Valls, Claudia Algebraic traveling waves for the modified Korteweg-de Vries-Burgers equation. (English) Zbl 07307861 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 48, 16 p. (2020). MSC: 34A05 34C05 37C10 PDF BibTeX XML Cite \textit{C. Valls}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 48, 16 p. (2020; Zbl 07307861) Full Text: DOI
Cerpa, Eduardo; Montoya, Cristhian; Zhang, Bingyu Local exact controllability to the trajectories of the Korteweg-de Vries-Burgers equation on a bounded domain with mixed boundary conditions. (English) Zbl 1434.35151 J. Differ. Equations 268, No. 9, 4945-4972 (2020). MSC: 35Q53 93C20 93B05 76B15 PDF BibTeX XML Cite \textit{E. Cerpa} et al., J. Differ. Equations 268, No. 9, 4945--4972 (2020; Zbl 1434.35151) Full Text: DOI
Chentouf, B.; Smaoui, N.; Alalabi, A. Nonlinear adaptive boundary control of the modified generalized Korteweg-de Vries-Burgers equation. (English) Zbl 1435.35333 Complexity 2020, Article ID 4574257, 18 p. (2020). MSC: 35Q53 93C20 93C40 93D15 35B35 PDF BibTeX XML Cite \textit{B. Chentouf} et al., Complexity 2020, Article ID 4574257, 18 p. (2020; Zbl 1435.35333) Full Text: DOI
Kaschenko, S. A. Asymptotics of rapidly oscillating solutions of the generalized Korteweg-de Vries-Burgers equation. (English. Russian original) Zbl 1439.35428 Russ. Math. Surv. 74, No. 4, 755-757 (2019); translation from Usp. Mat. Nauk 74, No. 4, 181-182 (2019). MSC: 35Q53 35B05 35B40 PDF BibTeX XML Cite \textit{S. A. Kaschenko}, Russ. Math. Surv. 74, No. 4, 755--757 (2019; Zbl 1439.35428); translation from Usp. Mat. Nauk 74, No. 4, 181--182 (2019) Full Text: DOI
Montoya, Cristhian Inverse source problems for the Korteweg-de Vries-Burgers equation with mixed boundary conditions. (English) Zbl 1430.35271 J. Inverse Ill-Posed Probl. 27, No. 6, 777-794 (2019). MSC: 35R30 35Q53 PDF BibTeX XML Cite \textit{C. Montoya}, J. Inverse Ill-Posed Probl. 27, No. 6, 777--794 (2019; Zbl 1430.35271) Full Text: DOI
Yoshida, Natsumi Asymptotic behavior of solutions toward the rarefaction waves to the Cauchy problem for the scalar diffusive dispersive conservation laws. (English) Zbl 1425.35094 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111573, 19 p. (2019). MSC: 35K55 35Q53 35B40 35L65 PDF BibTeX XML Cite \textit{N. Yoshida}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111573, 19 p. (2019; Zbl 1425.35094) Full Text: DOI
Ahmed, H. M. Numerical solutions of Korteweg-de Vries and Korteweg-de Vries-Burger’s equations in a Bernstein polynomial basis. (English) Zbl 1448.65147 Mediterr. J. Math. 16, No. 4, Paper No. 102, 28 p. (2019). Reviewer: Hilmi Demiray (Istanbul) MSC: 65M60 65L06 65N30 42C10 35Q53 PDF BibTeX XML Cite \textit{H. M. Ahmed}, Mediterr. J. Math. 16, No. 4, Paper No. 102, 28 p. (2019; Zbl 1448.65147) Full Text: DOI
Özsarı, Türker; Arabacı, Eda Boosting the decay of solutions of the linearised Korteweg-de Vries-Burgers equation to a predetermined rate from the boundary. (English) Zbl 1421.93116 Int. J. Control 92, No. 8, 1753-1763 (2019). MSC: 93D15 35Q53 93C20 PDF BibTeX XML Cite \textit{T. Özsarı} and \textit{E. Arabacı}, Int. J. Control 92, No. 8, 1753--1763 (2019; Zbl 1421.93116) Full Text: DOI
Ahmad, Imtiaz; Riaz, Muhammad; Ayaz, Muhammad; Arif, Muhammad; Islam, Saeed; Kumam, Poom Numerical simulation of partial differential equations via local meshless method. (English) Zbl 1416.65372 Symmetry 11, No. 2, Paper No. 257, 18 p. (2019). MSC: 65M70 35Q53 PDF BibTeX XML Cite \textit{I. Ahmad} et al., Symmetry 11, No. 2, Paper No. 257, 18 p. (2019; Zbl 1416.65372) Full Text: DOI
Kang, Wen; Fridman, Emilia Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay. (English) Zbl 1411.93132 Automatica 100, 260-273 (2019). MSC: 93D05 93C20 35Q53 PDF BibTeX XML Cite \textit{W. Kang} and \textit{E. Fridman}, Automatica 100, 260--273 (2019; Zbl 1411.93132) Full Text: DOI
Samokhin, Alexey Nonlinear waves in layered media: solutions of the KdV-Burgers equation. (English) Zbl 1392.35268 J. Geom. Phys. 130, 33-39 (2018). MSC: 35Q53 37K40 35B40 35L65 PDF BibTeX XML Cite \textit{A. Samokhin}, J. Geom. Phys. 130, 33--39 (2018; Zbl 1392.35268) Full Text: DOI
Achleitner, Franz Two classes of nonlocal evolution equations related by a shared traveling wave problem. (English) Zbl 1390.35142 Gonçalves, Patrícia (ed.) et al., From particle systems to partial differential equations. PSPDE IV, Braga, Portugal, December 16–18, 2015. Cham: Springer (ISBN 978-3-319-66838-3/hbk; 978-3-319-66839-0/ebook). Springer Proceedings in Mathematics & Statistics 209, 47-72 (2017). MSC: 35K57 35Q53 35C07 PDF BibTeX XML Cite \textit{F. Achleitner}, in: From particle systems to partial differential equations. PSPDE IV, Braga, Portugal, December 16--18, 2015. Cham: Springer. 47--72 (2017; Zbl 1390.35142) Full Text: DOI arXiv
