Bi, Lijuan; Cohl, Howard S.; Volkmer, Hans Expansion for a fundamental solution of Laplace’s equation in flat-ring cyclide coordinates. (English) Zbl 07557707 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 041, 31 p. (2022). MSC: 35J05 35A08 33C05 33C10 33C15 33C20 33C45 33C47 33C55 33C75 PDF BibTeX XML Cite \textit{L. Bi} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 041, 31 p. (2022; Zbl 07557707) Full Text: DOI OpenURL
Zhang, Li-Ping; Li, Zi-Cai; Lee, Ming-Gong; Huang, Hung-Tsai Stability analysis of the method of fundamental solutions with smooth closed pseudo-boundaries for Laplace’s equation: better pseudo-boundaries. (English) Zbl 07490870 Numer. Algorithms 89, No. 3, 1183-1222 (2022). MSC: 65N80 65N12 35J05 PDF BibTeX XML Cite \textit{L.-P. Zhang} et al., Numer. Algorithms 89, No. 3, 1183--1222 (2022; Zbl 07490870) Full Text: DOI OpenURL
Gumerov, Nail A.; Duraiswami, Ramani Laplace Green’s functions for infinite ground planes with local roughness. (English) Zbl 07516432 J. Comput. Phys. 447, Article ID 110673, 20 p. (2021). MSC: 35Axx 35Jxx 65Yxx PDF BibTeX XML Cite \textit{N. A. Gumerov} and \textit{R. Duraiswami}, J. Comput. Phys. 447, Article ID 110673, 20 p. (2021; Zbl 07516432) Full Text: DOI OpenURL
Sebbar, Ahmed; Struppa, Daniele; Wone, Oumar Geometric methods in partial differential equations. (English) Zbl 1479.14070 Milan J. Math. 89, No. 2, 453-484 (2021). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14N05 14H05 35C15 PDF BibTeX XML Cite \textit{A. Sebbar} et al., Milan J. Math. 89, No. 2, 453--484 (2021; Zbl 1479.14070) Full Text: DOI arXiv OpenURL
Li, Xiang Jordan-form special solutions corresponding to arbitrary anti-plane shear forces in polynomial forms imposed on bimaterial interfacial crack surfaces. (English) Zbl 1481.74663 Appl. Math. Modelling 100, 676-688 (2021). MSC: 74R10 PDF BibTeX XML Cite \textit{X. Li}, Appl. Math. Modelling 100, 676--688 (2021; Zbl 1481.74663) Full Text: DOI OpenURL
Pchelintseva, Irina Yur’evna; Litovka, Yuriĭ Vladimirovich Mathematical model and numerical scheme for calculation of electric fields in galvanic baths with non-conductive screen. (Russian. English summary) Zbl 1478.78051 Differ. Uravn. Protsessy Upr. 2021, No. 3, 85-97 (2021). MSC: 78A57 78A55 35J05 78M20 65H10 PDF BibTeX XML Cite \textit{I. Y. Pchelintseva} and \textit{Y. V. Litovka}, Differ. Uravn. Protsessy Upr. 2021, No. 3, 85--97 (2021; Zbl 1478.78051) Full Text: Link OpenURL
Zhang, Li-Ping; Li, Zi-Cai; Huang, Hung-Tsai; Lee, Ming-Gong Singularity problems from source functions as source nodes located near boundaries; numerical methods and removal techniques. (English) Zbl 07371670 Eng. Anal. Bound. Elem. 130, 300-321 (2021). MSC: 65N30 PDF BibTeX XML Cite \textit{L.-P. Zhang} et al., Eng. Anal. Bound. Elem. 130, 300--321 (2021; Zbl 07371670) Full Text: DOI OpenURL
Rezaiee-Pajand, M.; Aftabi S, A.; Kazemiyan, M. S. A family of cylindrical elements. (English) Zbl 07317957 Math. Comput. Simul. 168, 155-172 (2020). MSC: 82Dxx 82Cxx 65Nxx PDF BibTeX XML Cite \textit{M. Rezaiee-Pajand} et al., Math. Comput. Simul. 168, 155--172 (2020; Zbl 07317957) Full Text: DOI OpenURL
