Linares, Felipe; Ramos, João P. G. Maximal function estimates and local well-posedness for the generalized Zakharov-Kuznetsov equation. (English) Zbl 07309972 SIAM J. Math. Anal. 53, No. 1, 914-936 (2021). MSC: 42B25 35Q53 42B37 PDF BibTeX XML Cite \textit{F. Linares} and \textit{J. P. G. Ramos}, SIAM J. Math. Anal. 53, No. 1, 914--936 (2021; Zbl 07309972) Full Text: DOI
Hryniv, Rostyslav; Melnyk, Bohdan; Mykytyuk, Yaroslav Inverse scattering for reflectionless Schrödinger operators with integrable potentials and generalized soliton solutions for the KdV equation. (English) Zbl 07303662 Ann. Henri Poincaré 22, No. 2, 487-527 (2021). MSC: 47A40 34L25 34L40 35C08 81U40 37K15 37K40 37K60 37J35 37K10 PDF BibTeX XML Cite \textit{R. Hryniv} et al., Ann. Henri Poincaré 22, No. 2, 487--527 (2021; Zbl 07303662) Full Text: DOI
Bridges, Thomas J.; Kostianko, Anna; Zelik, Sergey Validity of the hyperbolic Whitham modulation equations in Sobolev spaces. (English) Zbl 07289121 J. Differ. Equations 274, 971-995 (2021). MSC: 35Q55 35Q53 35A01 35A02 PDF BibTeX XML Cite \textit{T. J. Bridges} et al., J. Differ. Equations 274, 971--995 (2021; Zbl 07289121) Full Text: DOI
Gao, Xin-Yi; Guo, Yong-Jiang; Shan, Wen-Rui; Yuan, Yu-Qiang; Zhang, Chen-Rong; Chen, Su-Su Magneto-optical/ferromagnetic-material computation: Bäcklund transformations, bilinear forms and \(N\) solitons for a generalized (3+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system. (English) Zbl 07258398 Appl. Math. Lett. 111, Article ID 106627, 8 p. (2021). Reviewer: Eric Stachura (Marietta) MSC: 35Q60 35Q53 78A25 78A60 78A40 78A50 76X05 76Q05 76B25 82D40 82D10 74K35 37K35 35C08 68W30 PDF BibTeX XML Cite \textit{X.-Y. Gao} et al., Appl. Math. Lett. 111, Article ID 106627, 8 p. (2021; Zbl 07258398) Full Text: DOI
Kawamoto, Masaki \(L^2\)-properties for linearized KdV equation around small solutions. (English) Zbl 07311577 SUT J. Math. 56, No. 1, 1-19 (2020). MSC: 35Q53 47A45 PDF BibTeX XML Cite \textit{M. Kawamoto}, SUT J. Math. 56, No. 1, 1--19 (2020; Zbl 07311577)
Okuyama, Kazumi; Sakai, Kazuhiro Multi-boundary correlators in JT gravity. (English) Zbl 07308870 J. High Energy Phys. 2020, No. 8, Paper No. 126, 39 p. (2020). MSC: 83C80 35Q53 83D05 81R12 81T32 PDF BibTeX XML Cite \textit{K. Okuyama} and \textit{K. Sakai}, J. High Energy Phys. 2020, No. 8, Paper No. 126, 39 p. (2020; Zbl 07308870) Full Text: DOI arXiv
Klamka, Jerzy; Avetisyan, Ara S.; Khurshudyan, Asatur Zh. Exact and approximate distributed controllability of processes described by KdV and Boussinesq equations: the Green’s function approach. (English) Zbl 07308271 Arch. Control Sci. 30, No. 1, 177-193 (2020). MSC: 93B05 93C20 35Q53 93C10 93C15 34B27 PDF BibTeX XML Cite \textit{J. Klamka} et al., Arch. Control Sci. 30, No. 1, 177--193 (2020; Zbl 07308271) Full Text: DOI
Lü, Feng Meromorphic solutions of generalized inviscid Burgers’ equations and related PDEs. (English) Zbl 07303389 C. R., Math., Acad. Sci. Paris 358, No. 11-12, 1169-1178 (2020). MSC: 35B08 35F20 32A15 32A22 35Q53 PDF BibTeX XML Cite \textit{F. Lü}, C. R., Math., Acad. Sci. Paris 358, No. 11--12, 1169--1178 (2020; Zbl 07303389) Full Text: DOI
Amodio, Pierluigi; Budd, Chris J.; Koch, Othmar; Rottschäfer, Vivi; Settanni, Giuseppina; Weinmüller, Ewa Near critical, self-similar, blow-up solutions of the generalised Korteweg-de Vries equation: asymptotics and computations. (English) Zbl 07302379 Physica D 401, Article ID 132179, 16 p. (2020). MSC: 37K40 37K10 35B44 35Q53 65L60 PDF BibTeX XML Cite \textit{P. Amodio} et al., Physica D 401, Article ID 132179, 16 p. (2020; Zbl 07302379) Full Text: DOI
Chen, Huizhan; Geng, Lumin; Li, Na; Cheng, Jipeng The gauge transformations of the constrained \(q\)-deformed modified KP hierarchy and their relations with the additional symmetries. (English) Zbl 07299656 Anal. Math. Phys. 10, No. 4, Paper No. 79, 14 p. (2020). MSC: 35Q53 37K10 37K40 PDF BibTeX XML Cite \textit{H. Chen} et al., Anal. Math. Phys. 10, No. 4, Paper No. 79, 14 p. (2020; Zbl 07299656) Full Text: DOI
Zhang, Yufeng; Ma, Wen-Xiu; Yang, Jin-Yun A study on lump solutions to a (2+1)-dimensional completely generalized Hirota-Satsuma-Ito equation. (English) Zbl 1451.35155 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2941-2948 (2020). MSC: 35Q51 35Q53 37K40 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2941--2948 (2020; Zbl 1451.35155) Full Text: DOI
Hussain, S.; Akhtar, N. The influence of Landau quantization on the propagation of solitary structures in collisional plasmas. (English) Zbl 1451.76149 Commun. Theor. Phys. 72, No. 8, Article ID 085503, 6 p. (2020). MSC: 76X05 82D10 35Q53 81V70 PDF BibTeX XML Cite \textit{S. Hussain} and \textit{N. Akhtar}, Commun. Theor. Phys. 72, No. 8, Article ID 085503, 6 p. (2020; Zbl 1451.76149) Full Text: DOI