Li, Jie; Liu, Kangsheng Well-posedness of Korteweg-de Vries-Burgers equation on a finite domain. (English) Zbl 1388.35172 Indian J. Pure Appl. Math. 48, No. 1, 91-116 (2017). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35A01 82D45 PDF BibTeX XML Cite \textit{J. Li} and \textit{K. Liu}, Indian J. Pure Appl. Math. 48, No. 1, 91--116 (2017; Zbl 1388.35172) Full Text: DOI
Carvajal, Xavier; Esfahani, Amin; Panthee, Mahendra Well-posedness results and dissipative limit of high dimensional KdV-type equations. (English) Zbl 1386.35369 Bull. Braz. Math. Soc. (N.S.) 48, No. 4, 505-550 (2017). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35A01 35B65 PDF BibTeX XML Cite \textit{X. Carvajal} et al., Bull. Braz. Math. Soc. (N.S.) 48, No. 4, 505--550 (2017; Zbl 1386.35369) Full Text: DOI
Chen, Mo Bang-bang property for time optimal control of the Korteweg-de Vries-Burgers equation. (English) Zbl 1378.35264 Appl. Math. Optim. 76, No. 2, 399-414 (2017). MSC: 35Q53 49J20 49J30 PDF BibTeX XML Cite \textit{M. Chen}, Appl. Math. Optim. 76, No. 2, 399--414 (2017; Zbl 1378.35264) Full Text: DOI
Samokhin, Alexey Periodic boundary conditions for KdV-Burgers equation on an interval. (English) Zbl 1358.35160 J. Geom. Phys. 113, 250-256 (2017). MSC: 35Q53 35B40 76L05 35B20 PDF BibTeX XML Cite \textit{A. Samokhin}, J. Geom. Phys. 113, 250--256 (2017; Zbl 1358.35160) Full Text: DOI
El, G. A.; Hoefer, M. A.; Shearer, M. Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws. (English) Zbl 1364.35307 SIAM Rev. 59, No. 1, 3-61 (2017). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35L65 74J30 35C07 PDF BibTeX XML Cite \textit{G. A. El} et al., SIAM Rev. 59, No. 1, 3--61 (2017; Zbl 1364.35307) Full Text: DOI
Zhou, Hang; Han, Yuecai Controllability of the Korteweg-de Vries-Burgers equation. (English) Zbl 07246713 J. Appl. Anal. Comput. 6, No. 1, 207-215 (2016). MSC: 93B05 93C20 35Q53 PDF BibTeX XML Cite \textit{H. Zhou} and \textit{Y. Han}, J. Appl. Anal. Comput. 6, No. 1, 207--215 (2016; Zbl 07246713) Full Text: DOI
Il’ichev, A. T.; Chugainova, A. P. Spectral stability theory of heteroclinic solutions to the Korteweg-de Vries-Burgers equation with an arbitrary potential. (English, Russian) Zbl 1368.35235 Proc. Steklov Inst. Math. 295, 148-157 (2016); translation in Tr. Mat. Inst. Steklova 295, 163-173 (2016). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35C07 35B35 PDF BibTeX XML Cite \textit{A. T. Il'ichev} and \textit{A. P. Chugainova}, Proc. Steklov Inst. Math. 295, 148--157 (2016; Zbl 1368.35235); translation in Tr. Mat. Inst. Steklova 295, 163--173 (2016) Full Text: DOI
Jia, Chaohua Boundary feedback stabilization of the Korteweg-de Vries-Burgers equation posed on a finite interval. (English) Zbl 1341.93065 J. Math. Anal. Appl. 444, No. 1, 624-647 (2016). MSC: 93D15 93C20 35Q53 93D20 PDF BibTeX XML Cite \textit{C. Jia}, J. Math. Anal. Appl. 444, No. 1, 624--647 (2016; Zbl 1341.93065) Full Text: DOI
Shi, YuFeng; Xu, Biao; Guo, Yan Numerical solution of Korteweg-de Vries-Burgers equation by the compact-type CIP method. (English) Zbl 1422.35144 Adv. Difference Equ. 2015, Paper No. 353, 9 p. (2015). MSC: 35Q53 65M06 65M60 65M70 35Q51 PDF BibTeX XML Cite \textit{Y. Shi} et al., Adv. Difference Equ. 2015, Paper No. 353, 9 p. (2015; Zbl 1422.35144) Full Text: DOI
Ren, Jinlian; Jiang, Tao; Zhu, Ying A corrected finite pointset method for solving the nonlinear dynamics problems. (Chinese. English summary) Zbl 1349.65478 J. Yangzhou Univ., Nat. Sci. Ed. 18, No. 3, 20-23, 36 (2015). MSC: 65M60 35Q53 PDF BibTeX XML Cite \textit{J. Ren} et al., J. Yangzhou Univ., Nat. Sci. Ed. 18, No. 3, 20--23, 36 (2015; Zbl 1349.65478)
Yushkov, E. V.; Korpusov, M. O. Global unsolvability of one-dimensional problems for Burgers-type equations. (English. Russian original) Zbl 1339.35277 Math. Notes 98, No. 3, 503-514 (2015); translation from Mat. Zametki 98, No. 3, 448-462 (2015). MSC: 35Q53 35B44 35B50 PDF BibTeX XML Cite \textit{E. V. Yushkov} and \textit{M. O. Korpusov}, Math. Notes 98, No. 3, 503--514 (2015; Zbl 1339.35277); translation from Mat. Zametki 98, No. 3, 448--462 (2015) Full Text: DOI
Gorbenko, N. I. Numerical modeling of the integro-differential Korteweg-de Vries-Burgers equation. (Russian) Zbl 1340.65317 Sib. Zh. Ind. Mat. 17, No. 1, 36-45 (2014). MSC: 65R20 35Q53 45K05 45G10 PDF BibTeX XML Cite \textit{N. I. Gorbenko}, Sib. Zh. Ind. Mat. 17, No. 1, 36--45 (2014; Zbl 1340.65317) Full Text: MNR
Shapeev, Vasily P.; Vorozhtsov, Evgenii V. CAS application to the construction of the collocations and least residuals method for the solution of the Burgers and Korteweg-de-Vries-Burgers equations. (English) Zbl 1417.76001 Gerdt, Vladimir P. (ed.) et al., Computer algebra in scientific computing. 16th international workshop, CASC 2014, Warsaw, Poland, September 8–12, 2014. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 8660, 432-446 (2014). MSC: 76-04 76M99 68W30 35Q53 PDF BibTeX XML Cite \textit{V. P. Shapeev} and \textit{E. V. Vorozhtsov}, Lect. Notes Comput. Sci. 8660, 432--446 (2014; Zbl 1417.76001) Full Text: DOI
