Huilgol, Raja R.; Georgiou, Georgios C. Fluid mechanics of viscoplasticity. 2nd edition. (English) Zbl 1487.76001 Cham: Springer (ISBN 978-3-030-98502-8/hbk; 978-3-030-98503-5/ebook). xvi, 393 p. (2022). MSC: 76-01 74A05 76D27 PDF BibTeX XML Cite \textit{R. R. Huilgol} and \textit{G. C. Georgiou}, Fluid mechanics of viscoplasticity. 2nd edition. Cham: Springer (2022; Zbl 1487.76001) Full Text: DOI OpenURL
Naz, R. A current-value Hamiltonian approach to discrete-time optimal control problems in economic growth theory. (English) Zbl 07484137 J. Difference Equ. Appl. 28, No. 1, 109-119 (2022). Reviewer: Vasile Postolică (Piatra Neamţ) MSC: 37N40 37J51 39A60 91B55 91B62 PDF BibTeX XML Cite \textit{R. Naz}, J. Difference Equ. Appl. 28, No. 1, 109--119 (2022; Zbl 07484137) Full Text: DOI arXiv OpenURL
Tran, Brian; Leok, Melvin Multisymplectic Hamiltonian variational integrators. (English) Zbl 1480.65369 Int. J. Comput. Math. 99, No. 1, 113-157 (2022). MSC: 65P10 37K58 53D42 70H25 PDF BibTeX XML Cite \textit{B. Tran} and \textit{M. Leok}, Int. J. Comput. Math. 99, No. 1, 113--157 (2022; Zbl 1480.65369) Full Text: DOI arXiv OpenURL
Ronzhina, M. I.; Manita, L. A.; Lokutsievskiy, L. V. Neighborhood of the second-order singular regime in problems with control in a disk. (English. Russian original) Zbl 1484.37072 Proc. Steklov Inst. Math. 315, No. 1, 209-222 (2021); translation from Tr. Mat. Inst. Steklova 315, 222-236 (2021). MSC: 37J51 37N35 37N40 PDF BibTeX XML Cite \textit{M. I. Ronzhina} et al., Proc. Steklov Inst. Math. 315, No. 1, 209--222 (2021; Zbl 1484.37072); translation from Tr. Mat. Inst. Steklova 315, 222--236 (2021) Full Text: DOI OpenURL
Alemi Ardakani, Hamid Variational generalization of the Green-Naghdi and Whitham equations for fluid sloshing in three-dimensional rotating and translating coordinates. (English) Zbl 07436724 Eur. J. Mech., B, Fluids 88, 208-227 (2021). MSC: 76B10 76M30 70E99 70H30 PDF BibTeX XML Cite \textit{H. Alemi Ardakani}, Eur. J. Mech., B, Fluids 88, 208--227 (2021; Zbl 07436724) Full Text: DOI OpenURL
Said, Hamid An analytical mechanics approach to the first law of thermodynamics and construction of a variational hierarchy. (English) Zbl 07392775 Theor. Appl. Mech. (Belgrade) 48, No. 1, 1-28 (2021). MSC: 37K06 80A05 80A10 80A17 PDF BibTeX XML Cite \textit{H. Said}, Theor. Appl. Mech. (Belgrade) 48, No. 1, 1--28 (2021; Zbl 07392775) Full Text: DOI arXiv OpenURL
Lv, Ying; Xue, Yan-Fang; Tang, Chun-Lei Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. (English) Zbl 1472.37065 Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1627-1652 (2021). Reviewer: Zdzisław Dzedzej (Gdańsk) MSC: 37J46 37J51 37C29 PDF BibTeX XML Cite \textit{Y. Lv} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1627--1652 (2021; Zbl 1472.37065) Full Text: DOI OpenURL
Holm, Darryl D. Stochastic variational formulations of fluid wave-current interaction. (English) Zbl 1464.76011 J. Nonlinear Sci. 31, No. 1, Paper No. 4, 59 p. (2021). MSC: 76B15 76U60 76M35 76M30 86A05 PDF BibTeX XML Cite \textit{D. D. Holm}, J. Nonlinear Sci. 31, No. 1, Paper No. 4, 59 p. (2021; Zbl 1464.76011) Full Text: DOI arXiv OpenURL
Jiménez, Fernando; Ober-Blöbaum, Sina Fractional damping through restricted calculus of variations. (English) Zbl 1477.70031 J. Nonlinear Sci. 31, No. 2, Paper No. 46, 43 p. (2021). MSC: 70H30 70H25 26A33 37J46 49K21 49S05 65P10 PDF BibTeX XML Cite \textit{F. Jiménez} and \textit{S. Ober-Blöbaum}, J. Nonlinear Sci. 31, No. 2, Paper No. 46, 43 p. (2021; Zbl 1477.70031) Full Text: DOI arXiv OpenURL
Ren, Jianguo; Ilhan, Onur Alp; Bulut, Hasan; Manafian, Jalil Multiple rogue wave, dark, bright, and solitary wave solutions to the KP-BBM equation. (English) Zbl 1465.37081 J. Geom. Phys. 164, Article ID 104159, 16 p. (2021). MSC: 37K40 37K10 37K58 PDF BibTeX XML Cite \textit{J. Ren} et al., J. Geom. Phys. 164, Article ID 104159, 16 p. (2021; Zbl 1465.37081) Full Text: DOI OpenURL
Iwai, Toshihiro Geometry, mechanics, and control in action for the falling cat. (English) Zbl 1472.70001 Lecture Notes in Mathematics 2289. Singapore: Springer (ISBN 978-981-16-0687-8/pbk; 978-981-16-0688-5/ebook). x, 182 p. (2021). Reviewer: Girish Kumar Ramaiah (Bangalore) MSC: 70-02 53-03 93-02 PDF BibTeX XML Cite \textit{T. Iwai}, Geometry, mechanics, and control in action for the falling cat. Singapore: Springer (2021; Zbl 1472.70001) Full Text: DOI OpenURL
Cao, Xiao-Qun; Hou, Shi-Cheng; Guo, Ya-Nan; Zhang, Cheng-Zhuo; Peng, Ke-Cheng Variational principle for \((2+1)\)-dimensional Broer-Kaup equations with fractal derivatives. (English) Zbl 07548775 Fractals 28, No. 7, Article ID 2050107, 7 p. (2020). MSC: 35Qxx 37Kxx 35Rxx PDF BibTeX XML Cite \textit{X.-Q. Cao} et al., Fractals 28, No. 7, Article ID 2050107, 7 p. (2020; Zbl 07548775) Full Text: DOI OpenURL