Dou, Fangfang; Zhang, Li-Ping; Li, Zi-Cai; Chen, C. S. Source nodes on elliptic pseudo-boundaries in the method of fundamental solutions for Laplace’s equation; selection of pseudo-boundaries. (English) Zbl 1437.65223 J. Comput. Appl. Math. 377, Article ID 112861, 22 p. (2020). MSC: 65N80 65N85 65N12 65N15 35J05 PDF BibTeX XML Cite \textit{F. Dou} et al., J. Comput. Appl. Math. 377, Article ID 112861, 22 p. (2020; Zbl 1437.65223) Full Text: DOI OpenURL
Lustri, Christopher J.; Green, Christopher C.; McCue, Scott W. Selection of a Hele-Shaw bubble via exponential asymptotics. (English) Zbl 1430.76153 SIAM J. Appl. Math. 80, No. 1, 289-311 (2020). MSC: 76D27 30E15 35R37 PDF BibTeX XML Cite \textit{C. J. Lustri} et al., SIAM J. Appl. Math. 80, No. 1, 289--311 (2020; Zbl 1430.76153) Full Text: DOI arXiv OpenURL
Dosiyev, Adiguzel A.; Sarikaya, Hediye On the difference method for approximation of second order derivatives of a solution of Laplace’s equation in a rectangular parallelepiped. (English) Zbl 07534312 Filomat 33, No. 2, 633-643 (2019). MSC: 65M06 65M12 65N06 PDF BibTeX XML Cite \textit{A. A. Dosiyev} and \textit{H. Sarikaya}, Filomat 33, No. 2, 633--643 (2019; Zbl 07534312) Full Text: DOI OpenURL
Dosiyev, Adiguzel; Reis, Rifat A fourth-order accurate difference Dirichlet problem for the approximate solution of Laplace’s equation with integral boundary condition. (English) Zbl 1485.65113 Adv. Difference Equ. 2019, Paper No. 340, 15 p. (2019). MSC: 65N06 65N12 65M06 65N15 35J05 PDF BibTeX XML Cite \textit{A. Dosiyev} and \textit{R. Reis}, Adv. Difference Equ. 2019, Paper No. 340, 15 p. (2019; Zbl 1485.65113) Full Text: DOI OpenURL
Assari, Pouria; Dehghan, Mehdi Application of thin plate splines for solving a class of boundary integral equations arisen from Laplace’s equations with nonlinear boundary conditions. (English) Zbl 07474822 Int. J. Comput. Math. 96, No. 1, 170-198 (2019). MSC: 45G05 65G99 35J65 74S25 PDF BibTeX XML Cite \textit{P. Assari} and \textit{M. Dehghan}, Int. J. Comput. Math. 96, No. 1, 170--198 (2019; Zbl 07474822) Full Text: DOI OpenURL
Assari, Pouria; Dehghan, Mehdi On the numerical solution of logarithmic boundary integral equations arising in Laplace’s equations based on the meshless local discrete collocation method. (English) Zbl 07408401 Adv. Appl. Math. Mech. 11, No. 4, 807-837 (2019). MSC: 65R20 65N38 65N30 45B05 65N15 PDF BibTeX XML Cite \textit{P. Assari} and \textit{M. Dehghan}, Adv. Appl. Math. Mech. 11, No. 4, 807--837 (2019; Zbl 07408401) Full Text: DOI OpenURL
Caubet, Fabien; Dardé, Jérémi; Godoy, Matías On the data completion problem and the inverse obstacle problem with partial Cauchy data for Laplace’s equation. (English) Zbl 1445.35325 ESAIM, Control Optim. Calc. Var. 25, Paper No. 30, 30 p. (2019). Reviewer: Elena V. Tabarintseva (Chelyabinsk) MSC: 35R30 49Q10 35N25 35R25 PDF BibTeX XML Cite \textit{F. Caubet} et al., ESAIM, Control Optim. Calc. Var. 25, Paper No. 30, 30 p. (2019; Zbl 1445.35325) Full Text: DOI HAL OpenURL