Lou, S. Y. Multi-place physics and multi-place nonlocal systems. (English) Zbl 1451.81011 Commun. Theor. Phys. 72, No. 5, Article ID 057001, 13 p. (2020). MSC: 81P05 35Q55 35C08 81P20 70H06 35Q53 PDF BibTeX XML Cite \textit{S. Y. Lou}, Commun. Theor. Phys. 72, No. 5, Article ID 057001, 13 p. (2020; Zbl 1451.81011) Full Text: DOI
Bekir, Ahmet; Shehata, Maha S. M.; Zahran, Emad H. M. Comparison between the exact solutions of three distinct shallow water equations using the Painlevé approach and its numerical solutions. (English) Zbl 07291913 Nelineĭn. Din. 16, No. 3, 463-477 (2020). MSC: 35C07 35C08 35G25 35Q53 35R11 83C15 PDF BibTeX XML Cite \textit{A. Bekir} et al., Nelineĭn. Din. 16, No. 3, 463--477 (2020; Zbl 07291913) Full Text: DOI MNR
Caudrelier, Vincent; Stoppato, Matteo Hamiltonian multiform description of an integrable hierarchy. (English) Zbl 07290191 J. Math. Phys. 61, No. 12, 123506, 25 p. (2020). MSC: 37K06 37K10 37K58 PDF BibTeX XML Cite \textit{V. Caudrelier} and \textit{M. Stoppato}, J. Math. Phys. 61, No. 12, 123506, 25 p. (2020; Zbl 07290191) Full Text: DOI
Koutsokostas, Georgios N.; Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.; Prinari, Barbara; Biondini, Gino Multiscale expansions avector solitons of a two-dimensional nonlocal nonlinear Schrödinger system. (English) Zbl 07288990 Stud. Appl. Math. 145, No. 4, 739-764 (2020). MSC: 78A60 35Q55 78M34 35Q53 35C08 37K10 PDF BibTeX XML Cite \textit{G. N. Koutsokostas} et al., Stud. Appl. Math. 145, No. 4, 739--764 (2020; Zbl 07288990) Full Text: DOI
Li, Yeping; Zhu, Peicheng Zero-viscosity-capillarity limit toward rarefaction wave with vacuum for the Navier-Stokes-Korteweg equations of compressible fluids. (English) Zbl 07287302 J. Math. Phys. 61, No. 11, 111501, 20 p. (2020). MSC: 76N10 76N06 76L05 35Q30 35Q53 35L67 PDF BibTeX XML Cite \textit{Y. Li} and \textit{P. Zhu}, J. Math. Phys. 61, No. 11, 111501, 20 p. (2020; Zbl 07287302) Full Text: DOI
Oblak, Blagoje; Kozyreff, Gregory Berry phases in the reconstructed KdV equation. (English) Zbl 1451.35171 Chaos 30, No. 11, 113114, 24 p. (2020). MSC: 35Q53 81Q70 PDF BibTeX XML Cite \textit{B. Oblak} and \textit{G. Kozyreff}, Chaos 30, No. 11, 113114, 24 p. (2020; Zbl 1451.35171) Full Text: DOI
Saravanan, M.; Herman, Russell L. Perturbed soliton solutions for an integral modified KdV equation. (English) Zbl 07281811 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105437, 21 p. (2020). MSC: 35Q53 35Q60 35P10 35C08 35B20 35R09 65R15 78A40 74J35 PDF BibTeX XML Cite \textit{M. Saravanan} and \textit{R. L. Herman}, Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105437, 21 p. (2020; Zbl 07281811) Full Text: DOI
Li, Xinyue; Zhao, Qiulan; Yang, Qianqian Integrable asymmetric AKNS model with multi-component. (English) Zbl 1448.35448 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105434, 21 p. (2020). MSC: 35Q53 37K06 PDF BibTeX XML Cite \textit{X. Li} et al., Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105434, 21 p. (2020; Zbl 1448.35448) Full Text: DOI
Wu, Derchyi The direct scattering problem for the perturbed \(\mathrm{Gr}(1,2)_{\geq 0}\) Kadomtsev-Petviashvili II solitons. (English) Zbl 1452.35176 Nonlinearity 33, No. 12, 6729-6759 (2020). MSC: 35Q53 35P25 37K15 35C08 PDF BibTeX XML Cite \textit{D. Wu}, Nonlinearity 33, No. 12, 6729--6759 (2020; Zbl 1452.35176) Full Text: DOI
Manafian, Jalil; Farshbaf Zinati, Reza Application of \(\tan (\Phi (\xi )/2)\)-expansion method to solve some nonlinear fractional physical model. (English) Zbl 07277542 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 1, 67-86 (2020). MSC: 35Q53 35Q35 35Q91 35Q51 35Q92 92D25 35C09 35R11 34A34 PDF BibTeX XML Cite \textit{J. Manafian} and \textit{R. Farshbaf Zinati}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 1, 67--86 (2020; Zbl 07277542) Full Text: DOI
Yildirim, Ozgur; Uzun, Meltem Weak solvability of the unconditionally stable difference scheme for the coupled sine-Gordon system. (English) Zbl 1451.65114 Nonlinear Anal., Model. Control 25, No. 6, 997-1014 (2020). MSC: 65M06 35Q53 47H10 PDF BibTeX XML Cite \textit{O. Yildirim} and \textit{M. Uzun}, Nonlinear Anal., Model. Control 25, No. 6, 997--1014 (2020; Zbl 1451.65114) Full Text: DOI
Its, A.; Sukhanov, V. Large time asymptotics for the cylindrical Korteweg-de Vries equation. I. (English) Zbl 1451.35163 Nonlinearity 33, No. 10, 5215-5245 (2020). MSC: 35Q53 35B40 37K15 35K35 35P25 35Q15 PDF BibTeX XML Cite \textit{A. Its} and \textit{V. Sukhanov}, Nonlinearity 33, No. 10, 5215--5245 (2020; Zbl 1451.35163) Full Text: DOI
Kadhim, H. K.; Hussain, M. A. Abdul The analysis of bifurcation solutions of the Camassa-Holm equation by angular singularities. (English) Zbl 07268339 Probl. Anal. Issues Anal. 9(27), No. 1, 66-82 (2020). Reviewer: Yanqiong Lu (Lanzhou) MSC: 34B09 34C23 35C07 35Q53 PDF BibTeX XML Cite \textit{H. K. Kadhim} and \textit{M. A. A. Hussain}, Probl. Anal. Issues Anal. 9(27), No. 1, 66--82 (2020; Zbl 07268339) Full Text: DOI MNR
