J10 35L04 PDF BibTeX XML Cite \textit{D. V. Grishin} and \textit{Y. Yu. Pavlovskiy}, Izv. Math. 85, No. 1, 24--60 (2021; Zbl 07326746); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 85, No. 1, 27--65 (2021) Full Text: DOI
Hamil, B.; Lütfüoğlu, B. C.; Aounallah, H. The spin-one DKP equation with a nonminimal vector interaction in the presence of minimal uncertainty in momentum. (English) Zbl 07324500 Mod. Phys. Lett. A 36, No. 4, Article ID 2150021, 15 p. (2021). MSC: 81Q05 81R20 PDF BibTeX XML Cite \textit{B. Hamil} et al., Mod. Phys. Lett. A 36, No. 4, Article ID 2150021, 15 p. (2021; Zbl 07324500) Full Text: DOI
Lütfüoğlu, B. C.; Ikot, A. N.; Karakoc, M.; Osobonye, G. T.; Ngiangia, A. T.; Bayrak, O. Bound state solutions of the Klein-Gordon equation with energy-dependent potentials. (English) Zbl 07324495 Mod. Phys. Lett. A 36, No. 4, Article ID 2150016, 19 p. (2021). MSC: 81Q05 PDF BibTeX XML Cite \textit{B. C. Lütfüoğlu} et al., Mod. Phys. Lett. A 36, No. 4, Article ID 2150016, 19 p. (2021; Zbl 07324495) Full Text: DOI
Ahmed, Faizuddin Spin-0 scalar particle interacts with scalar potential in the presence of magnetic field and quantum flux under the effects of KKT in 5D cosmic string spacetime. (English) Zbl 07324481 Mod. Phys. Lett. A 36, No. 2, Article ID 2150004, 18 p. (2021). MSC: 81R20 83E15 81Q05 81Q35 PDF BibTeX XML Cite \textit{F. Ahmed}, Mod. Phys. Lett. A 36, No. 2, Article ID 2150004, 18 p. (2021; Zbl 07324481) Full Text: DOI
He, Xiaoming; Rădulescu, Vicenţiu D. Small linear perturbations of fractional Choquard equations with critical exponent. (English) Zbl 07319403 J. Differ. Equations 282, 481-540 (2021). MSC: 35J20 35A15 35B33 81Q05 PDF BibTeX XML Cite \textit{X. He} and \textit{V. D. Rădulescu}, J. Differ. Equations 282, 481--540 (2021; Zbl 07319403) Full Text: DOI
Zhang, Xiao; Yang, Bo; Wei, Chaozhen; Luo, Maokang Bounded solution structure of Schrödinger equation in the presence of the minimal length and its effect: bound states in the continuum are universal. (English) Zbl 07319185 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105694, 16 p. (2021). MSC: 81V45 35B25 81Q05 81Q15 81R60 81S40 35R11 81S07 46F10 PDF BibTeX XML Cite \textit{X. Zhang} et al., Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105694, 16 p. (2021; Zbl 07319185) Full Text: DOI
Condon, Marissa; Kropielnicka, Karolina; Lademann, Karolina; Perczyński, Rafał Asymptotic numerical solver for the linear Klein-Gordon equation with space- and time-dependent mass. (English) Zbl 07317510 Appl. Math. Lett. 115, Article ID 106935, 8 p. (2021). MSC: 65 81 PDF BibTeX XML Cite \textit{M. Condon} et al., Appl. Math. Lett. 115, Article ID 106935, 8 p. (2021; Zbl 07317510) Full Text: DOI
Borisov, D. I.; Golovina, A. M. On finitely many resonances emerging under distant perturbations in multi-dimensional cylinders. (English) Zbl 07316427 J. Math. Anal. Appl. 496, No. 2, Article ID 124809, 29 p. (2021). MSC: 81Q05 35B34 35B40 35J10 35B20 35P05 47A75 PDF BibTeX XML Cite \textit{D. I. Borisov} and \textit{A. M. Golovina}, J. Math. Anal. Appl. 496, No. 2, Article ID 124809, 29 p. (2021; Zbl 07316427) Full Text: DOI
Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 07311184 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 07311184) Full Text: DOI
Bez, Neal; Lee, Sanghyuk; Nakamura, Shohei Strichartz estimates for orthonormal families of initial data and weighted oscillatory integral estimates. (English) Zbl 07309662 Forum Math. Sigma 9, Paper No. e1, 52 p. (2021). MSC: 35B45 42B20 35P10 35B65 42B37 PDF BibTeX XML Cite \textit{N. Bez} et al., Forum Math. Sigma 9, Paper No. e1, 52 p. (2021; Zbl 07309662) Full Text: DOI
Chen, Li; Lee, Jinyeop; Liew, Matthew Combined mean-field and semiclassical limits of large fermionic systems. (English) Zbl 07308635 J. Stat. Phys. 182, No. 2, Paper No. 24, 42 p. (2021). MSC: 81V74 81Q20 81Q05 37K10 35Q40 81P16 35Q83 81R30 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Stat. Phys. 182, No. 2, Paper No. 24, 42 p. (2021; Zbl 07308635) Full Text: DOI
D’Abbicco, Marcello; Palmieri, Alessandro A note on \(L^p - L^q\) estimates for semilinear critical dissipative Klein-Gordon equations. (English) Zbl 07307357 J. Dyn. Differ. Equations 33, No. 1, 63-74 (2021). MSC: 35L15 35L71 PDF BibTeX XML Cite \textit{M. D'Abbicco} and \textit{A. Palmieri}, J. Dyn. Differ. Equations 33, No. 1, 63--74 (2021; Zbl 07307357) Full Text: DOI
Krämer, Patrick; Schratz, Katharina; Zhao, Xiaofei Splitting methods for nonlinear Dirac equations with Thirring type interaction in the nonrelativistic limit regime. (English) Zbl 07305177 J. Comput. Appl. Math. 387, Article ID 112494, 16 p. (2021). MSC: 78A35 78M20 78M22 65M06 65N35 65M12 65M15 81Q05 35Q41 PDF BibTeX XML Cite \textit{P. Krämer} et al., J. Comput. Appl. Math. 387, Article ID 112494, 16 p. (2021; Zbl 07305177) Full Text: DOI