Leo, Rosario Antonio; Sicuro, Gabriele; Tempesta, Piergiulio A theorem on the existence of symmetries of fractional PDEs. (Un théorème sur l’existence de symétries pour les équations aux derivées partielles fractionnaires.) (English. French summary) Zbl 1298.35240 C. R., Math., Acad. Sci. Paris 352, No. 3, 219-222 (2014). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 35R11 35Q53 45K05 26A33 PDF BibTeX XML Cite \textit{R. A. Leo} et al., C. R., Math., Acad. Sci. Paris 352, No. 3, 219--222 (2014; Zbl 1298.35240) Full Text: DOI arXiv
Chugainova, A. P. Nonstationary solutions of a generalized Korteweg-de Vries-Burgers equation. (English. Russian original) Zbl 1292.35263 Proc. Steklov Inst. Math. 281, 204-212 (2013); translation from Tr. Mat. Inst. Steklova 281, 215-223 (2013). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 37K10 PDF BibTeX XML Cite \textit{A. P. Chugainova}, Proc. Steklov Inst. Math. 281, 204--212 (2013; Zbl 1292.35263); translation from Tr. Mat. Inst. Steklova 281, 215--223 (2013) Full Text: DOI
Wei, Leilei; He, Yinnian; Yildirim, Ahmet; Kumar, Sunil Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional KdV-Burgers-Kuramoto equation. (English) Zbl 1263.65098 ZAMM, Z. Angew. Math. Mech. 93, No. 1, 14-28 (2013). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65M60 65M12 35Q53 35R11 PDF BibTeX XML Cite \textit{L. Wei} et al., ZAMM, Z. Angew. Math. Mech. 93, No. 1, 14--28 (2013; Zbl 1263.65098) Full Text: DOI arXiv
Kudryashov, Nikolay A.; Kochanov, Mark B. Quasi-exact solutions of nonlinear differential equations. (English) Zbl 1295.34005 Appl. Math. Comput. 219, No. 4, 1793-1804 (2012). MSC: 34A05 35C07 PDF BibTeX XML Cite \textit{N. A. Kudryashov} and \textit{M. B. Kochanov}, Appl. Math. Comput. 219, No. 4, 1793--1804 (2012; Zbl 1295.34005) Full Text: DOI
Tian, Shou-Fu; Zhang, Hong-Qing Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV-Burgers equation. (English. Russian original) Zbl 1274.35294 Theor. Math. Phys. 170, No. 3, 287-314 (2012); translation from Teor. Mat. Fiz. 170, No. 3, 350-380 (2012). MSC: 35Q35 35Q53 14K25 35C07 35A30 PDF BibTeX XML Cite \textit{S.-F. Tian} and \textit{H.-Q. Zhang}, Theor. Math. Phys. 170, No. 3, 287--314 (2012; Zbl 1274.35294); translation from Teor. Mat. Fiz. 170, No. 3, 350--380 (2012) Full Text: DOI
Smaoui, N.; El-Kadri, A.; Zribi, M. Adaptive boundary control of the unforced generalized Korteweg-de Vries-Burgers equation. (English) Zbl 1253.35155 Nonlinear Dyn. 69, No. 3, 1237-1253 (2012). MSC: 35Q53 35Q93 93C40 PDF BibTeX XML Cite \textit{N. Smaoui} et al., Nonlinear Dyn. 69, No. 3, 1237--1253 (2012; Zbl 1253.35155) Full Text: DOI
Deng, Xiaoyan; Tian, Lixin; Chen, Wenxia Adaptive stabilization of the Korteweg-de Vries-Burgers equation with unknown dispersion. (English) Zbl 1251.93061 J. Appl. Math. 2012, Article ID 389450, 12 p. (2012). MSC: 93C40 35Q53 93D05 PDF BibTeX XML Cite \textit{X. Deng} et al., J. Appl. Math. 2012, Article ID 389450, 12 p. (2012; Zbl 1251.93061) Full Text: DOI
Jia, Chaohua; Zhang, Bing-Yu Boundary stabilization of the Korteweg-de Vries equation and the Korteweg-de Vries-Burgers equation. (English) Zbl 1234.35225 Acta Appl. Math. 118, No. 1, 25-47 (2012). MSC: 35Q53 35B44 93C20 93D15 PDF BibTeX XML Cite \textit{C. Jia} and \textit{B.-Y. Zhang}, Acta Appl. Math. 118, No. 1, 25--47 (2012; Zbl 1234.35225) Full Text: DOI
Cung The Anh; Tang Quoc Bao Pullback attractors for generalized Korteweg-de Vries-Burgers equations. (English) Zbl 1234.35217 J. Math. Anal. Appl. 388, No. 2, 899-912 (2012). MSC: 35Q53 35Q35 35B40 35B41 PDF BibTeX XML Cite \textit{Cung The Anh} and \textit{Tang Quoc Bao}, J. Math. Anal. Appl. 388, No. 2, 899--912 (2012; Zbl 1234.35217) Full Text: DOI
Klofaï, Yerima; Essimbi, B. Z.; Jäger, D. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps. (English) Zbl 1267.78011 Phys. Scr. 84, No. 4, Article ID 045803, 6 p. (2011). MSC: 78A40 78A50 PDF BibTeX XML Cite \textit{Y. Klofaï} et al., Phys. Scr. 84, No. 4, Article ID 045803, 6 p. (2011; Zbl 1267.78011) Full Text: DOI
Kazeykina, A. V. Examples of the absence of a traveling wave for the generalized Korteweg-de Vries-Burgers equation. (English. Russian original) Zbl 1251.35131 Mosc. Univ. Comput. Math. Cybern. 35, No. 1, 14-21 (2011); translation from Vestn. Mosk. Univ., Ser. XV 2011, No. 1, 17-24 (2011). MSC: 35Q53 35Q30 35C07 PDF BibTeX XML Cite \textit{A. V. Kazeykina}, Mosc. Univ. Comput. Math. Cybern. 35, No. 1, 14--21 (2011; Zbl 1251.35131); translation from Vestn. Mosk. Univ., Ser. XV 2011, No. 1, 17--24 (2011) Full Text: DOI