Song, Mingliang; Chen, Ping Existence of solutions for subquadratic convex operator equations at resonance and applications to Hamiltonian systems. (English) Zbl 1487.37079 Adv. Difference Equ. 2020, Paper No. 495, 17 p. (2020). MSC: 37J51 37J46 34B15 47A75 70H05 70H12 PDF BibTeX XML Cite \textit{M. Song} and \textit{P. Chen}, Adv. Difference Equ. 2020, Paper No. 495, 17 p. (2020; Zbl 1487.37079) Full Text: DOI OpenURL
Ding, Juan-Juan; Zhang, Yi Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay. (English) Zbl 07504837 Chaos Solitons Fractals 138, Article ID 109913, 13 p. (2020). MSC: 35R11 26A33 70H33 70G75 PDF BibTeX XML Cite \textit{J.-J. Ding} and \textit{Y. Zhang}, Chaos Solitons Fractals 138, Article ID 109913, 13 p. (2020; Zbl 07504837) Full Text: DOI OpenURL
Huber, Albert Distributional metrics and the action principle of Einstein-Hilbert gravity. (English) Zbl 1479.83268 Classical Quantum Gravity 37, No. 8, Article ID 085008, 18 p. (2020). MSC: 83F05 53E20 37J51 83C05 PDF BibTeX XML Cite \textit{A. Huber}, Classical Quantum Gravity 37, No. 8, Article ID 085008, 18 p. (2020; Zbl 1479.83268) Full Text: DOI arXiv OpenURL
Man, Shumin; Gao, Qiang; Zhong, Wanxie Symplectic algorithm for holonomic constrained systems based on the dual variable variational principle. (Chinese. English summary) Zbl 1474.70023 Chin. J. Comput. Mech. 37, No. 6, 655-660 (2020). MSC: 70H15 70H30 PDF BibTeX XML Cite \textit{S. Man} et al., Chin. J. Comput. Mech. 37, No. 6, 655--660 (2020; Zbl 1474.70023) Full Text: DOI OpenURL
Oliveri, Roberto; Speziale, Simone Boundary effects in general relativity with tetrad variables. (English) Zbl 1468.83009 Gen. Relativ. Gravitation 52, No. 8, Paper No. 83, 51 p. (2020). Reviewer: Monika Winklmeier (Bogotá) MSC: 83C05 83C40 70H40 53Z05 PDF BibTeX XML Cite \textit{R. Oliveri} and \textit{S. Speziale}, Gen. Relativ. Gravitation 52, No. 8, Paper No. 83, 51 p. (2020; Zbl 1468.83009) Full Text: DOI arXiv OpenURL
Yildiz, Guldem; Daghan, Durmus New exact solutions of a nonlinear integrable equation. (English) Zbl 1454.35328 Math. Methods Appl. Sci. 43, No. 11, 6761-6770 (2020). MSC: 35Q53 35C07 35C08 35C09 35Q51 37K10 35A15 PDF BibTeX XML Cite \textit{G. Yildiz} and \textit{D. Daghan}, Math. Methods Appl. Sci. 43, No. 11, 6761--6770 (2020; Zbl 1454.35328) Full Text: DOI OpenURL
Zhang, Yi Recent advances on Herglotz’s generalized variational principle of nonconservative dynamics. (English) Zbl 1463.70007 Trans. Nanjing Univ. Aeronaut. Astronaut. 37, No. 1, 13-26 (2020). MSC: 70H30 70H33 70G75 PDF BibTeX XML Cite \textit{Y. Zhang}, Trans. Nanjing Univ. Aeronaut. Astronaut. 37, No. 1, 13--26 (2020; Zbl 1463.70007) Full Text: DOI OpenURL
Tian, Xue; Zhang, Yi Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems. (English. Russian original) Zbl 1452.70013 Theor. Math. Phys. 202, No. 1, 126-135 (2020); translation from Teor. Mat. Fiz. 202, No. 1, 143-154 (2020). MSC: 70H03 37J06 PDF BibTeX XML Cite \textit{X. Tian} and \textit{Y. Zhang}, Theor. Math. Phys. 202, No. 1, 126--135 (2020; Zbl 1452.70013); translation from Teor. Mat. Fiz. 202, No. 1, 143--154 (2020) Full Text: DOI OpenURL
Cannarsa, Piermarco; Cheng, Wei; Jin, Liang; Wang, Kaizhi; Yan, Jun Herglotz’ variational principle and Lax-Oleinik evolution. (English. French summary) Zbl 1450.37058 J. Math. Pures Appl. (9) 141, 99-136 (2020). Reviewer: Xiang Zhang (Shanghai) MSC: 37J51 70H20 70G75 70H30 PDF BibTeX XML Cite \textit{P. Cannarsa} et al., J. Math. Pures Appl. (9) 141, 99--136 (2020; Zbl 1450.37058) Full Text: DOI arXiv OpenURL
Xu, Xinxin; Zhang, Yi Differential variational principle of Herglotz type and a new type of adiabatic invariants in phase space. (Chinese. English summary) Zbl 1449.70018 Acta Sci. Nat. Univ. Sunyatseni 59, No. 1, 35-42 (2020). MSC: 70H30 70H11 PDF BibTeX XML Cite \textit{X. Xu} and \textit{Y. Zhang}, Acta Sci. Nat. Univ. Sunyatseni 59, No. 1, 35--42 (2020; Zbl 1449.70018) Full Text: DOI OpenURL
Sleigh, Duncan; Nijhoff, Frank; Caudrelier, Vincent Variational symmetries and Lagrangian multiforms. (English) Zbl 1433.35327 Lett. Math. Phys. 110, No. 4, 805-826 (2020). MSC: 35Q51 35Q53 35Q55 70H06 70H33 37N05 37K10 PDF BibTeX XML Cite \textit{D. Sleigh} et al., Lett. Math. Phys. 110, No. 4, 805--826 (2020; Zbl 1433.35327) Full Text: DOI arXiv OpenURL
Ríos-Zertuche, Rodolfo Characterization of minimizable Lagrangian action functionals and a dual Mather theorem. (English) Zbl 1436.49013 Discrete Contin. Dyn. Syst. 40, No. 5, 2615-2639 (2020). MSC: 49J40 26B40 47J20 49K21 35F21 PDF BibTeX XML Cite \textit{R. Ríos-Zertuche}, Discrete Contin. Dyn. Syst. 40, No. 5, 2615--2639 (2020; Zbl 1436.49013) Full Text: DOI arXiv OpenURL
Lv, Ying; Xue, Yan-Fang; Tang, Chun-Lei Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. (English) Zbl 07461301 Commun. Pure Appl. Anal. 18, No. 5, 2855-2878 (2019). MSC: 37J46 37J51 37C29 PDF BibTeX XML Cite \textit{Y. Lv} et al., Commun. Pure Appl. Anal. 18, No. 5, 2855--2878 (2019; Zbl 07461301) Full Text: DOI OpenURL