Da Silva, Curt; Herrmann, Felix A unified 2D/3D large-scale software environment for nonlinear inverse problems. (English) Zbl 1471.65179 ACM Trans. Math. Softw. 45, No. 1, Article No. 7, 35 p. (2019). MSC: 65N21 65Y15 PDF BibTeX XML Cite \textit{C. Da Silva} and \textit{F. Herrmann}, ACM Trans. Math. Softw. 45, No. 1, Article No. 7, 35 p. (2019; Zbl 1471.65179) Full Text: DOI arXiv OpenURL
Li, Jiayu; Wan, Fangshu Bôcher-type theorem on \(n\)-dimensional manifolds with conical metric. (English) Zbl 1429.58029 Proc. Am. Math. Soc. 147, No. 10, 4527-4538 (2019). Reviewer: Léonard Todjihounde (Abomey-Calavi) MSC: 58J05 35J15 PDF BibTeX XML Cite \textit{J. Li} and \textit{F. Wan}, Proc. Am. Math. Soc. 147, No. 10, 4527--4538 (2019; Zbl 1429.58029) Full Text: DOI OpenURL
Yang, Sibei Weighted \(L^p\) boundary value problems for Laplace’s equation on (semi-)convex domains. (English) Zbl 1418.35122 Taiwanese J. Math. 23, No. 4, 821-840 (2019). MSC: 35J25 35J05 42B25 PDF BibTeX XML Cite \textit{S. Yang}, Taiwanese J. Math. 23, No. 4, 821--840 (2019; Zbl 1418.35122) Full Text: DOI Euclid OpenURL
Gavrilov, S. V. Numerical method for solving an inverse problem for Laplace’s equation in a domain with an unknown inner boundary. (English. Russian original) Zbl 1422.65357 Comput. Math. Math. Phys. 59, No. 1, 59-65 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 1, 63-70 (2019). MSC: 65N21 65N20 35R30 35J05 65F22 PDF BibTeX XML Cite \textit{S. V. Gavrilov}, Comput. Math. Math. Phys. 59, No. 1, 59--65 (2019; Zbl 1422.65357); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 1, 63--70 (2019) Full Text: DOI OpenURL
de Melo Barcelos, Hercules; Loeffler, Carlos Friedrich The direct interpolation boundary element method applied to smoothly inhomogeneous Laplace’s problems. (English) Zbl 1464.65227 Eng. Anal. Bound. Elem. 105, 155-164 (2019). MSC: 65N38 35J05 PDF BibTeX XML Cite \textit{H. de Melo Barcelos} and \textit{C. F. Loeffler}, Eng. Anal. Bound. Elem. 105, 155--164 (2019; Zbl 1464.65227) Full Text: DOI OpenURL
Caubet, Fabien; Dambrine, Marc; Harbrecht, Helmut A new method for the data completion problem and application to obstacle detection. (English) Zbl 1423.35438 SIAM J. Appl. Math. 79, No. 1, 415-435 (2019). Reviewer: Matias Ruiz (London) MSC: 35R30 35R25 35N25 49M15 PDF BibTeX XML Cite \textit{F. Caubet} et al., SIAM J. Appl. Math. 79, No. 1, 415--435 (2019; Zbl 1423.35438) Full Text: DOI OpenURL
Martin, P. A. On the use of approximate fundamental solutions: connections with the method of fundamental solutions and the method of regularized stokeslets. (English) Zbl 1464.76100 Eng. Anal. Bound. Elem. 99, 23-28 (2019). MSC: 76M15 65N80 PDF BibTeX XML Cite \textit{P. A. Martin}, Eng. Anal. Bound. Elem. 99, 23--28 (2019; Zbl 1464.76100) Full Text: DOI OpenURL
Dosiyev, Adiguzel A.; Abdussalam, Ahlam On the high order convergence of the difference solution of Laplace’s equation in a rectangular parallelepiped. (English) Zbl 07461934 Filomat 32, No. 3, 893-901 (2018). MSC: 65M06 65M12 65M22 PDF BibTeX XML Cite \textit{A. A. Dosiyev} and \textit{A. Abdussalam}, Filomat 32, No. 3, 893--901 (2018; Zbl 07461934) Full Text: DOI OpenURL
