×

zbMATH — the first resource for mathematics

The Korselt set of a power of a prime. (English) Zbl 1428.11020
MSC:
11A51 Factorization; primality
11Y16 Number-theoretic algorithms; complexity
11Y11 Primality
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alford, W. R.; Granville, A.; Pomerance, C., There are infinitely many Carmichael numbers, Ann. Math., 139, 703-722, (1994) · Zbl 0816.11005
[2] Alrasasi, I., The korselt set of the square of a prime, Int. J. Number Theory, 10, 875-884, (2014) · Zbl 1292.11018
[3] Bouallegue, K.; Echi, O.; Pinch, R., Korselt numbers and sets, Int. J. Number Theory, 6, 257-269, (2010) · Zbl 1214.11013
[4] Carmichael, R. D., Note on a new number theory function, Bull. Amer. Math. Soc., 16, 232-238, (1910) · JFM 41.0226.04
[5] Carmichael, R. D., On composite numbers P which satisfy the Fermat congruence \(a^{P - 1} \equiv 1 \text{mod} P\), Amer. Math. Monthly, 19, 22-27, (1912) · JFM 42.0236.07
[6] Echi, O., Williams numbers, C. R. Math. Acad. Sci. Soc. Roy. Canad., 29, 41-47, (2007) · Zbl 1204.11185
[7] Echi, O.; Ghanmi, N., The korselt set of pq, Int. J. Number Theory, 8, 299-309, (2012) · Zbl 1288.11007
[8] Korselt, A., Problème chinois, L’Intermédiaire des Mathématiciens, 6, 142-143, (1899)
[9] Serre, J. P., A Course in Arithmetic, 73-76, (1973), Springer-Verlag, New York
[10] Williams, H. C., On numbers analogous to the Carmichael numbers, Canad. Math. Bull., 20, 151-163, (1977) · Zbl 0368.10011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.