Lekeu, Victor; Leonard, Amaury Prepotentials for linearized supergravity. (English) Zbl 1476.83171 Classical Quantum Gravity 36, No. 4, Article ID 045012, 40 p. (2019). MSC: 83E50 83C45 93B18 37J51 53E10 70H45 PDF BibTeX XML Cite \textit{V. Lekeu} and \textit{A. Leonard}, Classical Quantum Gravity 36, No. 4, Article ID 045012, 40 p. (2019; Zbl 1476.83171) Full Text: DOI arXiv OpenURL
Tian, Xue; Zhang, Yi Noether’s theorem for fractional Herglotz variational principle in phase space. (English) Zbl 1448.70051 Chaos Solitons Fractals 119, 50-54 (2019). MSC: 70H33 70H30 49S05 49K20 26A33 PDF BibTeX XML Cite \textit{X. Tian} and \textit{Y. Zhang}, Chaos Solitons Fractals 119, 50--54 (2019; Zbl 1448.70051) Full Text: DOI OpenURL
King, S. D.; Nijhoff, F. W. Quantum variational principle and quantum multiform structure: the case of quadratic Lagrangians. (English) Zbl 1441.81100 Nucl. Phys., B 947, Article ID 114686, 39 p. (2019). Reviewer: Panagiotis Koumantos (Athens) MSC: 81Q30 46T12 70S05 81Q80 81S40 35Q53 37K10 37K60 PDF BibTeX XML Cite \textit{S. D. King} and \textit{F. W. Nijhoff}, Nucl. Phys., B 947, Article ID 114686, 39 p. (2019; Zbl 1441.81100) Full Text: DOI arXiv OpenURL
Storchak, S. N. The Poincaré variational principle in the Lagrange-Poincaré reduction of mechanical systems with symmetry. (English) Zbl 1436.70004 Int. J. Geom. Methods Mod. Phys. 16, No. 5, Article ID 1950068, 28 p. (2019). MSC: 70H03 58E30 70H33 37J06 PDF BibTeX XML Cite \textit{S. N. Storchak}, Int. J. Geom. Methods Mod. Phys. 16, No. 5, Article ID 1950068, 28 p. (2019; Zbl 1436.70004) Full Text: DOI OpenURL
Sleigh, Duncan; Nijhoff, Frank; Caudrelier, Vincent A variational approach to Lax representations. (English) Zbl 1423.37059 J. Geom. Phys. 142, 66-79 (2019). Reviewer: Tihomir Valchev (Sofia) MSC: 37K05 37K10 70S05 PDF BibTeX XML Cite \textit{D. Sleigh} et al., J. Geom. Phys. 142, 66--79 (2019; Zbl 1423.37059) Full Text: DOI arXiv Link OpenURL
Zhou, Yuan; Manukure, Solomon Complexiton solutions to the Hirota-Satsuma-Ito equation. (English) Zbl 1411.37060 Math. Methods Appl. Sci. 42, No. 7, 2344-2351 (2019). MSC: 37K15 37K05 37K10 35Q53 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{S. Manukure}, Math. Methods Appl. Sci. 42, No. 7, 2344--2351 (2019; Zbl 1411.37060) Full Text: DOI OpenURL
Alvarez-Romero, Isaac A general uncertainty principle for partial differential equations. (English) Zbl 1416.35234 J. Math. Anal. Appl. 475, No. 1, 999-1018 (2019). MSC: 35Q55 35Q53 35Q41 35R09 37K15 47J20 PDF BibTeX XML Cite \textit{I. Alvarez-Romero}, J. Math. Anal. Appl. 475, No. 1, 999--1018 (2019; Zbl 1416.35234) Full Text: DOI arXiv OpenURL
Migórski, StanisŁaw; Sofonea, Mircea; Zeng, Shengda Well-posedness of history-dependent sweeping processes. (English) Zbl 1412.49055 SIAM J. Math. Anal. 51, No. 2, 1082-1107 (2019). MSC: 49K40 49M25 47N70 35L15 35L86 35L87 74M10 35D30 70H25 70H20 70H15 PDF BibTeX XML Cite \textit{S. Migórski} et al., SIAM J. Math. Anal. 51, No. 2, 1082--1107 (2019; Zbl 1412.49055) Full Text: DOI OpenURL
Friedman, Yaakov; Scarr, Tzvi; Steiner, Joseph A geometric relativistic dynamics under any conservative force. (English) Zbl 1408.83008 Int. J. Geom. Methods Mod. Phys. 16, No. 1, Article ID 1950015, 17 p. (2019). MSC: 83C05 83C30 83C10 70A05 70B05 70H40 53Z05 PDF BibTeX XML Cite \textit{Y. Friedman} et al., Int. J. Geom. Methods Mod. Phys. 16, No. 1, Article ID 1950015, 17 p. (2019; Zbl 1408.83008) Full Text: DOI arXiv OpenURL
Paimushin, V. N. Nonlinear theory of sandwich shells with a transversely soft core containing delamination zones and edge support diaphragm. (English. Russian original) Zbl 1457.74131 Mech. Solids 53, Suppl. 1, 76-87 (2018); translation from Prikl. Mat. Mekh. 82, No. 1, 44-57 (2018). MSC: 74K25 74E30 PDF BibTeX XML Cite \textit{V. N. Paimushin}, Mech. Solids 53, 76--87 (2018; Zbl 1457.74131); translation from Prikl. Mat. Mekh. 82, No. 1, 44--57 (2018) Full Text: DOI OpenURL
Lv, Ying; Tang, Chunlei; Guo, Boling Ground state solution for a class fractional Hamiltonian systems. (English) Zbl 1459.37055 J. Appl. Anal. Comput. 8, No. 2, 620-648 (2018). MSC: 37J51 34A08 58E05 PDF BibTeX XML Cite \textit{Y. Lv} et al., J. Appl. Anal. Comput. 8, No. 2, 620--648 (2018; Zbl 1459.37055) Full Text: DOI OpenURL
Matsyuk, R. Ya. Relativistic mechanics of constant curvature. (Ukrainian, English) Zbl 1438.83005 Mat. Metody Fiz.-Mekh. Polya 61, No. 1, 101-115 (2018). Reviewer: Anatoly Martynyuk (Kyïv) MSC: 83E05 70H40 PDF BibTeX XML Cite \textit{R. Ya. Matsyuk}, Mat. Metody Fiz.-Mekh. Polya 61, No. 1, 101--115 (2018; Zbl 1438.83005) Full Text: arXiv OpenURL
Zhao, Bao Jun; Wang, Ru Yun; Sun, Wen Jin; Yang, Hong Wei Combined ZK-mzk equation for Rossby solitary waves with complete Coriolis force and its conservation laws as well as exact solutions. (English) Zbl 1445.35280 Adv. Difference Equ. 2018, Paper No. 42, 16 p. (2018). MSC: 35Q51 35C08 37K40 37K45 PDF BibTeX XML Cite \textit{B. J. Zhao} et al., Adv. Difference Equ. 2018, Paper No. 42, 16 p. (2018; Zbl 1445.35280) Full Text: DOI OpenURL