Zhao, Hongxia; Zhaqilao A two-component \(b\) family equation and its peakon solutions. (Chinese. English summary) Zbl 07266841 J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 2, 118-122 (2020). MSC: 35C08 35Q53 PDF BibTeX XML Cite \textit{H. Zhao} and \textit{Zhaqilao}, J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 2, 118--122 (2020; Zbl 07266841) Full Text: DOI
Posukhovskyi, Iurii; Stefanov, Atanas On the ground states of the Ostrovskyi equation and their stability. (English) Zbl 1451.78040 Stud. Appl. Math. 144, No. 4, 548-575 (2020). MSC: 78A60 76B15 76U05 35C07 35B35 35Q60 35Q35 35Q53 PDF BibTeX XML Cite \textit{I. Posukhovskyi} and \textit{A. Stefanov}, Stud. Appl. Math. 144, No. 4, 548--575 (2020; Zbl 1451.78040) Full Text: DOI
Wang, Jingqun; Tian, Lixin; Guo, Boling; Zhang, Yingnan Nonlinear stability of breather solutions to the coupled modified Korteweg-de Vries equations. (English) Zbl 1450.35237 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105367, 13 p. (2020). MSC: 35Q53 35C08 37K40 37K10 35B35 35P99 PDF BibTeX XML Cite \textit{J. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105367, 13 p. (2020; Zbl 1450.35237) Full Text: DOI
Chen, Si-Jia; Ma, Wen-Xiu; Lü, Xing Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. (English) Zbl 07265142 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105135, 12 p. (2020). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35Q53 37K35 35C08 37K40 PDF BibTeX XML Cite \textit{S.-J. Chen} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105135, 12 p. (2020; Zbl 07265142) Full Text: DOI
Teschl, G. Book review of: B. Guo et al., Solitons. (English) Zbl 1444.00031 Monatsh. Math. 193, No. 4, 927-928 (2020). MSC: 00A17 35-02 35Q51 37K40 35C08 35Q53 35Q55 PDF BibTeX XML Cite \textit{G. Teschl}, Monatsh. Math. 193, No. 4, 927--928 (2020; Zbl 1444.00031) Full Text: DOI
Luo, Zhaonan; Qiao, Zhijun; Yin, Zhaoyang On the Cauchy problem for a modified Camassa-Holm equation. (English) Zbl 1451.35169 Monatsh. Math. 193, No. 4, 857-877 (2020). MSC: 35Q53 35A01 35A02 35B44 42A38 42B25 35R25 PDF BibTeX XML Cite \textit{Z. Luo} et al., Monatsh. Math. 193, No. 4, 857--877 (2020; Zbl 1451.35169) Full Text: DOI
Li, Hong; Sun, Hongquan; Zhu, Wenjing Solitary waves and periodic waves in a perturbed KdV equation. (English) Zbl 07259350 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 83, 18 p. (2020). MSC: 34C05 34C08 34C23 34C37 34E15 35C07 35Q53 PDF BibTeX XML Cite \textit{H. Li} et al., Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 83, 18 p. (2020; Zbl 07259350) Full Text: DOI
Fan, Fang-Cheng; Xu, Zhi-Guo; Shi, Shao-Yun \(N\)-fold Darboux transformations and exact solutions of the combined Toda lattice and relativistic Toda lattice equation. (English) Zbl 1448.35431 Anal. Math. Phys. 10, No. 3, Paper No. 31, 21 p. (2020). MSC: 35Q51 35Q53 37K40 37K35 37K10 PDF BibTeX XML Cite \textit{F.-C. Fan} et al., Anal. Math. Phys. 10, No. 3, Paper No. 31, 21 p. (2020; Zbl 1448.35431) Full Text: DOI
Killip, Rowan; Murphy, Jason; Visan, Monica Invariance of white noise for KdV on the line. (English) Zbl 1451.35165 Invent. Math. 222, No. 1, 203-282 (2020). MSC: 35Q53 35A01 60H40 60G57 PDF BibTeX XML Cite \textit{R. Killip} et al., Invent. Math. 222, No. 1, 203--282 (2020; Zbl 1451.35165) Full Text: DOI
Sukhanov, V. V. Trace formulas for the one-dimensional Stark operator and integrals of motion for the cylindrical Korteweg-de Vries equation. (English. Russian original) Zbl 07258502 St. Petersbg. Math. J. 31, No. 5, 903-910 (2020); translation from Algebra Anal. 31, No. 5, 206-215 (2019). MSC: 34L05 34A55 34L40 34A05 PDF BibTeX XML Cite \textit{V. V. Sukhanov}, St. Petersbg. Math. J. 31, No. 5, 903--910 (2020; Zbl 07258502); translation from Algebra Anal. 31, No. 5, 206--215 (2019) Full Text: DOI
Wazwaz, Abdul-Majid A \((2+1)\)-dimensional time-dependent Date-Jimbo-Kashiwara-Miwa equation: Painlevé integrability and multiple soliton solutions. (English) Zbl 1443.35143 Comput. Math. Appl. 79, No. 4, 1145-1149 (2020). MSC: 35Q53 35C08 37K40 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Comput. Math. Appl. 79, No. 4, 1145--1149 (2020; Zbl 1443.35143) Full Text: DOI
Yamazaki, Yohei Stability of the line soliton of the Kadomtsev-Petviashvili-I equation with the critical traveling speed. (English) Zbl 07250704 Differ. Integral Equ. 33, No. 9-10, 489-506 (2020). MSC: 35B35 37K40 35Q53 PDF BibTeX XML Cite \textit{Y. Yamazaki}, Differ. Integral Equ. 33, No. 9--10, 489--506 (2020; Zbl 07250704)
Shen, Yue; He, Ji-Huan Variational principle for a generalized KdV equation in a fractal space. (English) Zbl 1441.35009 Fractals 28, No. 4, Article ID 2050069, 4 p. (2020). MSC: 35A15 35Q53 28A80 35R11 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{J.-H. He}, Fractals 28, No. 4, Article ID 2050069, 4 p. (2020; Zbl 1441.35009) Full Text: DOI