Dosiyev, Adiguzel A.; Sarikaya, Hediye 14-point difference operator for the approximation of the first derivatives of a solution of Laplace’s equation in a rectangular parallelepiped. (English) Zbl 07461924 Filomat 32, No. 3, 791-800 (2018). MSC: 65M06 65M12 65M22 PDF BibTeX XML Cite \textit{A. A. Dosiyev} and \textit{H. Sarikaya}, Filomat 32, No. 3, 791--800 (2018; Zbl 07461924) Full Text: DOI OpenURL
Majić, Matt R. A.; Auguié, Baptiste; Le Ru, Eric C. Laplace’s equation for a point source near a sphere: improved internal solution using spheroidal harmonics. (English) Zbl 1481.78001 IMA J. Appl. Math. 83, No. 6, 895-907 (2018). MSC: 78A30 PDF BibTeX XML Cite \textit{M. R. A. Majić} et al., IMA J. Appl. Math. 83, No. 6, 895--907 (2018; Zbl 1481.78001) Full Text: DOI arXiv OpenURL
Zhang, Deyue; Sun, Fenglin; Lu, Linyan; Guo, Yukun A harmonic polynomial method with a regularization strategy for the boundary value problems of Laplace’s equation. (English) Zbl 1466.65169 Appl. Math. Lett. 79, 100-104 (2018). MSC: 65N20 65N12 35J05 35B65 PDF BibTeX XML Cite \textit{D. Zhang} et al., Appl. Math. Lett. 79, 100--104 (2018; Zbl 1466.65169) Full Text: DOI OpenURL
de Figueiredo, Djairo Guedes Fourier analysis and partial differential equations. 5th edition. (Análise de Fourier e equações diferenciais parciais.) (Portuguese) Zbl 1412.42001 Projeto Euclides. Rio de Janeiro: Instituto de Matemática Pura e Aplicada (IMPA) (ISBN 978-85-244-0428-3). viii, 276 p. (2018). MSC: 42-01 42A38 35A22 PDF BibTeX XML Cite \textit{D. G. de Figueiredo}, Análise de Fourier e equações diferenciais parciais (Portuguese). 5th edition. Rio de Janeiro: Instituto de Matemática Pura e Aplicada (IMPA) (2018; Zbl 1412.42001) OpenURL
Li, Hu; Huang, Jin High-accuracy quadrature methods for solving nonlinear boundary integral equations of axisymmetric Laplace’s equation. (English) Zbl 1413.65439 Comput. Appl. Math. 37, No. 5, 6838-6847 (2018). MSC: 65N38 65R20 65N15 65B05 PDF BibTeX XML Cite \textit{H. Li} and \textit{J. Huang}, Comput. Appl. Math. 37, No. 5, 6838--6847 (2018; Zbl 1413.65439) Full Text: DOI OpenURL
Chaouqui, F.; Ciaramella, G.; Gander, M. J.; Vanzan, T. On the scalability of classical one-level domain-decomposition methods. (English) Zbl 1406.65128 Vietnam J. Math. 46, No. 4, 1053-1088 (2018). MSC: 65N55 65F10 65N22 70-08 35J05 35J57 PDF BibTeX XML Cite \textit{F. Chaouqui} et al., Vietnam J. Math. 46, No. 4, 1053--1088 (2018; Zbl 1406.65128) Full Text: DOI OpenURL
Zieniuk, Eugeniusz; Kapturczak, Marta Modeling the shape of boundary using NURBS curves directly in modified boundary integral equations for Laplace’s equation. (English) Zbl 1432.65020 Comput. Appl. Math. 37, No. 4, 4835-4855 (2018). MSC: 65D07 65N38 65D17 PDF BibTeX XML Cite \textit{E. Zieniuk} and \textit{M. Kapturczak}, Comput. Appl. Math. 37, No. 4, 4835--4855 (2018; Zbl 1432.65020) Full Text: DOI OpenURL