Jóźwikowski, Michał; Rotkiewicz, Mikołaj Higher-order analogs of Lie algebroids via vector bundle comorphisms. (English) Zbl 1407.58003 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 135, 46 p. (2018). Reviewer: Marta Macho Stadler (Leioa) MSC: 58A20 58A50 58H05 22A22 70G65 58E30 70H50 PDF BibTeX XML Cite \textit{M. Jóźwikowski} and \textit{M. Rotkiewicz}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 135, 46 p. (2018; Zbl 1407.58003) Full Text: DOI arXiv OpenURL
Tian, X.; Zhang, Y. Noether’s theorem and its inverse of Birkhoffian system in event space based on Herglotz variational problem. (English) Zbl 1431.70013 Int. J. Theor. Phys. 57, No. 3, 887-897 (2018). MSC: 70S10 49K10 37J51 70H30 81Q80 PDF BibTeX XML Cite \textit{X. Tian} and \textit{Y. Zhang}, Int. J. Theor. Phys. 57, No. 3, 887--897 (2018; Zbl 1431.70013) Full Text: DOI OpenURL
Wu, Feng; Zhong, Wanxie On displacement shallow water wave equation and symplectic solution. (English) Zbl 1439.76016 Comput. Methods Appl. Mech. Eng. 318, 431-455 (2017). MSC: 76B15 65M60 65P10 76M10 PDF BibTeX XML Cite \textit{F. Wu} and \textit{W. Zhong}, Comput. Methods Appl. Mech. Eng. 318, 431--455 (2017; Zbl 1439.76016) Full Text: DOI OpenURL
Elboree, Mohammed K. Conservation laws, soliton solutions for modified Camassa-Holm equation and \((2+1)\)-dimensional ZK-BBM equation. (English) Zbl 1377.37095 Nonlinear Dyn. 89, No. 4, 2979-2994 (2017). MSC: 37K10 35C08 PDF BibTeX XML Cite \textit{M. K. Elboree}, Nonlinear Dyn. 89, No. 4, 2979--2994 (2017; Zbl 1377.37095) Full Text: DOI OpenURL
Grüne, Lars; Le, Thuy T. T. A double-sided dynamic programming approach to the minimum time problem and its numerical approximation. (English) Zbl 1372.65193 Appl. Numer. Math. 121, 68-81 (2017). MSC: 65K10 49L20 35F21 49J20 49M25 PDF BibTeX XML Cite \textit{L. Grüne} and \textit{T. T. T. Le}, Appl. Numer. Math. 121, 68--81 (2017; Zbl 1372.65193) Full Text: DOI OpenURL
Colombo, Leonardo Second-order constrained variational problems on Lie algebroids: applications to optimal control. (English) Zbl 1410.70020 J. Geom. Mech. 9, No. 1, 1-45 (2017). MSC: 70H25 70H30 70H50 37J15 53D17 49K21 PDF BibTeX XML Cite \textit{L. Colombo}, J. Geom. Mech. 9, No. 1, 1--45 (2017; Zbl 1410.70020) Full Text: DOI arXiv OpenURL
Rasin, Alexander G.; Schiff, Jeremy Bäcklund transformations for the Camassa-Holm equation. (English) Zbl 1365.37054 J. Nonlinear Sci. 27, No. 1, 45-69 (2017). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 37K35 37K05 37K10 35C08 35C07 70S10 PDF BibTeX XML Cite \textit{A. G. Rasin} and \textit{J. Schiff}, J. Nonlinear Sci. 27, No. 1, 45--69 (2017; Zbl 1365.37054) Full Text: DOI arXiv OpenURL
Elyseeva, Julia On symplectic transformations of linear Hamiltonian differential systems without normality. (English) Zbl 1362.37106 Appl. Math. Lett. 68, 33-39 (2017). Reviewer: Cristian Lăzureanu (Timisoara) MSC: 37J10 37J45 53D22 70H15 70H05 PDF BibTeX XML Cite \textit{J. Elyseeva}, Appl. Math. Lett. 68, 33--39 (2017; Zbl 1362.37106) Full Text: DOI OpenURL
Vecchiato, Alberto Variational approach to gravity field theories. From Newton to Einstein and beyond. (English) Zbl 1369.83001 Undergraduate Lecture Notes in Physics. Cham: Springer (ISBN 978-3-319-51209-9/pbk; 978-3-319-51211-2/ebook). xii, 361 p. (2017). Reviewer: Hans-Jürgen Schmidt (Potsdam) MSC: 83-01 83A05 83C05 00A79 83-03 01A60 83D05 70H40 53Z05 PDF BibTeX XML Cite \textit{A. Vecchiato}, Variational approach to gravity field theories. From Newton to Einstein and beyond. Cham: Springer (2017; Zbl 1369.83001) Full Text: DOI OpenURL
Ishikawa, Ai; Yaguchi, Takaharu Application of the variational principle to deriving energy-preserving schemes for the Hamilton equation. (English) Zbl 1412.65238 JSIAM Lett. 8, 53-56 (2016). MSC: 65P10 65M06 35A15 37J99 37C80 PDF BibTeX XML Cite \textit{A. Ishikawa} and \textit{T. Yaguchi}, JSIAM Lett. 8, 53--56 (2016; Zbl 1412.65238) Full Text: DOI OpenURL
Parattu, Krishnamohan; Chakraborty, Sumanta; Majhi, Bibhas Ranjan; Padmanabhan, T. A boundary term for the gravitational action with null boundaries. (English) Zbl 1386.83018 Gen. Relativ. Gravitation 48, No. 7, Paper No. 94, 28 p. (2016). MSC: 83C05 53Z05 83C40 70H40 PDF BibTeX XML Cite \textit{K. Parattu} et al., Gen. Relativ. Gravitation 48, No. 7, Paper No. 94, 28 p. (2016; Zbl 1386.83018) Full Text: DOI arXiv OpenURL
Ootsuka, Takayoshi; Ishida, Muneyuki; Tanaka, Erico; Yahagi, Ryoko Variational principle of relativistic perfect fluid. (English) Zbl 1354.83011 Classical Quantum Gravity 33, No. 24, Article ID 245007, 7 p. (2016). MSC: 83C05 83C55 53B40 76Y05 70H40 PDF BibTeX XML Cite \textit{T. Ootsuka} et al., Classical Quantum Gravity 33, No. 24, Article ID 245007, 7 p. (2016; Zbl 1354.83011) Full Text: DOI arXiv OpenURL