Zayed, Elsayed M. E.; Shohib, Reham M. A.; Alngar, Mohamed E. M. New extended generalized Kudryashov method for solving three nonlinear partial differential equations. (English) Zbl 07249219 Nonlinear Anal., Model. Control 25, No. 4, 598-617 (2020). MSC: 35Q55 35Q53 76X05 76Q05 35C08 34A34 PDF BibTeX XML Cite \textit{E. M. E. Zayed} et al., Nonlinear Anal., Model. Control 25, No. 4, 598--617 (2020; Zbl 07249219) Full Text: DOI
Ma, Wen-Xiu Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime mKdV equations. (English) Zbl 1452.37069 J. Geom. Phys. 157, Article ID 103845, 8 p. (2020). Reviewer: Arsen Melikyan (Brasília) MSC: 37K15 37K40 35Q53 35Q15 PDF BibTeX XML Cite \textit{W.-X. Ma}, J. Geom. Phys. 157, Article ID 103845, 8 p. (2020; Zbl 1452.37069) Full Text: DOI
Hirayama, Hiroyuki; Kinoshita, Shinya; Okamoto, Mamoru Well-posedness for KdV-type equations with quadratic nonlinearity. (English) Zbl 1448.35446 J. Evol. Equ. 20, No. 3, 811-835 (2020). MSC: 35Q53 35A01 35A02 35A30 PDF BibTeX XML Cite \textit{H. Hirayama} et al., J. Evol. Equ. 20, No. 3, 811--835 (2020; Zbl 1448.35446) Full Text: DOI
Abdel-Gawad, H. I.; Tantawy, M.; Baleanu, D. Fractional KdV and Boussenisq-Burger’s equations, reduction to PDE and stability approaches. (English) Zbl 1446.35168 Math. Methods Appl. Sci. 43, No. 7, 4125-4135 (2020). MSC: 35Q53 35Q51 35Q35 76B25 34K20 35R11 26A33 PDF BibTeX XML Cite \textit{H. I. Abdel-Gawad} et al., Math. Methods Appl. Sci. 43, No. 7, 4125--4135 (2020; Zbl 1446.35168) Full Text: DOI
Urazboev, G. U.; Xoitmetov, U. A.; Babadjanova, A. K. Integration of the matrix modified Korteweg-de Vries equation with an integral-type source. (English. Russian original) Zbl 1441.35214 Theor. Math. Phys. 203, No. 3, 734-746 (2020); translation from Teor. Mat. Fiz. 203, No. 3, 351-364 (2020). MSC: 35Q53 35Q55 37K15 81U40 PDF BibTeX XML Cite \textit{G. U. Urazboev} et al., Theor. Math. Phys. 203, No. 3, 734--746 (2020; Zbl 1441.35214); translation from Teor. Mat. Fiz. 203, No. 3, 351--364 (2020) Full Text: DOI
Dyachenko, S. A.; Nabelek, P.; Zakharov, D. V.; Zakharov, V. E. Primitive solutions of the Korteweg-de Vries equation. (English. Russian original) Zbl 07237271 Theor. Math. Phys. 202, No. 3, 334-343 (2020); translation from Teor. Mat. Fiz. 202, No. 3, 382-392 (2020). Reviewer: Dimitar A. Kolev (Sofia) MSC: 37K10 37K20 37K40 37K15 35Q53 35C08 35Q51 PDF BibTeX XML Cite \textit{S. A. Dyachenko} et al., Theor. Math. Phys. 202, No. 3, 334--343 (2020; Zbl 07237271); translation from Teor. Mat. Fiz. 202, No. 3, 382--392 (2020) Full Text: DOI
Zhang, Cheng; Peng, Linyu; Zhang, Da-jun Discrete Crum’s theorems and lattice KdV-type equations. (English. Russian original) Zbl 1445.81020 Theor. Math. Phys. 202, No. 2, 165-182 (2020); translation from Teor. Mat. Fiz. 202, No. 2, 187-206 (2020). MSC: 81Q05 39A12 39A05 37K35 35Q53 35Q55 35P05 35P30 PDF BibTeX XML Cite \textit{C. Zhang} et al., Theor. Math. Phys. 202, No. 2, 165--182 (2020; Zbl 1445.81020); translation from Teor. Mat. Fiz. 202, No. 2, 187--206 (2020) Full Text: DOI
Saleh, Rash; Sadat, Rahma; Kassem, Magda Optimal solutions of a \((3 + 1)\)-dimensional B-Kadomtsev-Petviashvii equation. (English) Zbl 1440.35298 Math. Methods Appl. Sci. 43, No. 4, 1775-1787 (2020). MSC: 35Q53 35A30 35R03 34C14 PDF BibTeX XML Cite \textit{R. Saleh} et al., Math. Methods Appl. Sci. 43, No. 4, 1775--1787 (2020; Zbl 1440.35298) Full Text: DOI
Cheng, Wenguang; Qiu, Deqin; Xu, Tianzhou Residual symmetry, \(n\)th Bäcklund transformation, and soliton-cnoidal wave interaction solution for the combined modified KdV-negative-order modified KdV equation. (English) Zbl 1446.35161 Math. Methods Appl. Sci. 43, No. 3, 1253-1266 (2020). MSC: 35Q51 35Q53 74J30 76M60 37K35 37K40 PDF BibTeX XML Cite \textit{W. Cheng} et al., Math. Methods Appl. Sci. 43, No. 3, 1253--1266 (2020; Zbl 1446.35161) Full Text: DOI
Lukić, Milivoje; Young, Giorgio Uniqueness of solutions of the KdV-hierarchy via Dubrovin-type flows. (English) Zbl 1446.35175 J. Funct. Anal. 279, No. 7, Article ID 108705, 29 p. (2020). MSC: 35Q53 37K10 35A02 35P99 PDF BibTeX XML Cite \textit{M. Lukić} and \textit{G. Young}, J. Funct. Anal. 279, No. 7, Article ID 108705, 29 p. (2020; Zbl 1446.35175) Full Text: DOI
Darwich, Mohamad Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. (English) Zbl 1445.35123 Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3715-3724 (2020). MSC: 35G25 35A01 35A02 35Q53 35Q60 PDF BibTeX XML Cite \textit{M. Darwich}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3715--3724 (2020; Zbl 1445.35123) Full Text: DOI