Chen, Jiyu; Zhang, Taofeng; Sun, Jian’an; Shi, Yuren; Ma, Mingyi Numerical solutions of the KdV-Burgers equation by cosine expansion based on the differential quadrature method. (Chinese. English summary) Zbl 1240.65310 J. Numer. Methods Comput. Appl. 32, No. 2, 125-134 (2011). MSC: 65M99 35Q53 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Numer. Methods Comput. Appl. 32, No. 2, 125--134 (2011; Zbl 1240.65310)
Sun, Jian’an; Zhang, Taofeng; Chen, Jiyu; Liu, Wanhai; Tao, Na; Shi, Yuren Numerical solution of KdV-Burgers’ equation by modified Bernstein polynomials and Galerkin’s method. (Chinese. English summary) Zbl 1240.65297 J. Northwest Norm. Univ., Nat. Sci. 47, No. 2, 31-35 (2011). MSC: 65M60 PDF BibTeX XML Cite \textit{J. Sun} et al., J. Northwest Norm. Univ., Nat. Sci. 47, No. 2, 31--35 (2011; Zbl 1240.65297)
Zhang, Weiguo; Li, Xiang Approximate damped oscillatory solutions for generalized KdV-Burgers equation and their error estimates. (English) Zbl 1228.35211 Abstr. Appl. Anal. 2011, Article ID 807860, 26 p. (2011). MSC: 35Q53 35C07 35C08 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{X. Li}, Abstr. Appl. Anal. 2011, Article ID 807860, 26 p. (2011; Zbl 1228.35211) Full Text: DOI
Smaoui, Nejib; El-Kadri, Alaa; Zribi, Mohamed Adaptive boundary control of the forced generalized Korteweg-de Vries-Burgers equation. (English) Zbl 1291.93164 Eur. J. Control 16, No. 1, 72-84 (2010). MSC: 93C40 93C20 35Q53 93D20 PDF BibTeX XML Cite \textit{N. Smaoui} et al., Eur. J. Control 16, No. 1, 72--84 (2010; Zbl 1291.93164) Full Text: DOI
Kaikina, Elena I.; Guardado-Zavala, Leonardo; Ruiz-Paredes, Hector F.; Zirate, S. Juarez Korteweg-de Vries-Burgers equation on a segment. (English) Zbl 1218.35211 Cubo 12, No. 1, 41-58 (2010). MSC: 35Q53 35Q35 35A01 35A02 35B30 35B40 PDF BibTeX XML Cite \textit{E. I. Kaikina} et al., Cubo 12, No. 1, 41--58 (2010; Zbl 1218.35211) Full Text: DOI
Kazejkina, A. V. Stability of a traveling-wave solution to the Cauchy problem for the Korteweg-de Vries-Burgers equation. (Russian, English) Zbl 1224.35365 Zh. Vychisl. Mat. Mat. Fiz. 50, No. 4, 725-745 (2010); translation in Comput. Math., Math. Phys. 50, No. 4, 690-710 (2010). MSC: 35Q53 PDF BibTeX XML Cite \textit{A. V. Kazejkina}, Zh. Vychisl. Mat. Mat. Fiz. 50, No. 4, 725--745 (2010; Zbl 1224.35365); translation in Comput. Math., Math. Phys. 50, No. 4, 690--710 (2010) Full Text: DOI Link
Leach, J. A. The large-time development of the solution to an initial-value problem for the Korteweg-de Vries-Burgers equation. I: Initial data has a discontinuous compressive step. (English) Zbl 1246.35181 IMA J. Appl. Math. 75, No. 5, 732-776 (2010). MSC: 35Q53 35R05 35B40 PDF BibTeX XML Cite \textit{J. A. Leach}, IMA J. Appl. Math. 75, No. 5, 732--776 (2010; Zbl 1246.35181) Full Text: DOI
Inc, Mustafa He’s homotopy perturbation method for solving Korteweg-de Vries Burgers equation with initial condition. (English) Zbl 1197.65150 Numer. Methods Partial Differ. Equations 26, No. 5, 1224-1235 (2010). MSC: 65M70 35Q53 PDF BibTeX XML Cite \textit{M. Inc}, Numer. Methods Partial Differ. Equations 26, No. 5, 1224--1235 (2010; Zbl 1197.65150) Full Text: DOI
Yildirim, Ahmet; Berberler, Murat Erşen Homotopy perturbation method for numerical solutions of KdV-Burgers’ and Lax’s seventh-order KdV equations. (English) Zbl 1197.65160 Numer. Methods Partial Differ. Equations 26, No. 5, 1040-1053 (2010). MSC: 65M70 35Q53 PDF BibTeX XML Cite \textit{A. Yildirim} and \textit{M. E. Berberler}, Numer. Methods Partial Differ. Equations 26, No. 5, 1040--1053 (2010; Zbl 1197.65160) Full Text: DOI
Smaoui, Nejib; El-Kadri, Alaa; Zribi, Mohamed Nonlinear boundary control of the unforced generalized Korteweg-de Vries-Burgers equation. (English) Zbl 1194.35389 Nonlinear Dyn. 60, No. 4, 561-574 (2010). MSC: 35Q53 35B35 65M60 PDF BibTeX XML Cite \textit{N. Smaoui} et al., Nonlinear Dyn. 60, No. 4, 561--574 (2010; Zbl 1194.35389) Full Text: DOI
Leach, J. A. The large-time development of the solution to an initial-value problem for the Korteweg-de Vries-Burgers equation. II: Initial data has a discontinuous expansive step. (English) Zbl 1184.35278 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 6, 2787-2802 (2010). MSC: 35Q53 35C20 35A30 35B40 35B30 PDF BibTeX XML Cite \textit{J. A. Leach}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 6, 2787--2802 (2010; Zbl 1184.35278) Full Text: DOI
Kudryashov, Nikolai A. On “new travelling wave solutions” of the KdV and the KdV-Burgers equations. (English) Zbl 1221.35343 Commun. Nonlinear Sci. Numer. Simul. 14, No. 5, 1891-1900 (2009). MSC: 35Q53 35Q51 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Commun. Nonlinear Sci. Numer. Simul. 14, No. 5, 1891--1900 (2009; Zbl 1221.35343) Full Text: DOI