Liu, Changxin; Pei, Lijun; Xia, Lili Discretization and integration theory of the Kepler system. (Chinese. English summary) Zbl 1363.70019 J. Zhengzhou Univ., Nat. Sci. Ed. 48, No. 2, 29-33 (2016). MSC: 70H33 70H30 65P10 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Zhengzhou Univ., Nat. Sci. Ed. 48, No. 2, 29--33 (2016; Zbl 1363.70019) Full Text: DOI OpenURL
Zhang, Yi Theory of canonical transformation for a fractional mechanical system. (Chinese. English summary) Zbl 1363.70014 Acta Math. Appl. Sin. 39, No. 2, 249-260 (2016). MSC: 70H15 70H25 26A33 34A08 PDF BibTeX XML Cite \textit{Y. Zhang}, Acta Math. Appl. Sin. 39, No. 2, 249--260 (2016; Zbl 1363.70014) OpenURL
Jia, Qiuli; Wu, Huibin; Mei, Fengxiang Noether symmetries and conserved quantities for fractional forced Birkhoffian systems. (English) Zbl 1359.37130 J. Math. Anal. Appl. 442, No. 2, 782-795 (2016). MSC: 37K05 35R11 49S05 26A33 70H33 PDF BibTeX XML Cite \textit{Q. Jia} et al., J. Math. Anal. Appl. 442, No. 2, 782--795 (2016; Zbl 1359.37130) Full Text: DOI OpenURL
Demoures, François; Gay-Balmaz, François; Ratiu, Tudor S. Multisymplectic variational integrators and space/time symplecticity. (English) Zbl 1338.65271 Anal. Appl., Singap. 14, No. 3, 341-391 (2016). MSC: 65P10 37M15 37K05 70H25 70S05 70S10 74K10 PDF BibTeX XML Cite \textit{F. Demoures} et al., Anal. Appl., Singap. 14, No. 3, 341--391 (2016; Zbl 1338.65271) Full Text: DOI arXiv OpenURL
Liu, Hong-Yan; He, Ji-Huan; Li, Zhi-Min Lagrangians of the (\(2+1\))-dimensional KP equation with variable coefficients and cross terms. (English) Zbl 1333.35238 J. Nonlinear Sci. Appl. 9, No. 3, 870-872 (2016). Reviewer: Piotr Biler (Wroclaw) MSC: 35Q53 35A15 PDF BibTeX XML Cite \textit{H.-Y. Liu} et al., J. Nonlinear Sci. Appl. 9, No. 3, 870--872 (2016; Zbl 1333.35238) Full Text: DOI Link OpenURL
Bolotin, Sergey V.; Kozlov, Valery V. Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney’s inverted pendulum problem. (English. Russian original) Zbl 1367.37053 Izv. Math. 79, No. 5, 894-901 (2015); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 79, No. 5, 39-46 (2015). MSC: 37J45 70H25 70H30 PDF BibTeX XML Cite \textit{S. V. Bolotin} and \textit{V. V. Kozlov}, Izv. Math. 79, No. 5, 894--901 (2015; Zbl 1367.37053); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 79, No. 5, 39--46 (2015) Full Text: DOI OpenURL
Volná, Jana; Urban, Zbyněk First-order variational sequences in field theory. (English) Zbl 1337.49065 Zenkov, Dmitry V. (ed.), The inverse problem of the calculus of variations. Local and global theory. Amsterdam: Atlantis Press (ISBN 978-94-6239-108-6/hbk; 978-94-6239-109-3/ebook). Atlantis Studies in Variational Geometry 2, 215-284 (2015). MSC: 49N45 49J05 58A15 58E30 70S05 PDF BibTeX XML Cite \textit{J. Volná} and \textit{Z. Urban}, Atlantis Stud. Var. Geom. 2, 215--284 (2015; Zbl 1337.49065) Full Text: DOI OpenURL
Ruz, Soumendranath; Sarkar, Kaushik; Sk, Nayem; Kumar Sanyal, Abhik Validating variational principle for higher order theory of gravity. (English) Zbl 1330.83031 Mod. Phys. Lett. A 30, No. 24, Article ID 1550119, 10 p. (2015). MSC: 83D05 83C15 70H33 70H25 PDF BibTeX XML Cite \textit{S. Ruz} et al., Mod. Phys. Lett. A 30, No. 24, Article ID 1550119, 10 p. (2015; Zbl 1330.83031) Full Text: DOI arXiv OpenURL
Ebrahimzadeh, Zahra; Leok, Melvin; Mahzoon, Mojtaba A novel variational formulation for thermoelastic problems. (English) Zbl 1334.74007 Commun. Nonlinear Sci. Numer. Simul. 22, No. 1-3, 263-268 (2015). MSC: 74A15 70S05 PDF BibTeX XML Cite \textit{Z. Ebrahimzadeh} et al., Commun. Nonlinear Sci. Numer. Simul. 22, No. 1--3, 263--268 (2015; Zbl 1334.74007) Full Text: DOI OpenURL
Martínez, Eduardo Higher-order variational calculus on Lie algebroids. (English) Zbl 1353.70048 J. Geom. Mech. 7, No. 1, 81-108 (2015). MSC: 70H50 70H25 70H30 37J15 58K05 70G45 70H03 37K05 PDF BibTeX XML Cite \textit{E. Martínez}, J. Geom. Mech. 7, No. 1, 81--108 (2015; Zbl 1353.70048) Full Text: DOI arXiv OpenURL
Dobrokhotov, S. Yu.; Minenkov, D. S.; Rouleux, M. The Maupertuis-Jacobi principle for Hamiltonians of the form \(F(x,|p|)\) in two-dimensional stationary semiclassical problems. (English. Russian original) Zbl 1360.37159 Math. Notes 97, No. 1, 42-49 (2015); translation from Mat. Zametki 97, No. 1, 48-57 (2015). MSC: 37K05 35J10 35Q41 PDF BibTeX XML Cite \textit{S. Yu. Dobrokhotov} et al., Math. Notes 97, No. 1, 42--49 (2015; Zbl 1360.37159); translation from Mat. Zametki 97, No. 1, 48--57 (2015) Full Text: DOI OpenURL
Huilgol, Raja R. Fluid mechanics of viscoplasticity. (English) Zbl 1328.76001 Berlin: Springer (ISBN 978-3-662-45616-3/hbk; 978-3-662-45617-0/ebook). xvii, 276 p. (2015). Reviewer: Valeriu Al. Sava (Paris) MSC: 76-01 74A05 76D27 PDF BibTeX XML Cite \textit{R. R. Huilgol}, Fluid mechanics of viscoplasticity. Berlin: Springer (2015; Zbl 1328.76001) Full Text: DOI OpenURL