Hishikawa, Yôsuke; Nishio, Masaharu; Yamada, Masahiro A system of conjugate functions on parabolic Bloch spaces. (English) Zbl 1429.35200 J. Math. Soc. Japan 70, No. 3, 1085-1102 (2018). Reviewer: Raymond Johnson (Columbia) MSC: 35R11 26A33 30H30 42B99 PDF BibTeX XML Cite \textit{Y. Hishikawa} et al., J. Math. Soc. Japan 70, No. 3, 1085--1102 (2018; Zbl 1429.35200) Full Text: DOI OpenURL
Cael, B. B.; Strong, Courtenay A Laplacian characterization of phytoplankton shape. (English) Zbl 1392.92052 J. Math. Biol. 76, No. 6, 1327-1338 (2018). MSC: 92C99 35J05 PDF BibTeX XML Cite \textit{B. B. Cael} and \textit{C. Strong}, J. Math. Biol. 76, No. 6, 1327--1338 (2018; Zbl 1392.92052) Full Text: DOI Link OpenURL
Carvalho, Camille; Khatri, Shilpa; Kim, Arnold D. Asymptotic analysis for close evaluation of layer potentials. (English) Zbl 1380.65396 J. Comput. Phys. 355, 327-341 (2018). MSC: 65N38 35J05 35J25 PDF BibTeX XML Cite \textit{C. Carvalho} et al., J. Comput. Phys. 355, 327--341 (2018; Zbl 1380.65396) Full Text: DOI arXiv Link OpenURL
Assari, Pouria; Dehghan, Mehdi A meshless Galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions. (English) Zbl 1380.65395 J. Comput. Appl. Math. 333, 362-381 (2018). MSC: 65N38 35J05 35J65 PDF BibTeX XML Cite \textit{P. Assari} and \textit{M. Dehghan}, J. Comput. Appl. Math. 333, 362--381 (2018; Zbl 1380.65395) Full Text: DOI OpenURL
Tajani, Chakir; Jouilik, Bouchta; Abouchabaka, Jaafar Numerical identification of Robin coefficient by iterative method. (English) Zbl 1377.65123 Palest. J. Math. 7, No. 1, 64-72 (2018). MSC: 65M32 35J05 65M60 PDF BibTeX XML Cite \textit{C. Tajani} et al., Palest. J. Math. 7, No. 1, 64--72 (2018; Zbl 1377.65123) Full Text: Link OpenURL
Assari, Pouria; Dehghan, Mehdi Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. (English) Zbl 1377.65158 Appl. Numer. Math. 123, 137-158 (2018). MSC: 65N38 35J05 35J65 65N12 65N15 PDF BibTeX XML Cite \textit{P. Assari} and \textit{M. Dehghan}, Appl. Numer. Math. 123, 137--158 (2018; Zbl 1377.65158) Full Text: DOI OpenURL
Assari, Pouria; Dehghan, Mehdi A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions. (English) Zbl 1426.65206 Appl. Math. Comput. 315, 424-444 (2017). MSC: 65R20 65N38 41A30 45A05 65N35 PDF BibTeX XML Cite \textit{P. Assari} and \textit{M. Dehghan}, Appl. Math. Comput. 315, 424--444 (2017; Zbl 1426.65206) Full Text: DOI OpenURL
Xue, Changfeng; Deng, Shaozhong Unified construction of Green’s functions for Poisson’s equation in inhomogeneous media with diffuse interfaces. (English) Zbl 1457.78005 J. Comput. Appl. Math. 326, 296-319 (2017). MSC: 78A30 65N80 35J05 PDF BibTeX XML Cite \textit{C. Xue} and \textit{S. Deng}, J. Comput. Appl. Math. 326, 296--319 (2017; Zbl 1457.78005) Full Text: DOI OpenURL
Auchmuty, Giles; Cho, Manki Steklov approximations of harmonic boundary value problems on planar regions. (English) Zbl 1366.65099 J. Comput. Appl. Math. 321, 302-313 (2017). MSC: 65N15 35J05 65N35 PDF BibTeX XML Cite \textit{G. Auchmuty} and \textit{M. Cho}, J. Comput. Appl. Math. 321, 302--313 (2017; Zbl 1366.65099) Full Text: DOI arXiv OpenURL
Lagache, T.; Holcman, D. Extended narrow escape with many windows for analyzing viral entry into the cell nucleus. (English) Zbl 1364.82044 J. Stat. Phys. 166, No. 2, 244-266 (2017). MSC: 82C31 35Q84 92C37 92C40 PDF BibTeX XML Cite \textit{T. Lagache} and \textit{D. Holcman}, J. Stat. Phys. 166, No. 2, 244--266 (2017; Zbl 1364.82044) Full Text: DOI HAL OpenURL