Sukhanov, Vladimir V. Asymptotic behavior of solutions of a system of KdV type associated with the Schrödinger operator with an energy-dependent potential. (English) Zbl 1447.37062 Nelineĭn. Din. 16, No. 1, 173-179 (2020). MSC: 37K40 37K15 35Q53 PDF BibTeX XML Cite \textit{V. V. Sukhanov}, Nelineĭn. Din. 16, No. 1, 173--179 (2020; Zbl 1447.37062) Full Text: DOI MNR
Majda, Andrew J.; Qi, Di Statistical phase transitions and extreme events in shallow water waves with an abrupt depth change. (English) Zbl 1446.35136 J. Stat. Phys. 179, No. 5-6, 1718-1741 (2020). MSC: 35Q35 35Q53 35Q86 35R06 86A05 86A08 76B15 76B47 76F20 60G70 76F55 PDF BibTeX XML Cite \textit{A. J. Majda} and \textit{D. Qi}, J. Stat. Phys. 179, No. 5--6, 1718--1741 (2020; Zbl 1446.35136) Full Text: DOI
Feola, Roberto; Giuliani, Filippo; Procesi, Michela Reducible KAM tori for the Degasperis-Procesi equation. (English) Zbl 1446.35171 Commun. Math. Phys. 377, No. 3, 1681-1759 (2020). MSC: 35Q53 35Q35 76B15 35B20 35B40 35B34 35S05 37J40 37J11 PDF BibTeX XML Cite \textit{R. Feola} et al., Commun. Math. Phys. 377, No. 3, 1681--1759 (2020; Zbl 1446.35171) Full Text: DOI
Batwa, Sumayah; Ma, Wen-Xiu Lump solutions to a generalized Hietarinta-type equation via symbolic computation. (English) Zbl 1442.35366 Front. Math. China 15, No. 3, 435-450 (2020). MSC: 35Q51 35Q53 37K40 68W30 PDF BibTeX XML Cite \textit{S. Batwa} and \textit{W.-X. Ma}, Front. Math. China 15, No. 3, 435--450 (2020; Zbl 1442.35366) Full Text: DOI
Blas, H.; Ochoa, R.; Suarez, D. Quasi-integrable KdV models, towers of infinite number of anomalous charges and soliton collisions. (English) Zbl 1435.81091 J. High Energy Phys. 2020, No. 3, Paper No. 136, 50 p. (2020). MSC: 81R12 81T50 35Q53 PDF BibTeX XML Cite \textit{H. Blas} et al., J. High Energy Phys. 2020, No. 3, Paper No. 136, 50 p. (2020; Zbl 1435.81091) Full Text: DOI arXiv
Magnot, Jean-Pierre; Reyes, Enrique G. Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups. (English) Zbl 1447.35287 Ann. Henri Poincaré 21, No. 6, 1893-1945 (2020). Reviewer: Jipeng Cheng (Xuzhou) MSC: 35Q51 35Q53 37K10 37K25 37K30 81T13 35A01 35A02 PDF BibTeX XML Cite \textit{J.-P. Magnot} and \textit{E. G. Reyes}, Ann. Henri Poincaré 21, No. 6, 1893--1945 (2020; Zbl 1447.35287) Full Text: DOI
Okuyama, Kazumi; Sakai, Kazuhiro JT gravity, KdV equations and macroscopic loop operators. (English) Zbl 1435.83115 J. High Energy Phys. 2020, No. 1, Paper No. 156, 45 p. (2020). MSC: 83C80 35Q53 83D05 81R12 81T32 PDF BibTeX XML Cite \textit{K. Okuyama} and \textit{K. Sakai}, J. High Energy Phys. 2020, No. 1, Paper No. 156, 45 p. (2020; Zbl 1435.83115) Full Text: DOI arXiv
Zhang, Weiguo; Zhou, Yiwei; Sun, Ying-ying A lattice CKP equation expressed by the \(\tau\) function. (English) Zbl 1439.82013 Appl. Math. Lett. 103, Article ID 106194, 10 p. (2020). MSC: 82B20 35Q51 35C08 37K10 37K40 35Q53 PDF BibTeX XML Cite \textit{W. Zhang} et al., Appl. Math. Lett. 103, Article ID 106194, 10 p. (2020; Zbl 1439.82013) Full Text: DOI
Mi, Yongsheng; Mu, Chunlai On the Cauchy problem for the new integrable two-component Novikov equation. (English) Zbl 1441.35105 Ann. Mat. Pura Appl. (4) 199, No. 3, 1091-1122 (2020). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35G25 35B30 35Q53 35B44 35B65 35B40 PDF BibTeX XML Cite \textit{Y. Mi} and \textit{C. Mu}, Ann. Mat. Pura Appl. (4) 199, No. 3, 1091--1122 (2020; Zbl 1441.35105) Full Text: DOI
Benzoni-Gavage, S.; Mietka, C.; Rodrigues, L. M. Stability of periodic waves in Hamiltonian PDEs of either long wavelength or small amplitude. (English) Zbl 1450.35055 Indiana Univ. Math. J. 69, No. 2, 545-619 (2020). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35B35 35B10 35Q35 35Q51 35Q53 37K06 37K45 35C07 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage} et al., Indiana Univ. Math. J. 69, No. 2, 545--619 (2020; Zbl 1450.35055) Full Text: DOI
Maehlen, Ola I. H. Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities. (English) Zbl 1437.35147 Discrete Contin. Dyn. Syst. 40, No. 7, 4113-4130 (2020). MSC: 35C08 35A15 35Q53 76B03 76B15 PDF BibTeX XML Cite \textit{O. I. H. Maehlen}, Discrete Contin. Dyn. Syst. 40, No. 7, 4113--4130 (2020; Zbl 1437.35147) Full Text: DOI
Feng, Yiwei; Liu, Tiegang; Wang, Kun A characteristic-featured shock wave indicator for conservation laws based on training an artificial neuron. (English) Zbl 1437.65136 J. Sci. Comput. 83, No. 1, Paper No. 21, 34 p. (2020). MSC: 65M60 65L06 68Q32 68T07 35L67 35Q53 PDF BibTeX XML Cite \textit{Y. Feng} et al., J. Sci. Comput. 83, No. 1, Paper No. 21, 34 p. (2020; Zbl 1437.65136) Full Text: DOI
Charlier, Christophe; Lenells, Jonatan Airy and Painlevé asymptotics for the mKdV equation. (English) Zbl 1443.37054 J. Lond. Math. Soc., II. Ser. 101, No. 1, 194-225 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 37K40 37K15 37J65 41A60 34M55 35Q15 35Q53 PDF BibTeX XML Cite \textit{C. Charlier} and \textit{J. Lenells}, J. Lond. Math. Soc., II. Ser. 101, No. 1, 194--225 (2020; Zbl 1443.37054) Full Text: DOI
