×

A fractional Bihari inequality and some applications to fractional differential equations and stochastic equations. (English) Zbl 1481.26007

Summary: The purpose of this paper is to present a new version of the Bihari inequality with singular kernel and give a simple proof of the fractional Gronwall lemma. Our new ideas rest on the use of Young’s and Hölder’s inequalities to simplify the complex inequalities. Based on this new type of Bihari inequality we can relax many results of fractional differential equations and inclusions and stochastic differential equations. Also, the obtained inequalities can be used to analyze a specific class of fractional differential equations, both linear and nonlinear. Using the Caputo fractional derivative, the study of an initial valued problem for a fractional differential equation provides some topological proprieties for the solution set, and shows it is the intersection of a decreasing sequence of compact nonempty contractible spaces. We extend the classical Kneser’s theorem on the solution structure of the ordinary differential equation and relax some results about the fractional differential equation. Also, we establish existence results for Caputo fractional stochastic differential equations. Finally, we study the existence of solution for fractional differential inclusion in Banach lattice.

MSC:

26A33 Fractional derivatives and integrals
26D20 Other analytical inequalities
34A08 Fractional ordinary differential equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbas, S.; Benchohra, M.; Graef, JR; Henderson, J., Implicit Fractional Differential and Integral Equations. Existence and Stability (2018), Berlin: De Gruyter, Berlin · Zbl 1390.34002
[2] Abdeljawad, T., Alzabut, J.: The \(q\)-fractional analogue for Gronwall-type inequality. J. Funct. Spaces Appl. 2013, Article ID 543839 (2013) · Zbl 1290.39005
[3] Abdeljawad, T.; Alzabut, J.; Baleanu, D., A generalized \(q\)-fractional Gronwall inequality and its applications to nonlinear delay \(q\)-fractional difference systems, J. Inequal. Appl., 240, 1-13 (2016) · Zbl 1353.39009
[4] Agarwal, RP; Deng, S.; Zhang, W., Generalization of a retarded Gronwall-like inequality and its applications, Appl. Math. Comput., 165, 599-612 (2005) · Zbl 1078.26010
[5] Agarwal, RP; Mahmoud, RR; Saker, SH; Tunç, C., New generalizations of Németh-Mohapatra type inequalities on time scales, Acta Math. Hungar., 152, 383-403 (2017) · Zbl 1399.26040
[6] Aliprantis, CD; Border, KC, Infinite Dimensional Analysis. A Hitchhiker’s Guide (2006), Berlin: Springer, Berlin · Zbl 1156.46001
[7] Andres, J.; Górniewicz, L., Topological Fixed Point Principles for Boundary Value Problems (2003), Dordrecht: Kluwer, Dordrecht · Zbl 1029.55002
[8] Arnold, L.: Stochastic Differential Equations: Theory and Applications. New York (1974) · Zbl 0278.60039
[9] Aubin, JP; Frankowska, H., Set Valued Analysis (1990), Boston: Birkhauser, Boston · Zbl 0713.49021
[10] Boudaoui, A.; Caraballo, T.; Ouahab, A., Existence of mild solutions to stochastic delay evolution equations with a fractional Brownian motion and impulses, Stoch. Anal. Appl., 33, 2, 244-258 (2015) · Zbl 1327.35460
[11] Bellman, R., Stability Theory of Differential Equations (1953), New York: McGraw-Hill, New York · Zbl 0053.24705
[12] Benchohra, M.; Heris, A., Random impulsive partial hyperbolic fractional differential equations, Nonlinear Dyn. Syst. Theory, 17, 327-339 (2017) · Zbl 1386.35425
[13] Bihari, I., A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Actu Math. Acad. Sci. Hungar., 7, 81-94 (1956) · Zbl 0070.08201