Aharonov, Yakir; Behrndt, Jussi; Colombo, Fabrizio; Schlosser, Peter Green’s function for the Schrödinger equation with a generalized point interaction and stability of superoscillations. (English) Zbl 07303697 J. Differ. Equations 277, 153-190 (2021). MSC: 81Q05 35Q41 35J10 35J08 35A08 35L20 32A10 81S30 35B05 PDF BibTeX XML Cite \textit{Y. Aharonov} et al., J. Differ. Equations 277, 153--190 (2021; Zbl 07303697) Full Text: DOI
Magnus, Alphonse P.; Ndayiragije, François; Ronveaux, André About families of orthogonal polynomials satisfying Heun’s differential equation. (English) Zbl 07303674 J. Approx. Theory 263, Article ID 105522, 30 p. (2021). MSC: 33C 34M35 34M55 41A21 42C05 81Q05 PDF BibTeX XML Cite \textit{A. P. Magnus} et al., J. Approx. Theory 263, Article ID 105522, 30 p. (2021; Zbl 07303674) Full Text: DOI
Nunes, Ruikson S. O. Exact boundary controllability and energy decay for a system of wave equations linearly coupled. (English) Zbl 07302523 Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021). MSC: 35L52 35L53 35B40 35B45 93B05 49J20 PDF BibTeX XML Cite \textit{R. S. O. Nunes}, Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021; Zbl 07302523) Full Text: DOI
Strohmaier, Alexander; Zelditch, Steve Semi-classical mass asymptotics on stationary spacetimes. (English) Zbl 07298856 Indag. Math., New Ser. 32, No. 1, 323-363 (2021). MSC: 83C40 83C15 83C05 83C47 53Z05 81Q05 58J50 PDF BibTeX XML Cite \textit{A. Strohmaier} and \textit{S. Zelditch}, Indag. Math., New Ser. 32, No. 1, 323--363 (2021; Zbl 07298856) Full Text: DOI
Kozlov, V. A.; Nazarov, S. A.; Orlof, A. Trapped modes in armchair graphene nanoribbons. (English. Russian original) Zbl 07297520 J. Math. Sci., New York 252, No. 5, 624-645 (2021); translation from Zap. Nauchn. Semin. POMI 483, 85-115 (2019). MSC: 82D80 82B20 81Q05 35Q41 PDF BibTeX XML Cite \textit{V. A. Kozlov} et al., J. Math. Sci., New York 252, No. 5, 624--645 (2021; Zbl 07297520); translation from Zap. Nauchn. Semin. POMI 483, 85--115 (2019) Full Text: DOI
Zhang, Xiao; Yang, Bo; Wei, Chaozhen; Luo, Maokang Quantization method and Schrödinger equation of fractional time and their weak effects on Hamiltonian: phase transitions of energy and wave functions. (English) Zbl 1452.81110 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105531, 21 p. (2021). MSC: 81Q05 26A33 81S08 81S07 35P05 82B26 PDF BibTeX XML Cite \textit{X. Zhang} et al., Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105531, 21 p. (2021; Zbl 1452.81110) Full Text: DOI
Bayındır, Cihan; Altintas, Azmi Ali; Ozaydin, Fatih Self-localized solitons of a \(q\)-deformed quantum system. (English) Zbl 1453.35160 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105474, 14 p. (2021). MSC: 35Q55 35Q41 35C08 35B35 35B44 65N35 65L06 60H40 81Q05 PDF BibTeX XML Cite \textit{C. Bayındır} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105474, 14 p. (2021; Zbl 1453.35160) Full Text: DOI
Paiva, A. Interaction of Dirac \(\delta\)-waves in the nonlinear Klein-Gordon equation. (English) Zbl 1452.46031 J. Differ. Equations 270, 1196-1217 (2021). Reviewer: Denis Sidorov (Irkutsk) MSC: 46F10 35Q51 35D99 35L67 PDF BibTeX XML Cite \textit{A. Paiva}, J. Differ. Equations 270, 1196--1217 (2021; Zbl 1452.46031) Full Text: DOI
Wang, Li; Yan, Zhenya Rogue wave formation and interactions in the defocusing nonlinear Schrödinger equation with external potentials. (English) Zbl 1451.35201 Appl. Math. Lett. 111, Article ID 106670, 9 p. (2021). MSC: 35Q55 81Q05 35C08 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Z. Yan}, Appl. Math. Lett. 111, Article ID 106670, 9 p. (2021; Zbl 1451.35201) Full Text: DOI
Signing, Lazarus Almost periodic homogenization of the Klein-Gordon type equation. (English) Zbl 07331863 Differ. Equ. Appl. 12, No. 2, 143-163 (2020). MSC: 35B27 35B40 81Q05 PDF BibTeX XML Cite \textit{L. Signing}, Differ. Equ. Appl. 12, No. 2, 143--163 (2020; Zbl 07331863) Full Text: DOI
Ruzhansky, Michael; Torebek, Berikbol T. Multidimensional van der Corput-type estimates involving Mittag-Leffler functions. (English) Zbl 07329880 Fract. Calc. Appl. Anal. 23, No. 6, 1663-1677 (2020). MSC: 42B20 26D10 33E12 PDF BibTeX XML Cite \textit{M. Ruzhansky} and \textit{B. T. Torebek}, Fract. Calc. Appl. Anal. 23, No. 6, 1663--1677 (2020; Zbl 07329880) Full Text: DOI
Zhang, Hong-Wei Wave and Klein-Gordon equations on certain locally symmetric spaces. (English) Zbl 07327632 J. Geom. Anal. 30, No. 4, 4386-4406 (2020). MSC: 35Q55 43A85 22E30 35P25 47J35 58D25 35A01 35A02 35L05 PDF BibTeX XML Cite \textit{H.-W. Zhang}, J. Geom. Anal. 30, No. 4, 4386--4406 (2020; Zbl 07327632) Full Text: DOI