Zheng, Chunxiong; Hu, Jiashun Optimal error estimate of the extended-WKB approximation to the high frequency wave-type equation in the semi-classical regime. (English) Zbl 1436.65128 J. Sci. Comput. 83, No. 1, Paper No. 19, 21 p. (2020). MSC: 65M15 35Q55 35Q53 81Q20 PDF BibTeX XML Cite \textit{C. Zheng} and \textit{J. Hu}, J. Sci. Comput. 83, No. 1, Paper No. 19, 21 p. (2020; Zbl 1436.65128) Full Text: DOI
Zhou, Shouming Well-posedness and wave breaking for a shallow water wave model with large amplitude. (English) Zbl 1439.35414 J. Evol. Equ. 20, No. 1, 141-163 (2020). Reviewer: Jipeng Cheng (Xuzhou) MSC: 35Q35 35L05 35Q53 37K10 35A01 35A02 42B25 76B15 35B44 35B40 35D35 PDF BibTeX XML Cite \textit{S. Zhou}, J. Evol. Equ. 20, No. 1, 141--163 (2020; Zbl 1439.35414) Full Text: DOI
Biswas, Anjan; Kara, Abdul H.; Zhou, Qin; Alzahrani, Abdullah Kamis; Belic, Milivoj R. Conservation laws for highly dispersive optical solitons in birefringent fibers. (English) Zbl 1433.78019 Regul. Chaotic Dyn. 25, No. 2, 166-177 (2020). MSC: 78A60 35Q53 35A30 35C08 37K40 35L65 PDF BibTeX XML Cite \textit{A. Biswas} et al., Regul. Chaotic Dyn. 25, No. 2, 166--177 (2020; Zbl 1433.78019) Full Text: DOI
Guo, Rui; Jia, Rong-Rong Rogue wave solutions for the \((2+1)\)-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch system. (English) Zbl 1439.35427 Appl. Math. Lett. 105, Article ID 106284, 6 p. (2020). MSC: 35Q53 35Q60 78A60 37K35 37K40 PDF BibTeX XML Cite \textit{R. Guo} and \textit{R.-R. Jia}, Appl. Math. Lett. 105, Article ID 106284, 6 p. (2020; Zbl 1439.35427) Full Text: DOI
Tu, Xi; Yin, Zhaoyang Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space. (English) Zbl 1439.35433 Monatsh. Math. 191, No. 4, 801-829 (2020). MSC: 35Q53 35A01 35A02 42B25 35B44 35B65 35D35 35Q49 PDF BibTeX XML Cite \textit{X. Tu} and \textit{Z. Yin}, Monatsh. Math. 191, No. 4, 801--829 (2020; Zbl 1439.35433) Full Text: DOI
Li, Jibin; Chen, Guanrong; Song, Jie Completing the study of traveling wave solutions for three two-component shallow water wave models. (English) Zbl 1444.34004 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 3, Article ID 2050036, 22 p. (2020). MSC: 34A05 34C23 34C05 34C25 34C37 35C07 35Q53 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 3, Article ID 2050036, 22 p. (2020; Zbl 1444.34004) Full Text: DOI
Sun, Yingnan Periodic solutions of the generalized KdV equation. (English) Zbl 07182147 Proc. Am. Math. Soc. 148, No. 5, 2103-2110 (2020). MSC: 37K45 37K55 35Q53 PDF BibTeX XML Cite \textit{Y. Sun}, Proc. Am. Math. Soc. 148, No. 5, 2103--2110 (2020; Zbl 07182147) Full Text: DOI
Yaro, David; Seadawy, Aly; Lu, Dian-chen Propagation of traveling wave solutions for nonlinear evolution equation through the implementation of the extended modified direct algebraic method. (English) Zbl 1449.35148 Appl. Math., Ser. B (Engl. Ed.) 35, No. 1, 84-100 (2020). MSC: 35C07 35Q53 37K40 76B25 PDF BibTeX XML Cite \textit{D. Yaro} et al., Appl. Math., Ser. B (Engl. Ed.) 35, No. 1, 84--100 (2020; Zbl 1449.35148) Full Text: DOI
Bhattacharya, Debdeep; Farah, Luiz Gustavo; Roudenko, Svetlana Global well-posedness for low regularity data in the 2d modified Zakharov-Kuznetsov equation. (English) Zbl 1435.35332 J. Differ. Equations 268, No. 12, 7962-7997 (2020). MSC: 35Q53 35Q51 37K40 35A01 35A02 PDF BibTeX XML Cite \textit{D. Bhattacharya} et al., J. Differ. Equations 268, No. 12, 7962--7997 (2020; Zbl 1435.35332) Full Text: DOI
Liang, Jianli; Tang, Longkun; Xia, Yonghui; Zhang, Yi Bifurcations and exact solutions for a class of MKdV equations with the conformable fractional derivative via dynamical system method. (English) Zbl 1436.34034 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050004, 11 p. (2020). MSC: 34C23 34A05 34C37 34C05 35Q53 35R11 35C07 34A08 PDF BibTeX XML Cite \textit{J. Liang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050004, 11 p. (2020; Zbl 1436.34034) Full Text: DOI
Sarfraz, H.; Saleem, U. Supersymmetric integrable AB system. (English) Zbl 1432.37091 Mod. Phys. Lett. A 35, No. 6, Article ID 2050023, 7 p. (2020). MSC: 37K10 35Q53 37K40 PDF BibTeX XML Cite \textit{H. Sarfraz} and \textit{U. Saleem}, Mod. Phys. Lett. A 35, No. 6, Article ID 2050023, 7 p. (2020; Zbl 1432.37091) Full Text: DOI
Geng, Qiuping; Liao, Mian; Wang, Jun; Xiao, Lu Existence and bifurcation of nontrivial solutions for the coupled nonlinear Schrödinger-Korteweg-de Vries system. (English) Zbl 1434.35095 Z. Angew. Math. Phys. 71, No. 1, Paper No. 33, 29 p. (2020). MSC: 35Q35 35J61 35J20 35Q55 49J40 35B40 35B10 35B32 35A01 76B15 PDF BibTeX XML Cite \textit{Q. Geng} et al., Z. Angew. Math. Phys. 71, No. 1, Paper No. 33, 29 p. (2020; Zbl 1434.35095) Full Text: DOI