Haq, Sirajul; Siraj-Ul-Islam; Uddin, Marjan A mesh-free method for the numerical solution of the KdV-Burgers equation. (English) Zbl 1205.65233 Appl. Math. Modelling 33, No. 8, 3442-3449 (2009). MSC: 65M06 35Q53 76B15 35Q35 PDF BibTeX XML Cite \textit{S. Haq} et al., Appl. Math. Modelling 33, No. 8, 3442--3449 (2009; Zbl 1205.65233) Full Text: DOI
Sakthivel, Rathinasamy Robust stabilization the Korteweg-de Vries-Burgers equation by boundary control. (English) Zbl 1183.76660 Nonlinear Dyn. 58, No. 4, 739-744 (2009). MSC: 76B75 76B25 93C20 PDF BibTeX XML Cite \textit{R. Sakthivel}, Nonlinear Dyn. 58, No. 4, 739--744 (2009; Zbl 1183.76660) Full Text: DOI
Saka, Bülent; Dağ, İdris Quartic B-spline Galerkin approach to the numerical solution of the KdVB equation. (English) Zbl 1175.65112 Appl. Math. Comput. 215, No. 2, 746-758 (2009). MSC: 65M60 35Q53 35Q51 PDF BibTeX XML Cite \textit{B. Saka} and \textit{İ. Dağ}, Appl. Math. Comput. 215, No. 2, 746--758 (2009; Zbl 1175.65112) Full Text: DOI
Smaoui, Nejib; Zribi, Mohamed A finite dimensional control of the dynamics of the generalized Korteweg-de Vries Burgers equation. (English) Zbl 1172.35483 Appl. Math. Inf. Sci. 3, No. 2, 207-221 (2009). MSC: 35Q53 65M60 93B05 93D05 93B52 PDF BibTeX XML Cite \textit{N. Smaoui} and \textit{M. Zribi}, Appl. Math. Inf. Sci. 3, No. 2, 207--221 (2009; Zbl 1172.35483) Full Text: Link
Yin, Hui; Zhao, Huijiang; Zhou, Lina Convergence rate of solutions toward traveling waves for the Cauchy problem of generalized Korteweg-de Vries-Burgers equations. (English) Zbl 1173.35668 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 9, 3981-3991 (2009). MSC: 35Q53 35B35 35L65 35L67 PDF BibTeX XML Cite \textit{H. Yin} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 9, 3981--3991 (2009; Zbl 1173.35668) Full Text: DOI
Kojok, Bassam Global existence for a forced dispersive dissipative equation via the I-method. (English) Zbl 1178.35332 Commun. Pure Appl. Anal. 8, No. 4, 1401-1419 (2009). Reviewer: K. N. Shukla (Gurgaon) MSC: 35Q53 35B30 76B03 76B15 35A22 PDF BibTeX XML Cite \textit{B. Kojok}, Commun. Pure Appl. Anal. 8, No. 4, 1401--1419 (2009; Zbl 1178.35332) Full Text: DOI
Aslan, İsmail; Öziş, Turgut Analytic study on two nonlinear evolution equations by using the (\(G^{\prime}/G\))-expansion method. (English) Zbl 1167.35451 Appl. Math. Comput. 209, No. 2, 425-429 (2009). MSC: 35Q53 35C05 35A20 PDF BibTeX XML Cite \textit{İ. Aslan} and \textit{T. Öziş}, Appl. Math. Comput. 209, No. 2, 425--429 (2009; Zbl 1167.35451) Full Text: DOI
Feng, Zhaosheng; Gupta, Indranil Sen Korteweg-de Vries-Burgers equation with a higher-order nonlinearity. (English) Zbl 1213.34065 Differ. Equ. Dyn. Syst. 16, No. 1-2, 3-27 (2008). MSC: 34C37 34E05 35Q53 35C07 34B40 PDF BibTeX XML Cite \textit{Z. Feng} and \textit{I. S. Gupta}, Differ. Equ. Dyn. Syst. 16, No. 1--2, 3--27 (2008; Zbl 1213.34065) Full Text: DOI
Lin, Dong; Zhan, Jiemin A combined super compact finite difference scheme and application to simulation of shallow water equations. (Chinese. English summary) Zbl 1199.65276 Chin. J. Comput. Mech. 25, No. 6, 791-796 (2008). MSC: 65M06 35Q53 76B15 76M20 65M12 65M15 PDF BibTeX XML Cite \textit{D. Lin} and \textit{J. Zhan}, Chin. J. Comput. Mech. 25, No. 6, 791--796 (2008; Zbl 1199.65276)
Smaoui, Nejib; Al-Jamal, Rasha H. Boundary control of the generalized Korteweg-de Vries-Burgers equation. (English) Zbl 1170.93018 Nonlinear Dyn. 51, No. 3, 439-446 (2008). MSC: 93C20 35Q53 93D20 PDF BibTeX XML Cite \textit{N. Smaoui} and \textit{R. H. Al-Jamal}, Nonlinear Dyn. 51, No. 3, 439--446 (2008; Zbl 1170.93018) Full Text: DOI
El-Kalaawy, O. H.; Ibrahim, R. S. Linearizing transformation and exact solutions of nonlinear equations in mathematical physics. (English) Zbl 1175.35121 Ital. J. Pure Appl. Math. 23, 197-204 (2008). MSC: 35Q53 35Q51 35A30 35C05 PDF BibTeX XML Cite \textit{O. H. El-Kalaawy} and \textit{R. S. Ibrahim}, Ital. J. Pure Appl. Math. 23, 197--204 (2008; Zbl 1175.35121)
Bhatta, Dambaru Use of modified Bernstein polynomials to solve KdV-Burgers equation numerically. (English) Zbl 1157.65447 Appl. Math. Comput. 206, No. 1, 457-464 (2008). MSC: 65M60 35Q53 65M20 65L06 PDF BibTeX XML Cite \textit{D. Bhatta}, Appl. Math. Comput. 206, No. 1, 457--464 (2008; Zbl 1157.65447) Full Text: DOI
Bona, Jerry L.; Sun, S. M.; Zhang, Bing-Yu Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane. (English) Zbl 1157.35090 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25, No. 6, 1145-1185 (2008). MSC: 35Q53 35D05 35D10 PDF BibTeX XML Cite \textit{J. L. Bona} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25, No. 6, 1145--1185 (2008; Zbl 1157.35090) Full Text: DOI EuDML
Khater, A. H.; Temsah, R. S.; Hassan, M. M. A Chebyshev spectral collocation method for solving Burgers’-type equations. (English) Zbl 1153.65102 J. Comput. Appl. Math. 222, No. 2, 333-350 (2008). MSC: 65M70 35Q53 PDF BibTeX XML Cite \textit{A. H. Khater} et al., J. Comput. Appl. Math. 222, No. 2, 333--350 (2008; Zbl 1153.65102) Full Text: DOI