Gharian, D.; Ghaini, F. M. Maalek; Heydari, M. H.; Avazzadeh, Z. A meshless solution for the variable-order time fractional nonlinear Klein-Gordon equation. (English) Zbl 07322754 Int. J. Appl. Comput. Math. 6, No. 5, Paper No. 130, 16 p. (2020). MSC: 65 34 PDF BibTeX XML Cite \textit{D. Gharian} et al., Int. J. Appl. Comput. Math. 6, No. 5, Paper No. 130, 16 p. (2020; Zbl 07322754) Full Text: DOI
Belokurov, Vladimir Viktorovich; Shavgulidze, Evgeniĭ Tengizovich Peculiar spaces for relativistic fields. (English) Zbl 07318995 Chebyshevskiĭ Sb. 21, No. 2(74), 37-42 (2020). MSC: 81T10 81T20 46F12 PDF BibTeX XML Cite \textit{V. V. Belokurov} and \textit{E. T. Shavgulidze}, Chebyshevskiĭ Sb. 21, No. 2(74), 37--42 (2020; Zbl 07318995) Full Text: DOI MNR
Saelao, Jeerawan; Yokchoo, Natsuda The solution of Klein-Gordon equation by using modified Adomian decomposition method. (English) Zbl 07318007 Math. Comput. Simul. 171, 94-102 (2020). MSC: 37K 35R PDF BibTeX XML Cite \textit{J. Saelao} and \textit{N. Yokchoo}, Math. Comput. Simul. 171, 94--102 (2020; Zbl 07318007) Full Text: DOI
Hamil, B.; Merad, M. Feshbach-Villars equation in a \(\kappa \)-Minkowski spacetime. (English) Zbl 1455.81032 Mod. Phys. Lett. A 35, No. 37, Article ID 2050307, 10 p. (2020). MSC: 81R60 81Q35 81Q05 PDF BibTeX XML Cite \textit{B. Hamil} and \textit{M. Merad}, Mod. Phys. Lett. A 35, No. 37, Article ID 2050307, 10 p. (2020; Zbl 1455.81032) Full Text: DOI
Sogut, K.; Salti, M. Wave function of the photon in a curved spacetime. (English) Zbl 1455.81026 Mod. Phys. Lett. A 35, No. 36, Article ID 2050300, 12 p. (2020). MSC: 81Q35 81Q05 83D05 81R25 PDF BibTeX XML Cite \textit{K. Sogut} and \textit{M. Salti}, Mod. Phys. Lett. A 35, No. 36, Article ID 2050300, 12 p. (2020; Zbl 1455.81026) Full Text: DOI
Pelinovsky, Dmitry E.; Penati, Tiziano; Paleari, Simone Existence and stability of Klein-Gordon breathers in the small-amplitude limit. (English) Zbl 07315229 Dörfler, Willy (ed.) et al., Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23–27, 2018. Cham: Birkhäuser (ISBN 978-3-030-47173-6/hbk; 978-3-030-47174-3/ebook). Trends in Mathematics, 251-278 (2020). MSC: 39A36 39A14 39A12 37K60 37K40 PDF BibTeX XML Cite \textit{D. E. Pelinovsky} et al., in: Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23--27, 2018. Cham: Birkhäuser. 251--278 (2020; Zbl 07315229) Full Text: DOI
Feng, Wen; Stanislavova, Milena On the spectral stability of standing waves of nonlocal \(\mathcal{PT}\) symmetric systems. (English) Zbl 07315222 Dörfler, Willy (ed.) et al., Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23–27, 2018. Cham: Birkhäuser (ISBN 978-3-030-47173-6/hbk; 978-3-030-47174-3/ebook). Trends in Mathematics, 145-162 (2020). MSC: 35Q55 35Q41 35Q53 35P99 35B35 15A18 65M70 PDF BibTeX XML Cite \textit{W. Feng} and \textit{M. Stanislavova}, in: Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23--27, 2018. Cham: Birkhäuser. 145--162 (2020; Zbl 07315222) Full Text: DOI
Muda, Yuslenita; Akbar, Fiki T.; Kusdiantara, Rudy; Gunara, Bobby E.; Susanto, Hadi Reduction of a damped, driven Klein-Gordon equation into a discrete nonlinear Schrödinger equation: justification and numerical comparison. (English) Zbl 07311878 Asymptotic Anal. 120, No. 1-2, 73-86 (2020). MSC: 35Q55 35Q51 35Q53 35C08 35A01 65L06 PDF BibTeX XML Cite \textit{Y. Muda} et al., Asymptotic Anal. 120, No. 1--2, 73--86 (2020; Zbl 07311878) Full Text: DOI
Masaki, Satoshi A survey on long range scattering for Schrödinger equation and Klein-Gordon equation with critical nonlinearity of non-polynomial type. (English) Zbl 1455.35238 RIMS Kôkyûroku Bessatsu B82, 103-135 (2020). MSC: 35Q55 35P25 81Q05 81U99 PDF BibTeX XML Cite \textit{S. Masaki}, RIMS Kôkyûroku Bessatsu B82, 103--135 (2020; Zbl 1455.35238) Full Text: Link
Vieira, H. S.; Bezerra, V. B. Resonant frequencies of a massless scalar field in the canonical acoustic black hole spacetime. (English) Zbl 07309283 Gen. Relativ. Gravitation 52, No. 8, Paper No. 72, 10 p. (2020). MSC: 83C57 83C15 81Q05 PDF BibTeX XML Cite \textit{H. S. Vieira} and \textit{V. B. Bezerra}, Gen. Relativ. Gravitation 52, No. 8, Paper No. 72, 10 p. (2020; Zbl 07309283) Full Text: DOI
Al-Shawba, Altaf A.; Abdullah, Farah A.; Azmi, Amirah; Akbar, M. Ali An extension of the double \((G'/G,1/G)\)-expansion method for conformable fractional differential equations. (English) Zbl 07304970 Complexity 2020, Article ID 7967328, 13 p. (2020). MSC: 35R11 35K58 35C05 PDF BibTeX XML Cite \textit{A. A. Al-Shawba} et al., Complexity 2020, Article ID 7967328, 13 p. (2020; Zbl 07304970) Full Text: DOI
Huang, Jianguo; Wu, Bo A new fast compact time integrator method for solving Klein-Gordon equations. (Chinese. English summary) Zbl 07295494 J. Nanjing Norm. Univ., Nat. Sci. Ed. 43, No. 2, 1-5 (2020). MSC: 65M06 65M99 PDF BibTeX XML Cite \textit{J. Huang} and \textit{B. Wu}, J. Nanjing Norm. Univ., Nat. Sci. Ed. 43, No. 2, 1--5 (2020; Zbl 07295494) Full Text: DOI