[14] Browder, FE; Gupta, GP, Topological degree and nonlinear mappings of analytic type in Banach spaces, J. Math. Anal. Appl., 26, 390-402 (1969) · Zbl 0176.45401
[15] Chadha, A.; Pandey, DN, Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay, Nonlinear Anal., 128, 149-175 (2015) · Zbl 1328.34074
[16] Chalco-Cano, Y.; Nieto, JJ; Ouahab, A.; Román-Flores, H., Solution set for fractional differential equations with Riemann-Liouville derivative, Fract. Calc. Appl. Anal., 16, 3, 682-694 (2013) · Zbl 1312.34009
[17] Cui, J.; Yan, L., Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Phys. A, 44, 33, 335201 (2011) · Zbl 1232.34107
[18] Dannan, FM, Integral inequalities of Gronwall-Bellman-Bihari type and asymptotic behavior of certain second order nonlinear differential equations, J. Math. Anal. Appl., 108, 151-164 (1985) · Zbl 0586.26008
[19] Diethelm, K., The Analysis of Fractional Differential Equations (2004), Braunschweig: Springer, Braunschweig
[20] Ding, XL; Cao-Labora, D.; Nieto, JJ, A new generalized Gronwall inequality with a double singularity and its applications to fractional stochastic differential equations, Stoch. Anal. Appl., 37, 6, 1042-1056 (2019) · Zbl 1472.34011
[21] Djebali, S.; Górniewicz, L.; Ouahab, A., Solutions Sets for Differential Equations and Inclusions, De Gruyter Series in Nonlinear Analysis and Applications (2013), Berlin: de Gruyter, Berlin · Zbl 1258.34002
[22] Doan, TS; Huong, PT; Kloeden, PE; Vu, AM, Euler-Maruyama scheme for Caputo stochastic fractional differential equations, J. Comput. Appl. Math., 380, 112989 (2020) · Zbl 1455.60090
[23] Dragoni, R., Macki, J.W., Nistri, P., Zecca, P.: Solution Sets of Differential Equations in Abstract Spaces, Pitman Research Notes in Mathematics Series, vol. 342. Longman, Harlow (1996) · Zbl 0847.34004
[24] Ferreira, RAC, A discrete fractional Gronwall inequality, Proc. Am. Math. Soc., 5, 1605-1612 (2012) · Zbl 1243.26012
[25] Gaul, L.; Klein, P.; Kempfle, S., Damping description involving fractional operators, Mech. Syst. Signal Process., 5, 81-88 (1991)
[26] Górniewicz, L., Topological Fixed Point Theory of Multivalued Mappings (2006), Berlin: Springer, Berlin · Zbl 1107.55001
[27] Graef, JR; Henderson, J.; Ouahab, A., Topological Methods for Differential Equations and Inclusions, Monographs and Research Notes in Mathematics Series Profile (2019), Boca Raton: CRC Press, Boca Raton · Zbl 1411.34002
[28] Granas, A.; Dugundji, J., Fixed Point Theory (2003), New York: Springer, New York · Zbl 1025.47002
[29] Guendouz, C., Lazreg, J.E., Nieto, J.J., Ouahab, A.: Existence and compactness results for a system of fractional differential equations. J. Funct. Spaces, Art. ID 5735140 (2020) · Zbl 1452.34011
[30] Han, X.; Kloeden, PE, Random Ordinary Differential Equations and Their Numerical Solution (2017), New York: Springer, New York · Zbl 1392.60003
[31] Henry, D., Geometric Theory of Semilinear Parabolic Partial Differential Equations (1989), Berlin: Springer, Berlin
[32] Hoa, LH; Trong, NN; Truong, LX, Topological structure of solution set for a class of fractional neutral evolution equations on the half-line, Topol. Methods Nonlinear Anal., 48, 1, 235-255 (2016) · Zbl 1360.34163
[33] Hu, Sh., Papageorgiou, N.S.: Handbook of Multi-valued Analysis, Volume I: Theory. Kluwer, Dordrecht (1997) · Zbl 0887.47001
[34] Hu, Sh., Papageorgiou, N.S.: Handbook of Multi-valued Analysis. Volume II: Applications. Kluwer, Dordrecht (2000) · Zbl 0943.47037