Tayyan, B. A.; Sakka, A. H. Lie symmetry analysis of some conformable fractional partial differential equations. (English) Zbl 1436.35324 Arab. J. Math. 9, No. 1, 201-212 (2020). MSC: 35R11 35A30 35Q53 PDF BibTeX XML Cite \textit{B. A. Tayyan} and \textit{A. H. Sakka}, Arab. J. Math. 9, No. 1, 201--212 (2020; Zbl 1436.35324) Full Text: DOI
Caudrelier, Vincent; Stoppato, Matteo A connection between the classical r-matrix formalism and covariant Hamiltonian field theory. (English) Zbl 1451.81253 J. Geom. Phys. 148, Article ID 103546, 19 p. (2020). MSC: 81Q80 35Q55 81R20 35Q53 16T25 37K30 70S05 PDF BibTeX XML Cite \textit{V. Caudrelier} and \textit{M. Stoppato}, J. Geom. Phys. 148, Article ID 103546, 19 p. (2020; Zbl 1451.81253) Full Text: DOI
van der Mee, Cornelis Complex short-pulse solutions by gauge transformation. (English) Zbl 1439.35464 J. Geom. Phys. 148, Article ID 103539, 11 p. (2020). MSC: 35Q60 35Q53 78A60 35Q40 82D40 35Q55 45L05 PDF BibTeX XML Cite \textit{C. van der Mee}, J. Geom. Phys. 148, Article ID 103539, 11 p. (2020; Zbl 1439.35464) Full Text: DOI
Fermo, Luisa; van der Mee, Cornelis; Seatzu, Sebastiano A numerical method to compute the scattering solution for the KdV equation. (English) Zbl 1434.65204 Appl. Numer. Math. 149, 3-16 (2020). MSC: 65M70 35Q53 35Q51 37K15 45D05 65R20 35P25 PDF BibTeX XML Cite \textit{L. Fermo} et al., Appl. Numer. Math. 149, 3--16 (2020; Zbl 1434.65204) Full Text: DOI
Zhang, Katherine Zhiyuan Benjamin-Ono soliton dynamics in a slowly varying potential. (English) Zbl 1433.35349 Nonlinearity 33, No. 3, 1064-1093 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 35Q51 37K40 35A30 44A15 35B20 PDF BibTeX XML Cite \textit{K. Z. Zhang}, Nonlinearity 33, No. 3, 1064--1093 (2020; Zbl 1433.35349) Full Text: DOI
Chen, Huizhan; Geng, Lumin; Cheng, Jipeng Solutions of the constrained mKP hierarchy by boson-fermion correspondence. (English) Zbl 1436.35285 J. Nonlinear Math. Phys. 27, No. 2, 308-323 (2020). MSC: 35Q53 37K10 37K40 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Nonlinear Math. Phys. 27, No. 2, 308--323 (2020; Zbl 1436.35285) Full Text: DOI
He, Baiying; Chen, Liangyun; Sun, Bing New super integrable hierarchies associated with \(\operatorname{osp}(2|2)\) and \(\operatorname{spo}(2|2)\) and their applications. (English) Zbl 1433.37068 Appl. Math. Comput. 370, Article ID 124867, 13 p. (2020). MSC: 37K40 35Q53 17B80 37K10 37K30 81R12 17B66 PDF BibTeX XML Cite \textit{B. He} et al., Appl. Math. Comput. 370, Article ID 124867, 13 p. (2020; Zbl 1433.37068) Full Text: DOI
Sarafrazi, Mohammad Amin; Bartosiewicz, Zbigniew; Kotta, Ülle Comments on “PBH tests for nonlinear systems”. (English) Zbl 1430.93085 Automatica 111, Article ID 108617, 2 p. (2020). MSC: 93B60 93C10 93B05 35Q53 93B07 93C20 PDF BibTeX XML Cite \textit{M. A. Sarafrazi} et al., Automatica 111, Article ID 108617, 2 p. (2020; Zbl 1430.93085) Full Text: DOI
Saito, Hirokazu On the maximal \(L_p-L_q\) regularity for a compressible fluid model of Korteweg type on general domains. (English) Zbl 1428.76181 J. Differ. Equations 268, No. 6, 2802-2851 (2020). MSC: 76N10 35L65 35M10 35Q53 35Q35 PDF BibTeX XML Cite \textit{H. Saito}, J. Differ. Equations 268, No. 6, 2802--2851 (2020; Zbl 1428.76181) Full Text: DOI
Zhang, Ying-Nan; He, Hong-Qian; Yu, Guo-Fu; Dong, Yi-Jun Integrable discretizations and numerical simulation for a modified coupled integrable dispersionless equation. (English) Zbl 1433.35350 Appl. Math. Comput. 364, Article ID 124666, 13 p. (2020). MSC: 35Q53 65M06 37K10 35C08 37K40 PDF BibTeX XML Cite \textit{Y.-N. Zhang} et al., Appl. Math. Comput. 364, Article ID 124666, 13 p. (2020; Zbl 1433.35350) Full Text: DOI
de Laire, André; Mennuni, Pierre Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity. (English) Zbl 1431.35170 Discrete Contin. Dyn. Syst. 40, No. 1, 635-682 (2020). MSC: 35Q55 35J20 35C07 35B35 35C08 35Q53 37K06 49J20 PDF BibTeX XML Cite \textit{A. de Laire} and \textit{P. Mennuni}, Discrete Contin. Dyn. Syst. 40, No. 1, 635--682 (2020; Zbl 1431.35170) Full Text: DOI arXiv
Hernández Heredero, Rafael; Euler, Marianna; Euler, Norbert; Reyes, Enrique G. Compacton equations and integrability: the Rosenau-Hyman and Cooper-Shepard-Sodano equations. (English) Zbl 1431.37054 Discrete Contin. Dyn. Syst. 40, No. 1, 529-548 (2020). MSC: 37K10 37K06 35Q53 PDF BibTeX XML Cite \textit{R. Hernández Heredero} et al., Discrete Contin. Dyn. Syst. 40, No. 1, 529--548 (2020; Zbl 1431.37054) Full Text: DOI
Coclite, Giuseppe Maria; di Ruvo, Lorenzo A non-local elliptic-hyperbolic system related to the short pulse equation. (English) Zbl 1433.35377 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111606, 28 p. (2020). MSC: 35Q60 35G25 35K55 78A60 35A01 35A02 35B35 35Q53 35B45 78A50 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{L. di Ruvo}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111606, 28 p. (2020; Zbl 1433.35377) Full Text: DOI