Zhang, Feiran; Zhu, Yan Nonconforming finite element method for the nonlinear Klein-Gordon equation with moving grids. (English) Zbl 07295471 J. Math., Wuhan Univ. 40, No. 4, 421-430 (2020). MSC: 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{F. Zhang} and \textit{Y. Zhu}, J. Math., Wuhan Univ. 40, No. 4, 421--430 (2020; Zbl 07295471) Full Text: DOI
Zhou, Kai; Yang, Jun; Ma, Liyuan; Shen, Shoufeng Symbolic computation of new exact solutions for some nonlinear equations in mathematical physics. (Chinese. English summary) Zbl 07295001 Appl. Math., Ser. A (Chin. Ed.) 35, No. 2, 223-234 (2020). MSC: 68W30 35Q51 35Q53 35C07 35C08 PDF BibTeX XML Cite \textit{K. Zhou} et al., Appl. Math., Ser. A (Chin. Ed.) 35, No. 2, 223--234 (2020; Zbl 07295001) Full Text: DOI
Kechriniotis, Aristides I.; Tsonos, Christos A.; Delibasis, Konstantinos K.; Tsigaridas, Georgios N. On the connection between the solutions to the Dirac and Weyl equations and the corresponding electromagnetic four-potentials. (English) Zbl 1451.81230 Commun. Theor. Phys. 72, No. 4, Article ID 045201, 12 p. (2020). MSC: 81Q05 34L40 81V10 PDF BibTeX XML Cite \textit{A. I. Kechriniotis} et al., Commun. Theor. Phys. 72, No. 4, Article ID 045201, 12 p. (2020; Zbl 1451.81230) Full Text: DOI
Cheng, Bin; Chen, Ya-Ming; Xu, Chuan-Fu; Li, Da-Li; Deng, Xiao-Gang Nonlinear Schrödinger equation with a Dirac delta potential: finite difference method. (English) Zbl 1451.35181 Commun. Theor. Phys. 72, No. 2, Article ID 025001, 6 p. (2020). MSC: 35Q55 81Q05 PDF BibTeX XML Cite \textit{B. Cheng} et al., Commun. Theor. Phys. 72, No. 2, Article ID 025001, 6 p. (2020; Zbl 1451.35181) Full Text: DOI
Colombo, Fabrizio; Valente, Giovanni Evolution of superoscillations in the Dirac field. (English) Zbl 07291413 Found. Phys. 50, No. 11, 1356-1375 (2020). MSC: 30D15 32A15 35J10 81Q05 PDF BibTeX XML Cite \textit{F. Colombo} and \textit{G. Valente}, Found. Phys. 50, No. 11, 1356--1375 (2020; Zbl 07291413) Full Text: DOI
Yang, Ciann-Dong; Han, Shiang-Yi Trajectory interpretation of correspondence principle: solution of nodal issue. (English) Zbl 1454.81038 Found. Phys. 50, No. 9, 960-976 (2020). MSC: 81P20 81Q05 81Q10 35Q84 81Q20 81Q65 35R60 PDF BibTeX XML Cite \textit{C.-D. Yang} and \textit{S.-Y. Han}, Found. Phys. 50, No. 9, 960--976 (2020; Zbl 1454.81038) Full Text: DOI
Forcella, Luigi; Hari, Lysianne Large data scattering for NLKG on waveguide \(\mathbb{R}^d\times\mathbb{T}\). (English) Zbl 1455.35162 J. Hyperbolic Differ. Equ. 17, No. 2, 355-394 (2020). MSC: 35P25 35B40 35L71 35L15 PDF BibTeX XML Cite \textit{L. Forcella} and \textit{L. Hari}, J. Hyperbolic Differ. Equ. 17, No. 2, 355--394 (2020; Zbl 1455.35162) Full Text: DOI
Ikeda, Masahiro; Inui, Takahisa; Okamoto, Mamoru Scattering for the one-dimensional Klein-Gordon equation with exponential nonlinearity. (English) Zbl 1455.35164 J. Hyperbolic Differ. Equ. 17, No. 2, 295-354 (2020). MSC: 35P25 35B40 35L71 35L15 PDF BibTeX XML Cite \textit{M. Ikeda} et al., J. Hyperbolic Differ. Equ. 17, No. 2, 295--354 (2020; Zbl 1455.35164) Full Text: DOI
Klopp, F.; Fedotov, A. A. On the hierarchical behavior of solutions of the Maryland equation in the semiclassical approximation. (English. Russian original) Zbl 1454.81067 Math. Notes 108, No. 6, 906-910 (2020); translation from Mat. Zametki 108, No. 6, 941-946 (2020). MSC: 81Q05 39A12 39A06 37C55 93A13 PDF BibTeX XML Cite \textit{F. Klopp} and \textit{A. A. Fedotov}, Math. Notes 108, No. 6, 906--910 (2020; Zbl 1454.81067); translation from Mat. Zametki 108, No. 6, 941--946 (2020) Full Text: DOI
Plokhotnikov, K. È. Numerical method for reconstructing the average positions of quantum particles in a molecular system. (Russian. English summary) Zbl 1454.81072 Mat. Model. 32, No. 9, 20-34 (2020). MSC: 81Q05 34L40 81V55 81V45 81U05 65C05 PDF BibTeX XML Cite \textit{K. È. Plokhotnikov}, Mat. Model. 32, No. 9, 20--34 (2020; Zbl 1454.81072) Full Text: DOI MNR
Finster, Felix; Oppio, Marco Local algebras for causal fermion systems in Minkowski space. (English) Zbl 07287317 J. Math. Phys. 61, No. 11, 112303, 42 p. (2020). Reviewer: Yoh Tanimoto (Roma) MSC: 81R20 81S05 47N50 81V74 81Q05 81T05 PDF BibTeX XML Cite \textit{F. Finster} and \textit{M. Oppio}, J. Math. Phys. 61, No. 11, 112303, 42 p. (2020; Zbl 07287317) Full Text: DOI
Jian, Wenwen Reducibility of the quantum harmonic oscillator in \(d\)-dimensions with finitely differentiable perturbations. (English) Zbl 1454.81066 J. Math. Phys. 61, No. 8, 082701, 34 p. (2020). MSC: 81Q05 35J10 35B20 PDF BibTeX XML Cite \textit{W. Jian}, J. Math. Phys. 61, No. 8, 082701, 34 p. (2020; Zbl 1454.81066) Full Text: DOI
Guo, Zihua; Shen, Jia Scattering below the ground state for the 2D non-linear Schrödinger and Klein-Gordon equations revisited. (English) Zbl 1454.35341 J. Math. Phys. 61, No. 8, 081507, 20 p. (2020). MSC: 35Q55 35Q41 35P25 35B45 81U05 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{J. Shen}, J. Math. Phys. 61, No. 8, 081507, 20 p. (2020; Zbl 1454.35341) Full Text: DOI