Wang, Xiaohui; Feng, Zhaosheng; Debnath, Lokenath; Gao, David Y. The Korteweg-de Vries-Burgers equation and its approximate solution. (English) Zbl 1157.65057 Int. J. Comput. Math. 85, No. 6, 853-863 (2008). Reviewer: Petr Sváček (Praha) MSC: 65M70 35Q53 PDF BibTeX XML Cite \textit{X. Wang} et al., Int. J. Comput. Math. 85, No. 6, 853--863 (2008; Zbl 1157.65057) Full Text: DOI
Carvajal, Xavier; Panthee, Mahendra Well-posedness for some perturbations of the KdV equation with low regularity data. (English) Zbl 1136.35076 Electron. J. Differ. Equ. 2008, Paper No. 02, 18 p. (2008). MSC: 35Q53 35A07 35G25 PDF BibTeX XML Cite \textit{X. Carvajal} and \textit{M. Panthee}, Electron. J. Differ. Equ. 2008, Paper No. 02, 18 p. (2008; Zbl 1136.35076) Full Text: EMIS EuDML
Demiray, Hilmi Weakly nonlinear waves in a fluid with variable viscosity contained in a prestressed thin elastic tube. (English) Zbl 1131.76064 Chaos Solitons Fractals 36, No. 2, 196-202 (2008). MSC: 76Z05 76D99 76M45 92C10 74F10 PDF BibTeX XML Cite \textit{H. Demiray}, Chaos Solitons Fractals 36, No. 2, 196--202 (2008; Zbl 1131.76064) Full Text: DOI
Molabahrami, A.; Khani, F.; Hamedi-Nezhad, S. Soliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method. (English) Zbl 1209.65113 Phys. Lett., A 370, No. 5-6, 433-436 (2007). MSC: 65M99 35Q53 35Q51 PDF BibTeX XML Cite \textit{A. Molabahrami} et al., Phys. Lett., A 370, No. 5--6, 433--436 (2007; Zbl 1209.65113) Full Text: DOI
Demiray, Hilmi The effect of a bump in an elastic tube on wave propagation in a viscous fluid of variable viscosity. (English) Zbl 1112.76095 Appl. Math. Comput. 187, No. 2, 1574-1583 (2007). MSC: 76Z05 76D99 92C35 74F10 PDF BibTeX XML Cite \textit{H. Demiray}, Appl. Math. Comput. 187, No. 2, 1574--1583 (2007; Zbl 1112.76095) Full Text: DOI
Smaoui, Nejib A state feedback control scheme for the generalized Korteweg-de Vries-Burgers equation. (English) Zbl 1157.65408 Neural Parallel Sci. Comput. 14, No. 4, 345-350 (2006). MSC: 65K10 93C20 93D10 35Q53 35B37 65M60 65M12 PDF BibTeX XML Cite \textit{N. Smaoui}, Neural Parallel Sci. Comput. 14, No. 4, 345--350 (2006; Zbl 1157.65408)
Rashid, A. Convergence analysis of three-level Fourier pseudospectral method for Korteweg-de Vries Burgers equation. (English) Zbl 1125.65346 Comput. Math. Appl. 52, No. 5, 769-778 (2006). MSC: 65M70 65M06 65M12 35Q53 PDF BibTeX XML Cite \textit{A. Rashid}, Comput. Math. Appl. 52, No. 5, 769--778 (2006; Zbl 1125.65346) Full Text: DOI
Hayashi, Nakao; Naumkin, Pavel I. Asymptotics for the Korteweg-de Vries-Burgers equation. (English) Zbl 1104.35046 Acta Math. Sin., Engl. Ser. 22, No. 5, 1441-1456 (2006). MSC: 35Q53 35B40 PDF BibTeX XML Cite \textit{N. Hayashi} and \textit{P. I. Naumkin}, Acta Math. Sin., Engl. Ser. 22, No. 5, 1441--1456 (2006; Zbl 1104.35046) Full Text: DOI
Kaikina, Elena Igorevna; Ruiz-Paredes, Hector Francisco Second term of asymptotics for KdVB equation with large initial data. (English) Zbl 1080.35084 Osaka J. Math. 42, No. 2, 407-420 (2005). MSC: 35Q35 35B40 35Q53 PDF BibTeX XML Cite \textit{E. I. Kaikina} and \textit{H. F. Ruiz-Paredes}, Osaka J. Math. 42, No. 2, 407--420 (2005; Zbl 1080.35084)
Rashid, Abdur; Mahmood, Tahir; Mustafa, Ghulam An explicit pseudo-spectral scheme for Korteweg-de Vries-Burgers equation. (English) Zbl 1070.35071 Int. J. Pure Appl. Math. 16, No. 4, 439-449 (2004). MSC: 35Q53 37K40 65M12 PDF BibTeX XML Cite \textit{A. Rashid} et al., Int. J. Pure Appl. Math. 16, No. 4, 439--449 (2004; Zbl 1070.35071)
Aassila, Mohammed Decay of solutions of some nonlinear equations. (English) Zbl 1054.35073 Port. Math. (N.S.) 60, No. 4, 389-409 (2003); editorial notice ibid. 65, No. 4, 569 (2008). Reviewer: Vasile Ionescu (Bucureşti) MSC: 35Q53 47J35 35B40 PDF BibTeX XML Cite \textit{M. Aassila}, Port. Math. (N.S.) 60, No. 4, 389--409 (2003; Zbl 1054.35073) Full Text: EMIS EuDML
Jia, Yueling The Cauchy problem for the generalized Korteweg-de Vries-Burgers equation in \(H^{-s}\). (English) Zbl 1033.35099 J. Partial Differ. Equations 16, No. 3, 275-288 (2003). MSC: 35Q53 35G25 35A07 PDF BibTeX XML Cite \textit{Y. Jia}, J. Partial Differ. Equations 16, No. 3, 275--288 (2003; Zbl 1033.35099)
Gao, Ping; Zhao, Yi Boundary stabilization for the general Korteweg-de Vries-Burgers equation. (English) Zbl 1033.35098 Acta Anal. Funct. Appl. 5, No. 2, 110-118 (2003). MSC: 35Q53 35B37 93D15 PDF BibTeX XML Cite \textit{P. Gao} and \textit{Y. Zhao}, Acta Anal. Funct. Appl. 5, No. 2, 110--118 (2003; Zbl 1033.35098)