Llibre, Jaume; Ramírez, Rafael; Sadovskaia, Natalia A new approach to the vakonomic mechanics. (English) Zbl 1345.70020 Nonlinear Dyn. 78, No. 3, 2219-2247 (2014). MSC: 70F25 70H30 37J60 37N05 49N45 49S05 PDF BibTeX XML Cite \textit{J. Llibre} et al., Nonlinear Dyn. 78, No. 3, 2219--2247 (2014; Zbl 1345.70020) Full Text: DOI arXiv Link OpenURL
Chen, Ju; Shu, Fangping; Zhang, Yi A study of conservation laws of nonconservative mechanical systems in phase space based on a differential variational principle. (Chinese. English summary) Zbl 1313.70014 J. Suzhou Univ. Sci. Technol., Nat. Sci. 31, No. 2, 13-16 (2014). MSC: 70H33 70H30 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Suzhou Univ. Sci. Technol., Nat. Sci. 31, No. 2, 13--16 (2014; Zbl 1313.70014) OpenURL
Kovalev, V. A.; Radaev, Yu. N. On a form of the first variation of the action integral over a varied domain. (Russian. English summary) Zbl 1301.70017 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 14, No. 2, 199-209 (2014). MSC: 70S05 49S05 PDF BibTeX XML Cite \textit{V. A. Kovalev} and \textit{Yu. N. Radaev}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 14, No. 2, 199--209 (2014; Zbl 1301.70017) Full Text: MNR OpenURL
Lingam, M.; Morrison, P. J. The action principle for generalized fluid motion including gyroviscosity. (English) Zbl 1301.70012 Phys. Lett., A 378, No. 47, 3526-3532 (2014). MSC: 70H30 70H33 70H25 76W05 PDF BibTeX XML Cite \textit{M. Lingam} and \textit{P. J. Morrison}, Phys. Lett., A 378, No. 47, 3526--3532 (2014; Zbl 1301.70012) Full Text: DOI arXiv OpenURL
Uderzo, Amos Localizing vector optimization problems with application to welfare economics. (English) Zbl 1298.58013 Set-Valued Var. Anal. 22, No. 2, 483-501 (2014). MSC: 58E17 47N10 90C29 90C48 91B15 PDF BibTeX XML Cite \textit{A. Uderzo}, Set-Valued Var. Anal. 22, No. 2, 483--501 (2014; Zbl 1298.58013) Full Text: DOI arXiv OpenURL
Levi, Mark Classical mechanics with calculus of variations and optimal control. An intuitive introduction. (English) Zbl 1296.70001 Student Mathematical Library 69. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-9138-4/pbk). xx, 299 p. (2014). Reviewer: Franz Selig (Wien) MSC: 70-01 70Hxx 70Q05 70G75 49S05 PDF BibTeX XML Cite \textit{M. Levi}, Classical mechanics with calculus of variations and optimal control. An intuitive introduction. Providence, RI: American Mathematical Society (AMS) (2014; Zbl 1296.70001) OpenURL
García-Meca, Carlos; Tung, Michael M. The variational principle in transformation optics engineering and some applications. (English) Zbl 1305.78003 Math. Comput. Modelling 57, No. 7-8, 1773-1779 (2013). MSC: 78A05 PDF BibTeX XML Cite \textit{C. García-Meca} and \textit{M. M. Tung}, Math. Comput. Modelling 57, No. 7--8, 1773--1779 (2013; Zbl 1305.78003) Full Text: DOI OpenURL
Gao, Qiang; Peng, Haijun; Zhang, Hongwu; Zhong, Wanxie The symplectic algorithms for Hamiltonian dynamic systems based on a new variational principle. III: The numerical examples. (Chinese. English summary) Zbl 1299.70035 Chin. J. Comput. Mech. 30, No. 4, 473-478 (2013). MSC: 70H30 70H15 37M15 70H06 65P10 PDF BibTeX XML Cite \textit{Q. Gao} et al., Chin. J. Comput. Mech. 30, No. 4, 473--478 (2013; Zbl 1299.70035) Full Text: DOI OpenURL
Gao, Qiang; Peng, Haijun; Zhang, Hongwu; Zhong, Wanxie The symplectic algorithms for Hamiltonian dynamic systems based on a new variational principle. II: The proof of the symplecticity. (Chinese. English summary) Zbl 1299.70034 Chin. J. Comput. Mech. 30, No. 4, 468-472 (2013). MSC: 70H30 70H15 37M15 70H06 65P10 PDF BibTeX XML Cite \textit{Q. Gao} et al., Chin. J. Comput. Mech. 30, No. 4, 468--472 (2013; Zbl 1299.70034) Full Text: DOI OpenURL
Gao, Qiang; Peng, Haijun; Zhang, Hongwu; Zhong, Wanxie Symplectic algorithms for Hamiltonian dynamical systems based on a new variational principle. I: The variational principle and the algorithms. (Chinese. English summary) Zbl 1299.70033 Chin. J. Comput. Mech. 30, No. 4, 461-467 (2013). MSC: 70H30 70H15 37M15 70H06 65P10 PDF BibTeX XML Cite \textit{Q. Gao} et al., Chin. J. Comput. Mech. 30, No. 4, 461--467 (2013; Zbl 1299.70033) Full Text: DOI OpenURL
Aubin, Jean-Pierre Chaperoning state evolutions by variable durations. (English) Zbl 1357.49109 SIAM J. Control Optim. 51, No. 3, 2081-2101 (2013). MSC: 49L20 49J53 90B20 49L25 PDF BibTeX XML Cite \textit{J.-P. Aubin}, SIAM J. Control Optim. 51, No. 3, 2081--2101 (2013; Zbl 1357.49109) Full Text: DOI OpenURL
Adly, Samir; Brogliato, Bernard; Le, Ba Khiet Well-posedness, robustness, and stability analysis of a set-valued controller for Lagrangian systems. (English) Zbl 1335.49027 SIAM J. Control Optim. 51, No. 2, 1592-1614 (2013). MSC: 49J53 34G25 93D20 PDF BibTeX XML Cite \textit{S. Adly} et al., SIAM J. Control Optim. 51, No. 2, 1592--1614 (2013; Zbl 1335.49027) Full Text: DOI Link OpenURL