Yu, Xin; Sun, Zhi-Yuan Unconventional characteristic line for the nonautonomous KP equation. (English) Zbl 1425.35177 Appl. Math. Lett. 100, Article ID 106047, 6 p. (2020). MSC: 35Q53 37K10 76B15 37K40 PDF BibTeX XML Cite \textit{X. Yu} and \textit{Z.-Y. Sun}, Appl. Math. Lett. 100, Article ID 106047, 6 p. (2020; Zbl 1425.35177) Full Text: DOI
Liu, Chun-Ping A note on the transformation of variables of KP equation, cylindrical KP equation and spherical KP equation. (English) Zbl 1452.35172 Commun. Theor. Phys. 71, No. 2, 170-174 (2019). MSC: 35Q53 35A30 PDF BibTeX XML Cite \textit{C.-P. Liu}, Commun. Theor. Phys. 71, No. 2, 170--174 (2019; Zbl 1452.35172) Full Text: DOI
Liu, Quan-Sheng; Zhang, Zai-Yun; Zhang, Rui-Gang Dynamical analysis and exact solutions of a new \((2+1)\)-dimensional generalized Boussinesq model equation for nonlinear Rossby waves. (English) Zbl 07293126 Commun. Theor. Phys. 71, No. 9, 1054-1062 (2019). MSC: 35C07 35C08 35Q51 35Q53 PDF BibTeX XML Cite \textit{Q.-S. Liu} et al., Commun. Theor. Phys. 71, No. 9, 1054--1062 (2019; Zbl 07293126) Full Text: DOI
Mancas, Stefan C.; Adams, Ronald Dissipative periodic and chaotic patterns to the KdV-Burgers and Gardner equations. (English) Zbl 1448.35449 Chaos Solitons Fractals 126, 385-393 (2019). MSC: 35Q53 37L15 37L10 37D45 PDF BibTeX XML Cite \textit{S. C. Mancas} and \textit{R. Adams}, Chaos Solitons Fractals 126, 385--393 (2019; Zbl 1448.35449) Full Text: DOI
Kulaev, Ruslan Chermenovich; Shabat, Alekseĭ Borisovich Conservation laws for Volterra chain with initial step-like condition. (Russian. English summary) Zbl 07281229 Ufim. Mat. Zh. 11, No. 1, 61-67 (2019); translation in Ufa Math. J. 11, No. 1, 63-69 (2019). MSC: 34A12 34A55 35Q53 37K40 PDF BibTeX XML Cite \textit{R. C. Kulaev} and \textit{A. B. Shabat}, Ufim. Mat. Zh. 11, No. 1, 61--67 (2019; Zbl 07281229); translation in Ufa Math. J. 11, No. 1, 63--69 (2019) Full Text: DOI MNR
Francis, Amanda E.; Jarvis, Tyler J.; Priddis, Nathan A brief survey of FJRW theory. (English) Zbl 1452.14056 Hori, Kentaro (ed.) et al., Primitive forms and related subjects – Kavli IPMU 2014. Proceedings of the international conference, University of Tokyo, Tokyo, Japan, February 10–14, 2014. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 83, 19-53 (2019). MSC: 14N35 53D45 32S05 37K10 37K20 35Q53 14-02 PDF BibTeX XML Cite \textit{A. E. Francis} et al., Adv. Stud. Pure Math. 83, 19--53 (2019; Zbl 1452.14056) Full Text: DOI Euclid
Zhang, Luyu Infinitely many sign-changing solutions for the nonlinear Klein-Gordon-Maxwell system. (Chinese. English summary) Zbl 07266335 Acta Math. Appl. Sin. 42, No. 6, 779-792 (2019). MSC: 35Q53 35Q61 PDF BibTeX XML Cite \textit{L. Zhang}, Acta Math. Appl. Sin. 42, No. 6, 779--792 (2019; Zbl 07266335)
Kumar, Dharmendra; Kumar, Sachin Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach. (English) Zbl 1442.35380 Comput. Math. Appl. 78, No. 3, 857-877 (2019). MSC: 35Q53 35A30 35B10 35C08 76M60 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{S. Kumar}, Comput. Math. Appl. 78, No. 3, 857--877 (2019; Zbl 1442.35380) Full Text: DOI
Lu, Changna; Xie, Luoyan; Yang, Hongwei Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation. (English) Zbl 1442.35517 Comput. Math. Appl. 77, No. 12, 3154-3171 (2019). MSC: 35R11 35A30 35Q53 PDF BibTeX XML Cite \textit{C. Lu} et al., Comput. Math. Appl. 77, No. 12, 3154--3171 (2019; Zbl 1442.35517) Full Text: DOI
Kumar, Sachin; Kumar, Dharmendra Solitary wave solutions of \((3+1)\)-dimensional extended Zakharov-Kuznetsov equation by Lie symmetry approach. (English) Zbl 1442.35382 Comput. Math. Appl. 77, No. 8, 2096-2113 (2019). MSC: 35Q53 35A30 35C08 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{D. Kumar}, Comput. Math. Appl. 77, No. 8, 2096--2113 (2019; Zbl 1442.35382) Full Text: DOI
Omel’yanov, G. A.; Orozco-Casillas, G. A. Dynamics of distorted solitons in the modified Zakharov-Kuznetsov model. (English) Zbl 1440.35296 Nonlinear Phenom. Complex Syst., Minsk 22, No. 3, 242-250 (2019). MSC: 35Q53 37K40 PDF BibTeX XML Cite \textit{G. A. Omel'yanov} and \textit{G. A. Orozco-Casillas}, Nonlinear Phenom. Complex Syst., Minsk 22, No. 3, 242--250 (2019; Zbl 1440.35296)
Kang, Ting; Guo, Xu; Guo, Mingyue; Shi, Zhenhua Liouville correspondence between the short-wave model of Novikov hierarchy and the Sawada-Kotera hierarchy. (Chinese. English summary) Zbl 1449.35383 Pure Appl. Math. 35, No. 4, 437-448 (2019). MSC: 35Q53 37K06 37K10 PDF BibTeX XML Cite \textit{T. Kang} et al., Pure Appl. Math. 35, No. 4, 437--448 (2019; Zbl 1449.35383) Full Text: DOI
Wang, Zhenli; Liu, Xiqiang Bifurcations and exact traveling wave solutions for the KdV-like equation. (English) Zbl 1439.35435 Nonlinear Dyn. 95, No. 1, 465-477 (2019). MSC: 35Q53 35C07 35B32 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{X. Liu}, Nonlinear Dyn. 95, No. 1, 465--477 (2019; Zbl 1439.35435) Full Text: DOI