Aassila, Mohammed Stabilization of the Korteweg-de Vries-Burgers equation with non-periodic boundary feedbacks. (English) Zbl 1020.35091 J. Appl. Math. Comput. 11, No. 1-2, 81-108 (2003). Reviewer: Igor Andrianov (Köln) MSC: 35Q53 35B35 35B37 PDF BibTeX XML Cite \textit{M. Aassila}, J. Appl. Math. Comput. 11, No. 1--2, 81--108 (2003; Zbl 1020.35091) Full Text: DOI
Hayashi, Nakao; Kaikina, Elena I.; Ruiz Paredes, Hector F. Korteweg-de Vries-Burgers equation on a half-line with large initial data. (English) Zbl 1375.35445 J. Evol. Equ. 2, No. 3, 319-347 (2002). MSC: 35Q53 35B40 PDF BibTeX XML Cite \textit{N. Hayashi} et al., J. Evol. Equ. 2, No. 3, 319--347 (2002; Zbl 1375.35445) Full Text: DOI
Demiray, Hilmi Weakly nonlinear waves in elastic tubes filled with a layered fluid. (English) Zbl 1079.74021 Int. J. Nonlinear Sci. Numer. Simul. 3, No. 2, 89-98 (2002). MSC: 74F10 74J35 92C10 76Z05 PDF BibTeX XML Cite \textit{H. Demiray}, Int. J. Nonlinear Sci. Numer. Simul. 3, No. 2, 89--98 (2002; Zbl 1079.74021) Full Text: DOI
Murashkina, K. B.; Paskonov, V. M. Numerical analysis of the boundary-value problem for a nonlinear Korteweg-de Vries-Burgers equation. (English. Russian original) Zbl 1020.65043 Comput. Math. Model. 14, No. 2, 85-92 (2003); translation from Prikl. Mat. Inf. 10, 5-14 (2002). MSC: 65M06 35Q53 PDF BibTeX XML Cite \textit{K. B. Murashkina} and \textit{V. M. Paskonov}, Comput. Math. Model. 14, No. 2, 85--92 (2002; Zbl 1020.65043); translation from Prikl. Mat. Inf. 10, 5--14 (2002) Full Text: DOI
Hayashi, Nakao; Kaikina, Elena I.; Shishmarev, Ilia A. Asymptotics of solutions to the boundary-value problem for the Korteweg-de Vries-Burgers equation on a half-line. (English) Zbl 0999.35087 J. Math. Anal. Appl. 265, No. 2, 343-370 (2002). MSC: 35Q53 37L05 35B40 PDF BibTeX XML Cite \textit{N. Hayashi} et al., J. Math. Anal. Appl. 265, No. 2, 343--370 (2002; Zbl 0999.35087) Full Text: DOI
Wang, Zhian; Jiang, Mina Uniform estimates of solution to the generalized Korteweg-de Vries-Burgers equation. (English) Zbl 0998.35049 J. Cent. China Norm. Univ., Nat. Sci. 35, No. 3, 264-266 (2001). MSC: 35Q53 49L25 76P05 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{M. Jiang}, J. Cent. China Norm. Univ., Nat. Sci. 35, No. 3, 264--266 (2001; Zbl 0998.35049)
Hayashi, Nakao; Kaikina, Elena I.; Ruiz Paredes, H. Francisco Boundary-value problem for the Korteweg-de Vries-Burgers type equation. (English) Zbl 0992.35090 NoDEA, Nonlinear Differ. Equ. Appl. 8, No. 4, 439-463 (2001). MSC: 35Q53 35B40 76B15 PDF BibTeX XML Cite \textit{N. Hayashi} et al., NoDEA, Nonlinear Differ. Equ. Appl. 8, No. 4, 439--463 (2001; Zbl 0992.35090) Full Text: DOI
Zayko, Y. N.; Nefedov, I. S. New class of solutions of the Korteweg-de Vries-Burgers equation. (English) Zbl 0981.35076 Appl. Math. Lett. 14, No. 1, 115-121 (2001). Reviewer: Messoud Efendiev (Berlin) MSC: 35Q53 37D45 PDF BibTeX XML Cite \textit{Y. N. Zayko} and \textit{I. S. Nefedov}, Appl. Math. Lett. 14, No. 1, 115--121 (2001; Zbl 0981.35076) Full Text: DOI
Bona, Jerry L.; Luo, Laihan Asymptotic decomposition of nonlinear, dispersive wave equations with dissipation. (English) Zbl 0982.35018 Physica D 152-153, 363-383 (2001). Reviewer: Eryk Infeld (Warszawa) MSC: 35B40 35Q53 PDF BibTeX XML Cite \textit{J. L. Bona} and \textit{L. Luo}, Physica D 152--153, 363--383 (2001; Zbl 0982.35018) Full Text: DOI
Zhang, Bing-Yu Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability. (English) Zbl 0982.93044 Chen, Goong (ed.) et al., Control of nonlinear distributed parameter systems. Partly proceedings of the conference advances in control of nonlinear distributed parameter systems, Texas A & M Univ., College Station, TX, USA. Dedicated to Prof. David L. Russell on the occasion of his 60th birthday. New York, NY: Marcel Dekker. Lect. Notes Pure Appl. Math. 218, 337-357 (2001). Reviewer: Vadim Komkov (Florida) MSC: 93C20 35B10 35Q53 PDF BibTeX XML Cite \textit{B.-Y. Zhang}, Lect. Notes Pure Appl. Math. 218, 337--357 (2001; Zbl 0982.93044)
Balogh, Andras; Krstic, Miroslav Boundary control of the Korteweg-de Vries-Burgers equation: Further results on stabilization and well-posedness, with numerical demonstration. (English) Zbl 0990.93049 IEEE Trans. Autom. Control 45, No. 9, 1739-1745 (2000). MSC: 93C20 76B75 93D15 PDF BibTeX XML Cite \textit{A. Balogh} and \textit{M. Krstic}, IEEE Trans. Autom. Control 45, No. 9, 1739--1745 (2000; Zbl 0990.93049) Full Text: DOI
Zaki, S. I. A quintic B-spline finite elements scheme for the KdVB equation. (English) Zbl 0957.65088 Comput. Methods Appl. Mech. Eng. 188, No. 1-3, 121-134 (2000). Reviewer: Isaac Yevzerov (Kyïv) MSC: 65M60 65M70 35Q53 PDF BibTeX XML Cite \textit{S. I. Zaki}, Comput. Methods Appl. Mech. Eng. 188, No. 1--3, 121--134 (2000; Zbl 0957.65088) Full Text: DOI