Jóźwikowski, Michał Jacobi vector fields for Lagrangian systems on algebroids. (English) Zbl 1387.70029 Int. J. Geom. Methods Mod. Phys. 10, No. 5, Article ID 1350011, 35 p. (2013). MSC: 70S05 17B99 53D17 70H03 70H25 PDF BibTeX XML Cite \textit{M. Jóźwikowski}, Int. J. Geom. Methods Mod. Phys. 10, No. 5, Article ID 1350011, 35 p. (2013; Zbl 1387.70029) Full Text: DOI arXiv OpenURL
Liero, Matthias; Stefanelli, Ulisse A new minimum principle for Lagrangian mechanics. (English) Zbl 1358.70027 J. Nonlinear Sci. 23, No. 2, 179-204 (2013). MSC: 70H30 70H03 49J15 65L05 70G75 PDF BibTeX XML Cite \textit{M. Liero} and \textit{U. Stefanelli}, J. Nonlinear Sci. 23, No. 2, 179--204 (2013; Zbl 1358.70027) Full Text: DOI OpenURL
He, Ji-Huan Lagrangians for self-adjoint and non-self-adjoint equations. (English) Zbl 1259.35109 Appl. Math. Lett. 26, No. 3, 373-375 (2013). MSC: 35K25 35K65 35K59 PDF BibTeX XML Cite \textit{J.-H. He}, Appl. Math. Lett. 26, No. 3, 373--375 (2013; Zbl 1259.35109) Full Text: DOI OpenURL
Kukudzhanov, Vladimir N. Numerical continuum mechanics. (English) Zbl 1318.76001 de Gruyter Studies in Mathematical Physics 15. Berlin: de Gruyter (ISBN 978-3-11-027322-9/hbk; 978-3-11-027338-0/ebook). xviii, 429 p. (2013). Reviewer: Georg Hebermehl (Berlin) MSC: 76-01 74-01 76M20 74S20 80A20 80M20 PDF BibTeX XML Cite \textit{V. N. Kukudzhanov}, Numerical continuum mechanics. Berlin: de Gruyter (2013; Zbl 1318.76001) Full Text: DOI OpenURL
Kosiński, W.; Perzyna, P. On consequences of the principle of stationary action for dissipative bodies. (English) Zbl 1291.74020 Arch. Mech. 64, No. 1, 95-106 (2012). MSC: 74A99 49S05 PDF BibTeX XML Cite \textit{W. Kosiński} and \textit{P. Perzyna}, Arch. Mech. 64, No. 1, 95--106 (2012; Zbl 1291.74020) Full Text: Link OpenURL
Atkinson, J.; Lobb, S. B.; Nijhoff, F. W. An integrable multicomponent quad-equation and its Lagrangian formulation. (English. Russian original) Zbl 1338.37109 Theor. Math. Phys. 173, No. 3, 1644-1653 (2012); translation from Teor. Mat. Fiz. 173, No. 3, 363-374 (2012). MSC: 37K60 37K10 35Q53 70S05 39A12 PDF BibTeX XML Cite \textit{J. Atkinson} et al., Theor. Math. Phys. 173, No. 3, 1644--1653 (2012; Zbl 1338.37109); translation from Teor. Mat. Fiz. 173, No. 3, 363--374 (2012) Full Text: DOI arXiv OpenURL
Rossi, Olga; Musilová, Jana On the inverse variational problem in nonholonomic mechanics. (English) Zbl 1271.49027 Commun. Math. 20, No. 1, 41-62 (2012). MSC: 49N45 58E30 70F25 PDF BibTeX XML Cite \textit{O. Rossi} and \textit{J. Musilová}, Commun. Math. 20, No. 1, 41--62 (2012; Zbl 1271.49027) Full Text: Link OpenURL
Chertock, Alina; Du Toit, Philip; Marsden, Jerrold Eldon Integration of the EPDiff equation by particle methods. (English) Zbl 1272.65079 ESAIM, Math. Model. Numer. Anal. 46, No. 3, 515-534 (2012). MSC: 65M75 37K10 65M25 74J35 76B15 PDF BibTeX XML Cite \textit{A. Chertock} et al., ESAIM, Math. Model. Numer. Anal. 46, No. 3, 515--534 (2012; Zbl 1272.65079) Full Text: DOI OpenURL
Campos, Cédric M.; Cendra, Hernán; Díaz, Viviana Alejandra; Martín de Diego, David Discrete Lagrange-d’Alembert-Poincaré equations for Euler’s disk. (English) Zbl 1279.37042 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 106, No. 1, 225-234 (2012). Reviewer: Albert Sheu (Lawrence) MSC: 37J60 53D17 53D20 70F25 70H45 PDF BibTeX XML Cite \textit{C. M. Campos} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 106, No. 1, 225--234 (2012; Zbl 1279.37042) Full Text: DOI OpenURL
Bobenko, Alexander I.; Günther, Felix On discrete integrable equations with convex variational principles. (English) Zbl 1402.37069 Lett. Math. Phys. 102, No. 2, 181-202 (2012). MSC: 37J35 70S05 PDF BibTeX XML Cite \textit{A. I. Bobenko} and \textit{F. Günther}, Lett. Math. Phys. 102, No. 2, 181--202 (2012; Zbl 1402.37069) Full Text: DOI arXiv OpenURL
Gay-Balmaz, François; Holm, Darryl D.; Meier, David M.; Ratiu, Tudor S.; Vialard, François-Xavier Invariant higher-order variational problems. II. (English) Zbl 1351.58009 J. Nonlinear Sci. 22, No. 4, 553-597 (2012). MSC: 58E05 49J27 58D19 70H25 70H30 70H45 70H50 PDF BibTeX XML Cite \textit{F. Gay-Balmaz} et al., J. Nonlinear Sci. 22, No. 4, 553--597 (2012; Zbl 1351.58009) Full Text: DOI arXiv OpenURL
Gay-Balmaz, François; Marsden, Jerrold E.; Ratiu, Tudor S. Reduced variational formulations in free boundary continuum mechanics. (English) Zbl 1260.37031 J. Nonlinear Sci. 22, No. 4, 463-497 (2012). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 37K05 37K65 35R35 37N15 74B20 37N10 74F10 76N99 PDF BibTeX XML Cite \textit{F. Gay-Balmaz} et al., J. Nonlinear Sci. 22, No. 4, 463--497 (2012; Zbl 1260.37031) Full Text: DOI Link OpenURL
Gay-Balmaz, François; Holm, Darryl D.; Putkaradze, Vakhtang; Ratiu, Tudor S. Exact geometric theory of dendronized polymer dynamics. (English) Zbl 1257.82113 Adv. Appl. Math. 48, No. 4, 535-574 (2012). MSC: 82D60 70H33 74B20 PDF BibTeX XML Cite \textit{F. Gay-Balmaz} et al., Adv. Appl. Math. 48, No. 4, 535--574 (2012; Zbl 1257.82113) Full Text: DOI arXiv OpenURL