Sun, Juntao; Wu, Tsung-fang On Schrödinger-Poisson systems under the effect of steep potential well \((2 < p < 4)\). (English) Zbl 1454.81076 J. Math. Phys. 61, No. 7, 071506, 13 p. (2020). MSC: 81Q05 35J10 35J48 35P05 35B09 PDF BibTeX XML Cite \textit{J. Sun} and \textit{T.-f. Wu}, J. Math. Phys. 61, No. 7, 071506, 13 p. (2020; Zbl 1454.81076) Full Text: DOI
Hollands, Lotte; Neitzke, Andrew Exact WKB and abelianization for the \(T_3\) equation. (English) Zbl 1455.81025 Commun. Math. Phys. 380, No. 1, 131-186 (2020). Reviewer: Alex B. Gaina (Chisinau) MSC: 81Q20 81Q10 14D21 14D05 81Q05 34B30 PDF BibTeX XML Cite \textit{L. Hollands} and \textit{A. Neitzke}, Commun. Math. Phys. 380, No. 1, 131--186 (2020; Zbl 1455.81025) Full Text: DOI
Müller, Peter; Schulte, Ruth Stability of the enhanced area law of the entanglement entropy. (English) Zbl 1454.81070 Ann. Henri Poincaré 21, No. 11, 3639-3658 (2020). MSC: 81Q05 35J10 81P40 81V74 81P42 82D05 81P17 PDF BibTeX XML Cite \textit{P. Müller} and \textit{R. Schulte}, Ann. Henri Poincaré 21, No. 11, 3639--3658 (2020; Zbl 1454.81070) Full Text: DOI
Sun, Jie; Lu, Songfeng A refined speed limit for the imaginary-time Schrödinger equation. (English) Zbl 1453.81010 Open Syst. Inf. Dyn. 27, No. 2, Article ID 2050010, 10 p. (2020). MSC: 81P68 68P10 81Q05 81S07 PDF BibTeX XML Cite \textit{J. Sun} and \textit{S. Lu}, Open Syst. Inf. Dyn. 27, No. 2, Article ID 2050010, 10 p. (2020; Zbl 1453.81010) Full Text: DOI
Gorbatenko, M. V.; Neznamov, V. P. Quantum mechanics of stationary states of particles in a space-time of classical black holes. (English. Russian original) Zbl 1453.81032 Theor. Math. Phys. 205, No. 2, 1492-1526 (2020); translation from Teor. Mat. Fiz. 205, No. 2, 284-323 (2020). MSC: 81Q35 81Q05 81R20 83C75 81V17 81V80 81V10 81V25 83C15 83C57 83E50 PDF BibTeX XML Cite \textit{M. V. Gorbatenko} and \textit{V. P. Neznamov}, Theor. Math. Phys. 205, No. 2, 1492--1526 (2020; Zbl 1453.81032); translation from Teor. Mat. Fiz. 205, No. 2, 284--323 (2020) Full Text: DOI
Matveev, V. B.; Smirnov, A. O. Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: general analysis and simplest examples. (English. Russian original) Zbl 1453.81017 Theor. Math. Phys. 204, No. 3, 1154-1165 (2020); translation from Teor. Mat. Fiz. 204, No. 3, 383-395 (2020). MSC: 81Q05 35Q55 81R05 35Q53 37K10 PDF BibTeX XML Cite \textit{V. B. Matveev} and \textit{A. O. Smirnov}, Theor. Math. Phys. 204, No. 3, 1154--1165 (2020; Zbl 1453.81017); translation from Teor. Mat. Fiz. 204, No. 3, 383--395 (2020) Full Text: DOI
Shafarevich, A. I.; Shchegortsova, O. A. Semiclassical asymptotics of the solution to the Cauchy problem for the Schrödinger equation with a delta potential localized on a codimension 1 surface. (English. Russian original) Zbl 1455.35213 Proc. Steklov Inst. Math. 310, 304-313 (2020); translation from Tr. Mat. Inst. Steklova 310, 322-331 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q41 81Q05 81Q10 81Q20 53D12 35B40 PDF BibTeX XML Cite \textit{A. I. Shafarevich} and \textit{O. A. Shchegortsova}, Proc. Steklov Inst. Math. 310, 304--313 (2020; Zbl 1455.35213); translation from Tr. Mat. Inst. Steklova 310, 322--331 (2020) Full Text: DOI
Mohammadi, M. Stability catalyzer for a relativistic non-topological soliton solution. (English) Zbl 1448.35423 Ann. Phys. 422, Article ID 168304, 16 p. (2020). MSC: 35Q40 35C08 PDF BibTeX XML Cite \textit{M. Mohammadi}, Ann. Phys. 422, Article ID 168304, 16 p. (2020; Zbl 1448.35423) Full Text: DOI
Kanzi, Sara; Mazharimousavi, S. Habib; Sakallı, İzzet Greybody factors of black holes in dRGT massive gravity coupled with nonlinear electrodynamics. (English) Zbl 1448.83040 Ann. Phys. 422, Article ID 168301, 15 p. (2020). MSC: 83D05 83C57 80A10 83C15 PDF BibTeX XML Cite \textit{S. Kanzi} et al., Ann. Phys. 422, Article ID 168301, 15 p. (2020; Zbl 1448.83040) Full Text: DOI
Santos, Luis C. N.; Mota, Clesio E.; Barros, C. C.; Castro, L. B.; Bezerra, V. B. Quantum dynamics of scalar particles in the space-time of a cosmic string in the context of gravity’s rainbow. (English) Zbl 1448.81328 Ann. Phys. 421, Article ID 168276, 14 p. (2020). MSC: 81Q35 81Q05 83D05 PDF BibTeX XML Cite \textit{L. C. N. Santos} et al., Ann. Phys. 421, Article ID 168276, 14 p. (2020; Zbl 1448.81328) Full Text: DOI
Schulze-Halberg, Axel; Ishkhanyan, Artur M. Darboux partners of Heun-class potentials for the two-dimensional massless Dirac equation. (English) Zbl 1448.81312 Ann. Phys. 421, Article ID 168273, 24 p. (2020). MSC: 81Q05 35Q41 35A22 33C90 PDF BibTeX XML Cite \textit{A. Schulze-Halberg} and \textit{A. M. Ishkhanyan}, Ann. Phys. 421, Article ID 168273, 24 p. (2020; Zbl 1448.81312) Full Text: DOI