Karch, Grzegorz Long-time asymptotics of solutions to some nonlinear wave equations. (English) Zbl 0954.35140 Bojarski, Bogdan (ed.) et al., Evolution equations. Existence, regularity and singularities. Proceedings of the minisemester, Warsaw, Poland, September 21-October 2, 1998. Warsaw: Polish Academy of Sciences, Institute of Mathematics, Banach Cent. Publ. 52, 133-146 (2000). MSC: 35Q53 35B40 35C20 PDF BibTeX XML Cite \textit{G. Karch}, Banach Cent. Publ. 52, 133--146 (2000; Zbl 0954.35140) Full Text: EuDML
Zaki, S. I. Solitary waves of the Korteweg-de Vries-Burgers’ equation. (English) Zbl 0951.65097 Comput. Phys. Commun. 126, No. 3, 207-218 (2000). Reviewer: Etienne Emmrich (Berlin) MSC: 65M60 65M06 65M12 35Q53 76B25 PDF BibTeX XML Cite \textit{S. I. Zaki}, Comput. Phys. Commun. 126, No. 3, 207--218 (2000; Zbl 0951.65097) Full Text: DOI
Bona, Jerry L.; Wu, Jiahong Zero-dissipation limit for nonlinear waves. (English) Zbl 0953.76006 M2AN, Math. Model. Numer. Anal. 34, No. 2, 275-301 (2000). MSC: 76B15 35Q53 PDF BibTeX XML Cite \textit{J. L. Bona} and \textit{J. Wu}, M2AN, Math. Model. Numer. Anal. 34, No. 2, 275--301 (2000; Zbl 0953.76006) Full Text: DOI Link EuDML
Feng, Bao-Feng; Kawahara, Takuji Stationary travelling-wave solutions of an unstable KdV-Burgers equation. (English) Zbl 0943.35081 Physica D 137, No. 3-4, 228-236 (2000). MSC: 35Q53 37K05 65M70 PDF BibTeX XML Cite \textit{B.-F. Feng} and \textit{T. Kawahara}, Physica D 137, No. 3--4, 228--236 (2000; Zbl 0943.35081) Full Text: DOI
Lü, Shujuan; Zhang, Fayong The spectral method for long time behavior of generalized KdV-Burgers equations. (Chinese. English summary) Zbl 0946.65092 Math. Numer. Sin. 21, No. 2, 129-138 (1999). Reviewer: S.Jiang (Beijing) MSC: 65M70 65M12 65M15 35Q53 37L30 PDF BibTeX XML Cite \textit{S. Lü} and \textit{F. Zhang}, Math. Numer. Sin. 21, No. 2, 129--138 (1999; Zbl 0946.65092)
Édel’man, I. Ya. Propagation of nonlinear waves in a porous medium with two-phase saturation by a liquid and a gas. (English. Russian original) Zbl 0923.76319 Fluid Dyn. 31, No. 4, 552-559 (1996); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza. 1996, No. 4, 86-95 (1996). MSC: 76S05 76T99 PDF BibTeX XML Cite \textit{I. Ya. Édel'man}, Fluid Dyn. 31, No. 4, 552--559 (1996; Zbl 0923.76319); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza. 1996, No. 4, 86--95 (1996) Full Text: DOI
Bona, Jerry L.; Luo, Laihan More results on the decay of solutions to nonlinear, dispersive wave equations. (English) Zbl 0870.35088 Discrete Contin. Dyn. Syst. 1, No. 2, 151-193 (1995). MSC: 35Q53 35B40 76B15 PDF BibTeX XML Cite \textit{J. L. Bona} and \textit{L. Luo}, Discrete Contin. Dyn. Syst. 1, No. 2, 151--193 (1995; Zbl 0870.35088) Full Text: DOI
Shailaja, R.; Vedan, M. J. Inverse scattering transform (IST) analysis of KdV-Burgers’ equation. (English) Zbl 0862.35109 Int. J. Non-Linear Mech. 30, No. 5, 617-627 (1995). MSC: 35Q53 35Q51 35R30 58J72 PDF BibTeX XML Cite \textit{R. Shailaja} and \textit{M. J. Vedan}, Int. J. Non-Linear Mech. 30, No. 5, 617--627 (1995; Zbl 0862.35109) Full Text: DOI
Puri, Sanjay; Desai, Rashmi C.; Kapral, Raymond Collision dynamics of fronts in the Korteweg-de Vries-Burgers equation. (English) Zbl 0885.35117 Physica D 89, No. 1-2, 15-27 (1995). MSC: 35Q53 35B40 76B15 PDF BibTeX XML Cite \textit{S. Puri} et al., Physica D 89, No. 1--2, 15--27 (1995; Zbl 0885.35117) Full Text: DOI
Rajopadhye, S. V. Decay rates for the solutions of model equations for bore propagation. (English) Zbl 0827.35117 Proc. R. Soc. Edinb., Sect. A 125, No. 2, 371-398 (1995). MSC: 35Q53 35B40 76B15 PDF BibTeX XML Cite \textit{S. V. Rajopadhye}, Proc. R. Soc. Edinb., Sect. A, Math. 125, No. 2, 371--398 (1995; Zbl 0827.35117) Full Text: DOI
Jacobs, Doug; McKinney, Bill; Shearer, Michael Travelling wave solutions of the modified Korteweg-deVries-Burgers equation. (English) Zbl 0820.35118 J. Differ. Equations 116, No. 2, 448-467 (1995). Reviewer: D.Bainov (Sofia) MSC: 35Q53 76L05 PDF BibTeX XML Cite \textit{D. Jacobs} et al., J. Differ. Equations 116, No. 2, 448--467 (1995; Zbl 0820.35118) Full Text: DOI
Assa’ad, A. Al Topics on solitons in bubbly liquids. (English) Zbl 0844.76093 Bull. Tech. Univ. Istanbul 47, No. 3, 379-422 (1994). Reviewer: B.A.Malomed (Ramat Aviv) MSC: 76T99 35Q51 35Q53 PDF BibTeX XML Cite \textit{A. A. Assa'ad}, Bull. Tech. Univ. Istanbul 47, No. 3, 379--422 (1994; Zbl 0844.76093)
Naumkin, P. I.; Shishmarev, I. A. On the connection between the solutions of various nonlinear equations for large time. (English. Russian original) Zbl 0832.35063 Russ. Acad. Sci., Dokl., Math. 49, No. 1, 127-131 (1994); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 334, No. 4, 429-432 (1994). MSC: 35G10 35K25 35Q53 35B40 35K55 PDF BibTeX XML Cite \textit{P. I. Naumkin} and \textit{I. A. Shishmarev}, Russ. Acad. Sci., Dokl., Math. 49, No. 1, 429--432 (1994; Zbl 0832.35063); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 334, No. 4, 429--432 (1994)