Grabowska, Katarzyna A Tulczyjew triple for classical fields. (English) Zbl 1260.70015 J. Phys. A, Math. Theor. 45, No. 14, Article ID 145207, 35 p. (2012). Reviewer: Antonio De Nicola (Coimbra) MSC: 70S05 74G45 74G75 PDF BibTeX XML Cite \textit{K. Grabowska}, J. Phys. A, Math. Theor. 45, No. 14, Article ID 145207, 35 p. (2012; Zbl 1260.70015) Full Text: DOI arXiv OpenURL
Clamond, Didier; Dutykh, Denys Practical use of variational principles for modeling water waves. (English) Zbl 1431.76030 Physica D 241, No. 1, 25-36 (2012). MSC: 76B15 76M30 PDF BibTeX XML Cite \textit{D. Clamond} and \textit{D. Dutykh}, Physica D 241, No. 1, 25--36 (2012; Zbl 1431.76030) Full Text: DOI arXiv OpenURL
Ida, Cristian; Florea, Olivia On the Lagrangian formalism and the stability of a dynamical system. (English) Zbl 1340.37033 Acta Univ. Apulensis, Math. Inform., Spec. Iss., 359-369 (2011). MSC: 37C75 37D35 70F17 PDF BibTeX XML Cite \textit{C. Ida} and \textit{O. Florea}, Acta Univ. Apulensis, Math. Inform., 359--369 (2011; Zbl 1340.37033) OpenURL
Gorni, Gianluca; Zampieri, Gaetano Variational aspects of analytical mechanics. (English) Zbl 1268.49055 São Paulo J. Math. Sci. 5, No. 2, 249-279 (2011). MSC: 49S05 70H03 70H25 70H33 49K20 PDF BibTeX XML Cite \textit{G. Gorni} and \textit{G. Zampieri}, São Paulo J. Math. Sci. 5, No. 2, 249--279 (2011; Zbl 1268.49055) Full Text: DOI arXiv OpenURL
Brajerčík, Ján Invariant variational problems on principal bundles and conservation laws. (English) Zbl 1265.49049 Arch. Math., Brno 47, No. 5, 357-366 (2011). Reviewer: Martin Čadek (Brno) MSC: 49S05 58A10 58A20 49Q99 PDF BibTeX XML Cite \textit{J. Brajerčík}, Arch. Math., Brno 47, No. 5, 357--366 (2011; Zbl 1265.49049) OpenURL
Fatibene, Lorenzo; Francaviglia, Mauro; Mercadante Silvio About boundary terms in higher order theories. (English) Zbl 1253.58012 Commun. Math. 19, No. 2, 129-136 (2011). MSC: 58E50 58E30 49S05 70S05 70S10 PDF BibTeX XML Cite \textit{L. Fatibene} et al., Commun. Math. 19, No. 2, 129--136 (2011; Zbl 1253.58012) Full Text: arXiv EuDML OpenURL
Dobrokhotov, Sergey; Rouleux, Michel The semi-classical Maupertuis-Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory. (English) Zbl 1242.37042 Asymptotic Anal. 74, No. 1-2, 33-73 (2011). MSC: 37J45 76B15 53D12 35J10 37N10 PDF BibTeX XML Cite \textit{S. Dobrokhotov} and \textit{M. Rouleux}, Asymptotic Anal. 74, No. 1--2, 33--73 (2011; Zbl 1242.37042) Full Text: Link OpenURL
Ellis, David C. P.; Gay-Balmaz, François; Holm, Darryl D.; Ratiu, Tudor S. Lagrange-Poincaré field equations. (English) Zbl 1253.70031 J. Geom. Phys. 61, No. 11, 2120-2146 (2011). Reviewer: Giovanni Giachetta (Camerino) MSC: 70S05 70S10 PDF BibTeX XML Cite \textit{D. C. P. Ellis} et al., J. Geom. Phys. 61, No. 11, 2120--2146 (2011; Zbl 1253.70031) Full Text: DOI arXiv OpenURL
Udriste, Constantin; Bejenaru, Andreea Multitime optimal control with area integral costs on boundary. (English) Zbl 1220.49003 Balkan J. Geom. Appl. 16, No. 2, 138-154 (2011). MSC: 49J20 49J40 49K15 70H06 37J35 PDF BibTeX XML Cite \textit{C. Udriste} and \textit{A. Bejenaru}, Balkan J. Geom. Appl. 16, No. 2, 138--154 (2011; Zbl 1220.49003) Full Text: arXiv EMIS OpenURL
Holm, Darryl D. Geometric mechanics. Part I: Dynamics and symmetry. 2nd ed. (English) Zbl 1227.70001 London: Imperial College Press (ISBN 978-1-84816-774-2/hbk; 978-1-84816-775-9/pbk; 978-1-84816-776-6/ebook). xxiv, 441 p. (2011). MSC: 70-01 70H33 70G45 70G65 70G75 PDF BibTeX XML Cite \textit{D. D. Holm}, Geometric mechanics. Part I: Dynamics and symmetry. 2nd ed. London: Imperial College Press (2011; Zbl 1227.70001) Full Text: DOI OpenURL
Su, Hongling; Qin, Mengzhao; Wang, Yushun; Scherer, Rudolf Multi-symplectic Birkhoffian structure for PDEs with dissipation terms. (English) Zbl 1237.37055 Phys. Lett., A 374, No. 24, 2410-2416 (2010). MSC: 37M15 37K05 37K99 46L57 35A15 49M25 49S05 PDF BibTeX XML Cite \textit{H. Su} et al., Phys. Lett., A 374, No. 24, 2410--2416 (2010; Zbl 1237.37055) Full Text: DOI arXiv OpenURL
Cai, Y. C.; Paik, J. K.; Atluri, S. N. A triangular plate element with drilling degrees of freedom, for large rotation analyses of built-up plate/shell structures, based on the Reissner variational principle and the von Kármán nonlinear theory in the co-rotational reference frame. (English) Zbl 1231.74403 CMES, Comput. Model. Eng. Sci. 61, No. 3, 273-312 (2010). MSC: 74S05 74K20 65N30 PDF BibTeX XML Cite \textit{Y. C. Cai} et al., CMES, Comput. Model. Eng. Sci. 61, No. 3, 273--312 (2010; Zbl 1231.74403) Full Text: DOI OpenURL
Gao, Qiang; Tan, Shujun; Zhang, Hongwu; Lin, Jiahao; Zhong, Wanxie Symplectic method based on dual variational principle and independent displacement variables at two ends. (Chinese. English summary) Zbl 1240.70022 Chin. J. Comput. Mech. 27, No. 5, 745-751 (2010). MSC: 70H15 70H30 PDF BibTeX XML Cite \textit{Q. Gao} et al., Chin. J. Comput. Mech. 27, No. 5, 745--751 (2010; Zbl 1240.70022) OpenURL