Volkov, E. A.; Dosiyev, A. A. On the numerical solution of a multilevel nonlocal problem. (English) Zbl 1359.65235 Mediterr. J. Math. 13, No. 5, 3589-3604 (2016). Reviewer: Petr Sváček (Praha) MSC: 65N06 65N15 35J05 PDF BibTeX XML Cite \textit{E. A. Volkov} and \textit{A. A. Dosiyev}, Mediterr. J. Math. 13, No. 5, 3589--3604 (2016; Zbl 1359.65235) Full Text: DOI OpenURL
Chapling, Richard A hypergeometric integral with applications to the fundamental solution of Laplace’s equation on hyperspheres. (English) Zbl 1348.35009 SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 079, 20 p. (2016). Reviewer: Pierluigi Vellucci (Roma) MSC: 35A08 35J05 31C12 33C05 33C20 PDF BibTeX XML Cite \textit{R. Chapling}, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 079, 20 p. (2016; Zbl 1348.35009) Full Text: DOI arXiv OpenURL
Fikioris, G.; Tsitsas, N. L. On convergence and inherent oscillations within computational methods employing fictitious sources. (English) Zbl 1443.65429 Comput. Math. Appl. 69, No. 7, 636-649 (2015). MSC: 65N80 65N12 78A25 PDF BibTeX XML Cite \textit{G. Fikioris} and \textit{N. L. Tsitsas}, Comput. Math. Appl. 69, No. 7, 636--649 (2015; Zbl 1443.65429) Full Text: DOI OpenURL
Ren, Qinlong; Chan, Cho Lik; Arvayo, Alberto L. A numerical study of 2D electrothermal flow using boundary element method. (English) Zbl 1443.76158 Appl. Math. Modelling 39, No. 9, 2777-2795 (2015). MSC: 76M15 PDF BibTeX XML Cite \textit{Q. Ren} et al., Appl. Math. Modelling 39, No. 9, 2777--2795 (2015; Zbl 1443.76158) Full Text: DOI OpenURL
Ren, Qinlong; Lik Chan, Cho Analytical evaluation of the BEM singular integrals for 3D Laplace and Stokes flow equations using coordinate transformation. (English) Zbl 1403.76101 Eng. Anal. Bound. Elem. 53, 1-8 (2015). MSC: 76M15 65N38 76D07 35Q30 PDF BibTeX XML Cite \textit{Q. Ren} and \textit{C. Lik Chan}, Eng. Anal. Bound. Elem. 53, 1--8 (2015; Zbl 1403.76101) Full Text: DOI OpenURL
Lee, Ming-Gong; Li, Zi-Cai; Huang, Hung-Tsai; Chiang, John Y. Neumann problems of Laplace’s equation in circular domains with circular holes by methods of field equations. (English) Zbl 1403.65168 Eng. Anal. Bound. Elem. 51, 156-173 (2015). MSC: 65N35 PDF BibTeX XML Cite \textit{M.-G. Lee} et al., Eng. Anal. Bound. Elem. 51, 156--173 (2015; Zbl 1403.65168) Full Text: DOI OpenURL
Dosiyev, Adiguzel; Celiker, Emine A fourth order block-hexagonal grid approximation for the solution of Laplace’s equation with singularities. (English) Zbl 1347.65160 Adv. Difference Equ. 2015, Paper No. 59, 17 p. (2015). MSC: 65N06 35J05 65N15 65N50 PDF BibTeX XML Cite \textit{A. Dosiyev} and \textit{E. Celiker}, Adv. Difference Equ. 2015, Paper No. 59, 17 p. (2015; Zbl 1347.65160) Full Text: DOI OpenURL
Crowdy, Darren A transform method for Laplace’s equation in multiply connected circular domains. (English) Zbl 1338.35357 IMA J. Appl. Math. 80, No. 6, 1902-1931 (2015). MSC: 35Q35 35J05 35J25 35A22 76A20 PDF BibTeX XML Cite \textit{D. Crowdy}, IMA J. Appl. Math. 80, No. 6, 1902--1931 (2015; Zbl 1338.35357) Full Text: DOI OpenURL