Fernández, Francisco M. Comment on: “Interaction of the magnetic quadrupole moment of a non-relativistic particle with an electric field in a rotating frame. Ann. Phys. 412 (2020) 168040”. (English) Zbl 1448.81305 Ann. Phys. 419, Article ID 168243, 3 p. (2020). MSC: 81Q05 35Q41 81V10 PDF BibTeX XML Cite \textit{F. M. Fernández}, Ann. Phys. 419, Article ID 168243, 3 p. (2020; Zbl 1448.81305) Full Text: DOI
Das, Amiya; Ghosh, Niladri; Nath, Debraj Stable modes of derivative nonlinear Schrödinger equation with super-Gaussian and parabolic potential. (English) Zbl 1448.35466 Phys. Lett., A 384, No. 27, Article ID 126681, 12 p. (2020). MSC: 35Q55 81Q05 PDF BibTeX XML Cite \textit{A. Das} et al., Phys. Lett., A 384, No. 27, Article ID 126681, 12 p. (2020; Zbl 1448.35466) Full Text: DOI
Sun, Guo-Hua; Chen, Chang-Yuan; Taud, Hind; Yáñez-Márquez, C.; Dong, Shi-Hai Exact solutions of the 1D Schrödinger equation with the Mathieu potential. (English) Zbl 1448.81313 Phys. Lett., A 384, No. 19, Article ID 126480, 5 p. (2020). MSC: 81Q05 PDF BibTeX XML Cite \textit{G.-H. Sun} et al., Phys. Lett., A 384, No. 19, Article ID 126480, 5 p. (2020; Zbl 1448.81313) Full Text: DOI
Guo, Boling; Liu, Fengxia Well-posedness for the massive nonlinear wave equation on asymptotically AdS spacetimes. (English) Zbl 1453.35129 Math. Methods Appl. Sci. 43, No. 15, 8930-8944 (2020). MSC: 35L71 35L15 58C30 PDF BibTeX XML Cite \textit{B. Guo} and \textit{F. Liu}, Math. Methods Appl. Sci. 43, No. 15, 8930--8944 (2020; Zbl 1453.35129) Full Text: DOI
Hojman, Sergio A.; Asenjo, Felipe A. A new approach to solve the one-dimensional Schrödinger equation using a wavefunction potential. (English) Zbl 1448.81308 Phys. Lett., A 384, No. 36, Article ID 126913, 7 p. (2020). MSC: 81Q05 PDF BibTeX XML Cite \textit{S. A. Hojman} and \textit{F. A. Asenjo}, Phys. Lett., A 384, No. 36, Article ID 126913, 7 p. (2020; Zbl 1448.81308) Full Text: DOI
Petreska, Irina; de Castro, Antonio S. M.; Sandev, Trifce; Lenzi, Ervin K. The time-dependent Schrödinger equation in non-integer dimensions for constrained quantum motion. (English) Zbl 1448.81311 Phys. Lett., A 384, No. 34, Article ID 126866, 9 p. (2020). MSC: 81Q05 81Q37 PDF BibTeX XML Cite \textit{I. Petreska} et al., Phys. Lett., A 384, No. 34, Article ID 126866, 9 p. (2020; Zbl 1448.81311) Full Text: DOI
Molina, Mario I. The two-dimensional fractional discrete nonlinear Schrödinger equation. (English) Zbl 1448.34146 Phys. Lett., A 384, No. 33, Article ID 126835, 6 p. (2020). MSC: 34K37 35Q55 81Q05 PDF BibTeX XML Cite \textit{M. I. Molina}, Phys. Lett., A 384, No. 33, Article ID 126835, 6 p. (2020; Zbl 1448.34146) Full Text: DOI
Hanif, Y.; Saleem, U. Degenerate and non-degenerate solutions of \(\mathcal{PT}\)-symmetric nonlocal integrable discrete nonlinear Schrödinger equation. (English) Zbl 1448.35471 Phys. Lett., A 384, No. 32, Article ID 126834, 11 p. (2020). MSC: 35Q55 39A12 81Q05 PDF BibTeX XML Cite \textit{Y. Hanif} and \textit{U. Saleem}, Phys. Lett., A 384, No. 32, Article ID 126834, 11 p. (2020; Zbl 1448.35471) Full Text: DOI
Dartora, C. A. Do electrons obey the equivalence principle? (English) Zbl 1448.81016 Phys. Lett., A 384, No. 32, Article ID 126833, 5 p. (2020). MSC: 81P05 81Q05 PDF BibTeX XML Cite \textit{C. A. Dartora}, Phys. Lett., A 384, No. 32, Article ID 126833, 5 p. (2020; Zbl 1448.81016) Full Text: DOI
Ahmadov, A. I.; Demirci, M.; Aslanova, S. M.; Mustamin, M. F. Arbitrary \(\ell\)-state solutions of the Klein-Gordon equation with the Manning-Rosen plus a class of Yukawa potentials. (English) Zbl 1448.81300 Phys. Lett., A 384, No. 12, Article ID 126372, 13 p. (2020). MSC: 81Q05 81Q60 PDF BibTeX XML Cite \textit{A. I. Ahmadov} et al., Phys. Lett., A 384, No. 12, Article ID 126372, 13 p. (2020; Zbl 1448.81300) Full Text: DOI
Scheider, Dominic Breather solutions of the cubic Klein-Gordon equation. (English) Zbl 1452.35107 Nonlinearity 33, No. 12, 7140-7166 (2020). MSC: 35L71 35L15 35B32 35B10 35J05 PDF BibTeX XML Cite \textit{D. Scheider}, Nonlinearity 33, No. 12, 7140--7166 (2020; Zbl 1452.35107) Full Text: DOI
Veliev, O. A. Spectral analysis of the Schrödinger operator with a PT-symmetric periodic optical potential. (English) Zbl 1452.81108 J. Math. Phys. 61, No. 6, 063508, 19 p. (2020). MSC: 81Q05 35J10 35P05 PDF BibTeX XML Cite \textit{O. A. Veliev}, J. Math. Phys. 61, No. 6, 063508, 19 p. (2020; Zbl 1452.81108) Full Text: DOI
Ji, Bingquan; Zhang, Luming Error estimates of a conservative finite difference Fourier pseudospectral method for the Klein-Gordon-Schrödinger equation. (English) Zbl 1453.65222 Comput. Math. Appl. 79, No. 7, 1956-1971 (2020). MSC: 65M06 65M70 65M15 35Q55 65T50 PDF BibTeX XML Cite \textit{B. Ji} and \textit{L. Zhang}, Comput. Math. Appl. 79, No. 7, 1956--1971 (2020; Zbl 1453.65222) Full Text: DOI