[35] Itoh, S., Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67, 261-273 (1979) · Zbl 0407.60069
[36] Jarad, F.; Harikrishnan, S.; Kamal, KK, Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative, Discrete Contin. Dyn. Syst. Ser. S, 13, 723-739 (2020) · Zbl 1442.34017
[37] Kamenskii, M.; Obukhovskii, V.; Zecca, P., Condensing Multi-valued Maps and Semilinear Differential Inclusions in Banach Spaces (2001), Berlin: Walter de Gruyter & Co., Berlin · Zbl 0988.34001
[38] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies (2006), Amsterdam: Elsevier Science B. V, Amsterdam · Zbl 1092.45003
[39] Kisielewicz, M., Differential Inclusions and Optimal Control (1991), Dordrecht: Kluwer, Dordrecht · Zbl 0731.49001
[40] Lasry, J.M., Robert, R.: Analyse Non Linéaire Multivoque, Publ. In: Centre de Recherche de Mathématique de la Décision, vol. 7611. Université de Dauphine, Paris IX, CNRS (1976)
[41] Lupulescu, V.; Ntouyas, SK, Random fractional differential equations, Int. Electron. J. Pure Appl. Math., 4, 119-136 (2012) · Zbl 1399.60116
[42] Lupulescu, V., O’Regan, D., Rahman, G.: Existence results for random fractional differential equations. Opuscula Math. 34, 813-825 (2014) · Zbl 1341.60055
[43] Malinowska, AB; Torres, DFM, Towards a combined fractional mechanics and quantization, Fract. Calc. Appl. Anal., 15, 407-417 (2012) · Zbl 1339.49042
[44] Mekki, S., Niteo, J.J., Ouahab, A.: Stochastic version of Henry type Gronwall’s inequality, Infin. Dimens. Anal. Quantum Probab. Relat. Top. (to appear) · Zbl 1481.60043
[45] Metzler, F.; Schick, W.; Kilian, HG; Nonnenmacher, TF, Relaxation in filled polymers: a fractional calculus approach, J. Chem. Phys., 103, 7180-7186 (1995)
[46] Michta, M.; Motyl, J., Locally Lipschitz selections in Banach lattices, Nonlinear Anal., 71, 2335-2342 (2009) · Zbl 1163.49017
[47] Michta, M.; Motyl, J., Convex selections of multifunctions and their applications, Optimization, 55, 91-99 (2006) · Zbl 1103.47041
[48] Motyl, J., Carathéodory convex selections of set-valued functions in Banach lattices, Topol. Methods Nonlinear Anal., 43, 1, 1-10 (2014) · Zbl 1364.28012
[49] Motyl, J., Stochastic retarded inclusion with Carathéodory-upper separated multifunctions, Set-Valued Var. Anal., 24, 191-205 (2016) · Zbl 1337.28023
[50] Motyl, J., Stochastic Itô inclusion with upper separated multifunctions, J. Math. Anal. Appl., 400, 505-509 (2013) · Zbl 1267.60066
[51] Motyl, J., Existence of solutions of functional stochastic inclusion, Dyn. Syst. Appl., 21, 331-338 (2012) · Zbl 1255.49031
[52] Motyl, J., Upper separated multifunctions in deterministic and stochastic optimal control, Appl. Math. Nonlinear Sci., 2, 479-484 (2017) · Zbl 1381.49025
[53] Motyl, J., Carathéodory convex selections of multifunctions and their applications, J. Nonlinear Convex Anal., 18, 1, 535-551 (2017) · Zbl 1381.28012
[54] Nasholm, SP; Holm, S., On a fractional Zener elastic wave equation, Fract. Calc. Appl. Anal., 16, 26-50 (2013) · Zbl 1312.35185
[55] Øksendal, B., Stochastic Differential Equations: An Introduction with Applications (1995), Berlin: Springer, Berlin · Zbl 0841.60037
[56] Osgood, W.F.: Beweis der Existenz einer Lösung der Differentialgleichung \(rac{{dy}}{{dx}} = fleft( x, y ight)\) ohne Hinzunahme der Cauchy-Lipschitz’schen Bedingung (German). Monatsh. Math. Phys. 9(1), 331-345 (1898) · JFM 29.0260.03
[57] Pachpatte, B.G.: On some nonlinear generalizations of Gronwall’s inequality. Proc. Indian Acad. Sci. Sect. A 84(1), 1-9 (1976) · Zbl 0335.26006