Sushch, Volodymyr Chiral properties of discrete Joyce and Hestenes equations. (English) Zbl 1453.81019 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 765-778 (2020). MSC: 81Q05 81R20 81R25 39A12 15A66 15A67 PDF BibTeX XML Cite \textit{V. Sushch}, Springer Proc. Math. Stat. 333, 765--778 (2020; Zbl 1453.81019) Full Text: DOI arXiv
Chung, Won Sang; Zare, Soroush; Hassanabadi, Hassan; Maghsoodi, Elham The effect of fractional calculus on the formation of quantum-mechanical operators. (English) Zbl 1452.81096 Math. Methods Appl. Sci. 43, No. 11, 6950-6967 (2020). MSC: 81Q05 26A33 35R11 81R20 81V70 PDF BibTeX XML Cite \textit{W. S. Chung} et al., Math. Methods Appl. Sci. 43, No. 11, 6950--6967 (2020; Zbl 1452.81096) Full Text: DOI
Wang, Jialing; Wang, Yushun An SDG Galerkin structure-preserving scheme for the Klein-Gordon-Schrödinger equation. (English) Zbl 1454.65121 Math. Methods Appl. Sci. 43, No. 9, 6011-6030 (2020). MSC: 65M60 65N30 65L05 65P10 65M12 35Q55 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Y. Wang}, Math. Methods Appl. Sci. 43, No. 9, 6011--6030 (2020; Zbl 1454.65121) Full Text: DOI
Kim, Do-Hyung On a generalized wave equation and its application. (English) Zbl 07271106 Rep. Math. Phys. 86, No. 1, 129-138 (2020). MSC: 83 81 PDF BibTeX XML Cite \textit{D.-H. Kim}, Rep. Math. Phys. 86, No. 1, 129--138 (2020; Zbl 07271106) Full Text: DOI
Marini, Antonella; Maitra, Rachel; Moncrief, Vincent A Euclidean signature semi-classical program. (English) Zbl 1452.83006 Commun. Anal. Geom. 28, No. 4, 979-1056 (2020). MSC: 83C45 83C05 70S15 35A27 81Q05 81Q20 PDF BibTeX XML Cite \textit{A. Marini} et al., Commun. Anal. Geom. 28, No. 4, 979--1056 (2020; Zbl 1452.83006) Full Text: DOI
Nikan, O.; Avazzadeh, Z.; Tenreiro Machado, J. A. Numerical investigation of fractional nonlinear sine-Gordon and Klein-Gordon models arising in relativistic quantum mechanics. (English) Zbl 07268623 Eng. Anal. Bound. Elem. 120, 223-237 (2020). MSC: 35R11 65M70 91G60 PDF BibTeX XML Cite \textit{O. Nikan} et al., Eng. Anal. Bound. Elem. 120, 223--237 (2020; Zbl 07268623) Full Text: DOI
Dudnikova, T. V. Virial identities and energy-momentum relation for solitary waves of nonlinear Dirac equations. (English) Zbl 1450.35228 Lobachevskii J. Math. 41, No. 6, 956-981 (2020). MSC: 35Q41 35Q40 35C08 81Q05 PDF BibTeX XML Cite \textit{T. V. Dudnikova}, Lobachevskii J. Math. 41, No. 6, 956--981 (2020; Zbl 1450.35228) Full Text: DOI
Cai, Yongyong; Wang, Yan (Semi-)nonrelativisitic limit of the nonlinear Dirac equations. (English) Zbl 07266896 J. Math. Study 53, No. 2, 125-142 (2020). MSC: 35Q41 35Q55 81Q05 PDF BibTeX XML Cite \textit{Y. Cai} and \textit{Y. Wang}, J. Math. Study 53, No. 2, 125--142 (2020; Zbl 07266896) Full Text: DOI
Chen, Wenli; Xing, Ruifang; Hu, Yan The scattering states of Schrödinger equation with Hellmann-modified Kratzer potential. (Chinese. English summary) Zbl 07266781 J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 2, 220-224 (2020). MSC: 81Q05 PDF BibTeX XML Cite \textit{W. Chen} et al., J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 2, 220--224 (2020; Zbl 07266781) Full Text: DOI
Singla, Rohit; Parthasarathy, Harish Quantum robots perturbed by Levy processes: stochastic analysis and simulations. (English) Zbl 1450.81050 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105142, 15 p. (2020). MSC: 81S25 81S20 70B15 81Q05 81Q15 35Q41 60H40 92C40 60G65 PDF BibTeX XML Cite \textit{R. Singla} and \textit{H. Parthasarathy}, Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105142, 15 p. (2020; Zbl 1450.81050) Full Text: DOI
Martínez, Romeo; Macías-Díaz, J. E.; Hendy, A. S. Corrigendum to “A numerically efficient and conservative model for a Riesz space-fractional Klein-Gordon-Zakharov system”. (English) Zbl 07265126 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105109, 4 p. (2020). MSC: 65Mxx 65Qxx PDF BibTeX XML Cite \textit{R. Martínez} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105109, 4 p. (2020; Zbl 07265126) Full Text: DOI
Romanov, V. G. Phaseless inverse problems for Schrödinger, Helmholtz, and Maxwell equations. (English. Russian original) Zbl 1450.81059 Comput. Math. Math. Phys. 60, No. 6, 1045-1062 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 6, 1074-1092 (2020). MSC: 81U40 81Q05 35J05 35Q61 35R30 81-02 PDF BibTeX XML Cite \textit{V. G. Romanov}, Comput. Math. Math. Phys. 60, No. 6, 1045--1062 (2020; Zbl 1450.81059); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 6, 1074--1092 (2020) Full Text: DOI
Alonso-Izquierdo, A. Non-topological kink scattering in a two-component scalar field theory model. (English) Zbl 1454.81130 Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105251, 16 p. (2020). MSC: 81T10 35Q55 81R20 81U05 81V25 81U35 PDF BibTeX XML Cite \textit{A. Alonso-Izquierdo}, Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105251, 16 p. (2020; Zbl 1454.81130) Full Text: DOI
Okorie, U. S.; Ikot, A. N.; Ibezim-Ezeani, M. U.; Abdullah, Hewa Y. Diatomic molecules energy spectra for the generalized Mobius square potential model. (English) Zbl 1443.81063 Int. J. Mod. Phys. B 34, No. 21, Article ID 2050209, 16 p. (2020). MSC: 81V55 81Q05 PDF BibTeX XML Cite \textit{U. S. Okorie} et al., Int. J. Mod. Phys. B 34, No. 21, Article ID 2050209, 16 p. (2020; Zbl 1443.81063) Full Text: DOI
Ahmed, Faizuddin Quantum influence of magnetic flux on spin-0 scalar charged particles in the presence of external field in a spinning cosmic string space-time. (English) Zbl 1443.81038 Mod. Phys. Lett. A 35, No. 27, Article ID 2050220, 12 p. (2020). MSC: 81Q35 81Q05 PDF BibTeX XML Cite \textit{F. Ahmed}, Mod. Phys. Lett. A 35, No. 27, Article ID 2050220, 12 p. (2020; Zbl 1443.81038) Full Text: DOI
Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L. Covariant reduction of classical Hamiltonian field theories: from d’Alembert to Klein-Gordon and Schrödinger. (English) Zbl 1443.70060 Mod. Phys. Lett. A 35, No. 23, Article ID 2050214, 14 p. (2020). MSC: 70S05 70G45 53D05 53Z05 83E15 70H40 PDF BibTeX XML Cite \textit{F. M. Ciaglia} et al., Mod. Phys. Lett. A 35, No. 23, Article ID 2050214, 14 p. (2020; Zbl 1443.70060) Full Text: DOI
Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G.; Schiavone, L. Covariant variational evolution and Jacobi brackets: fields. (English) Zbl 1443.70059 Mod. Phys. Lett. A 35, No. 23, Article ID 2050206, 16 p. (2020). MSC: 70S05 70G45 53Z05 53D17 53D10 70H40 PDF BibTeX XML Cite \textit{F. M. Ciaglia} et al., Mod. Phys. Lett. A 35, No. 23, Article ID 2050206, 16 p. (2020; Zbl 1443.70059) Full Text: DOI
Popivanov, Petar; Slavova, Angela Explicit solutions of the hyperbolic Monge-Ampere type equation, of a nonlinear evolution system and their qualitative properties. (English) Zbl 07258556 C. R. Acad. Bulg. Sci. 73, No. 6, 767-775 (2020). Reviewer: Ivan Landjev (Sofia) MSC: 35L70 35Q55 35A30 35C05 37K10 81Q05 PDF BibTeX XML Cite \textit{P. Popivanov} and \textit{A. Slavova}, C. R. Acad. Bulg. Sci. 73, No. 6, 767--775 (2020; Zbl 07258556) Full Text: DOI
Li, Li; Yu, Fajun; Duan, Chaonan A generalized nonlocal Gross-Pitaevskii (NGP) equation with an arbitrary time-dependent linear potential. (English) Zbl 1451.35189 Appl. Math. Lett. 110, Article ID 106584, 8 p. (2020). MSC: 35Q55 81Q05 35C08 82C10 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Math. Lett. 110, Article ID 106584, 8 p. (2020; Zbl 1451.35189) Full Text: DOI
Ji, Bingquan; Zhang, Luming A fourth-order exponential wave integrator Fourier pseudo-spectral method for the Klein-Gordon equation. (English) Zbl 1452.65369 Appl. Math. Lett. 109, Article ID 106519, 6 p. (2020). MSC: 65N35 65M06 65M12 35Q53 PDF BibTeX XML Cite \textit{B. Ji} and \textit{L. Zhang}, Appl. Math. Lett. 109, Article ID 106519, 6 p. (2020; Zbl 1452.65369) Full Text: DOI
Albuquerque, Francisco; Chen, Shang-Jie; Li, Lin Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in \(\mathbb{R}^{2}\). (English) Zbl 07254922 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 12, 18 p. (2020). MSC: 35J60 35A23 35J50 PDF BibTeX XML Cite \textit{F. Albuquerque} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 12, 18 p. (2020; Zbl 07254922) Full Text: DOI
Wang, Zenggui; Simos, T. E. A finite difference method with zero phase-lag and its derivatives for quantum chemistry problems. (English) Zbl 1448.81315 J. Math. Chem. 58, No. 8, 1680-1710 (2020). MSC: 81Q05 81V55 35G10 65M06 81-08 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{T. E. Simos}, J. Math. Chem. 58, No. 8, 1680--1710 (2020; Zbl 1448.81315) Full Text: DOI
Lin, Bin An efficient spline scheme of the coupled nonlinear Schrödinger equations. (English) Zbl 1448.81310 J. Math. Chem. 58, No. 8, 1663-1679 (2020). MSC: 81Q05 35Q55 81R05 35G50 37K06 39A12 65D07 PDF BibTeX XML Cite \textit{B. Lin}, J. Math. Chem. 58, No. 8, 1663--1679 (2020; Zbl 1448.81310) Full Text: DOI
Medvedeva, Marina A.; Simos, T. E. Phase fitted algorithm for problems in quantum chemistry. (English) Zbl 1448.81484 J. Math. Chem. 58, No. 8, 1499-1530 (2020). MSC: 81V55 81Q05 35G10 35B05 81-08 PDF BibTeX XML Cite \textit{M. A. Medvedeva} and \textit{T. E. Simos}, J. Math. Chem. 58, No. 8, 1499--1530 (2020; Zbl 1448.81484) Full Text: DOI
Voĭnova, Ya. A.; Ovsiyuk, E. M. On the manifestation of the cosmological curvature of space in a model of a neutral fermion with three mass parameters. (Russian. English summary) Zbl 1442.81064 Probl. Fiz. Mat. Tekh. 2020, No. 1(42), 18-28 (2020). MSC: 81V25 81Q05 PDF BibTeX XML Cite \textit{Ya. A. Voĭnova} and \textit{E. M. Ovsiyuk}, Probl. Fiz. Mat. Tekh. 2020, No. 1(42), 18--28 (2020; Zbl 1442.81064) Full Text: MNR