[58] Pachpatte, BG, Inequalities for Differential and Integral Equations (1998), New York: Academic Press, New York · Zbl 1032.26008
[59] Pachpatte, B.G.: On some generalizations of Bellman’s lemma. J. Math. Anal. Appl. 5, 141-150 (1975) · Zbl 0305.26010
[60] Pardoux, E.; Rascanu, A., Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stochastic Modelling and Applied Probability (2014), Cham: Springer, Cham · Zbl 1321.60005
[61] Peressini, AL, Ordered Topological Vector Spaces (1967), New York: Harper & Row Publishers, New York · Zbl 0169.14801
[62] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[63] Qin, Y.: Analytic Inequalities and Applications in PDEs, Operator Theory. Adv. PDE .Springer/Birkhäuser, Basel/Boston (2017) · Zbl 1362.35002
[64] Qin, Y.: Integral and Discrete Inequalities and Their Applications. Springer International Publishing AG, Birkhäuser (2016) · Zbl 1359.26004
[65] Saker, SH; Tunç, C.; Mahmoud, RR, New Carlson-Bellman and Hardy-Littlewood dynamic inequalities, Math. Inequal. Appl., 21, 967-983 (2018) · Zbl 1403.26016
[66] Sakthivel, R.; Revathi, P.; Ren, Y., Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal., 81, 70-86 (2013) · Zbl 1261.34063
[67] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon (1993) · Zbl 0818.26003
[68] Schaefer, H.H.: Banach Lattices and Positive Operators. In: Die Grundlehren der mathematischen Wissenschaften in Einzeldartstellungen, Band 215. Springer, Berlin (1974) · Zbl 0296.47023
[69] Schwarz, H.U.: Banach Lattices and Operators. Teubner-Texte zur Mathematik, 71, Leipzig (1984) · Zbl 0585.47025
[70] Seghier, M.; Ouahab, A.; Henderson, J., Random solutions to a system of fractional differential equations via the Hadamard fractional derivative, Eur. Phys. J. Spec. Top., 226, 3525-3549 (2017)
[71] Sobczyk, H., Stochastic Differential Equations with Applications to Physics and Engineering (1991), London: Kluwer Academic Publishers, London · Zbl 0762.60050
[72] Son, DT; Huong, PT; Kloeden, PE; Tuan, HT, Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stoch. Anal. Appl., 36, 4, 654-664 (2018) · Zbl 1401.26009
[73] Tsokos, CP; Padgett, WJ, Random Integral Equations with Applications to Life Sciences and Engineering (1974), New York: Academic Press, New York · Zbl 0287.60065
[74] Tunç, C.; Golmankhaneh, AK, On stability of a class of second alpha-order fractal differential equations, AIMS Math., 5, 2126-2142 (2020) · Zbl 1484.34045
[75] Tunç, O.; Tunç, C., On the asymptotic stability of solutions of stochastic differential delay equations of second order, J. Taibah Univ. Sci., 13, 875-882 (2019) · Zbl 1435.34068
[76] Vu, H., Random fractional functional differential equations, Int. J. Nonlinear Anal. Appl., 7, 253-267 (2016) · Zbl 1513.34317
[77] Xu, J.; Caraballo, T., Long time behavior of fractional impulsive stochastic differential equations with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 24, 6, 2719-2743 (2019) · Zbl 1421.34055
[78] Yan, Z.; Lu, F., Existence results for a new class of fractional impulsive partial neutral stochastic integro-differential equations with infinite delay, J. Appl. Anal. Comput., 5, 3, 329-346 (2015) · Zbl 1451.34100
[79] Yang, H.; Kloeden, PE; Wu, F., Weak solution of stochastic differential equations with fractional diffusion coefficient, Stoch. Anal. Appl., 36, 4, 613-621 (2018) · Zbl 1401.60118
[80] Ye, H.; Gao, J.; Ding, Y., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328, 1075-1081 (2007) · Zbl 1120.26003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.