Crowdy, Darren Fourier-Mellin transforms for circular domains. (English) Zbl 1331.44001 Comput. Methods Funct. Theory 15, No. 4, 655-687 (2015). MSC: 44A15 42A38 35A22 35J05 PDF BibTeX XML Cite \textit{D. Crowdy}, Comput. Methods Funct. Theory 15, No. 4, 655--687 (2015; Zbl 1331.44001) Full Text: DOI OpenURL
Karageorghis, A.; Bin-Mohsin, B.; Lesnic, D.; Marin, L. Simultaneous numerical determination of a corroded boundary and its admittance. (English) Zbl 1326.65150 Inverse Probl. Sci. Eng. 23, No. 7, 1120-1137 (2015). MSC: 65N21 PDF BibTeX XML Cite \textit{A. Karageorghis} et al., Inverse Probl. Sci. Eng. 23, No. 7, 1120--1137 (2015; Zbl 1326.65150) Full Text: DOI Link OpenURL
Hale, Nicholas; Weideman, J. A. C. Contour integral solution of elliptic PDEs in cylindrical domains. (English) Zbl 1327.65042 SIAM J. Sci. Comput. 37, No. 6, A2630-A2655 (2015). MSC: 65D30 65F60 65N35 PDF BibTeX XML Cite \textit{N. Hale} and \textit{J. A. C. Weideman}, SIAM J. Sci. Comput. 37, No. 6, A2630--A2655 (2015; Zbl 1327.65042) Full Text: DOI OpenURL
Cheng, Pan; Lin, Zhi; Zhang, Wenzhong Five-order algorithms for solving Laplace’s Steklov eigenvalue on polygon by mechanical quadrature methods. (English) Zbl 1319.65108 J. Comput. Anal. Appl. 18, No. 1, 138-148 (2015). MSC: 65N25 65N38 35J05 65D15 65N12 PDF BibTeX XML Cite \textit{P. Cheng} et al., J. Comput. Anal. Appl. 18, No. 1, 138--148 (2015; Zbl 1319.65108) OpenURL
Fermo, Luisa; Laurita, Concetta A Nyström method for a boundary integral equation related to the Dirichlet problem on domains with corners. (English) Zbl 1325.65162 Numer. Math. 130, No. 1, 35-71 (2015). Reviewer: Ali Filiz (Aydin) MSC: 65N38 65N12 35J05 PDF BibTeX XML Cite \textit{L. Fermo} and \textit{C. Laurita}, Numer. Math. 130, No. 1, 35--71 (2015; Zbl 1325.65162) Full Text: DOI arXiv OpenURL
de Figueiredo, Djairo Guedes Fourier analysis and partial differential equations. 4th edition, 7th printing. (Análise de Fourier e equações diferenciais parciais.) (Portuguese) Zbl 1412.42002 Projeto Euclides. Rio de Janeiro: Instituto de Matemática Pura e Aplicada (IMPA) (ISBN 978-85-244-0120-6). 274 p. (2014). MSC: 42-01 42A38 35A22 PDF BibTeX XML Cite \textit{D. G. de Figueiredo}, Análise de Fourier e equações diferenciais parciais (Portuguese). 4th edition, 7th printing. Rio de Janeiro: Instituto de Matemática Pura e Aplicada (IMPA) (2014; Zbl 1412.42002) OpenURL
Hiptmair, Ralf; Jerez-Hanckes, Carlos; Urzúa-Torres, Carolina Mesh-independent operator preconditioning for boundary elements on open curves. (English) Zbl 1310.65155 SIAM J. Numer. Anal. 52, No. 5, 2295-2314 (2014). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N38 65N22 65F08 35J05 PDF BibTeX XML Cite \textit{R. Hiptmair} et al., SIAM J. Numer. Anal. 52, No. 5, 2295--2314 (2014; Zbl 1310.65155) Full Text: DOI OpenURL
Gselmann, Eszter Stability properties in some classes of second order partial differential equations. (English) Zbl 1307.35096 Result. Math. 65, No. 1-2, 95-103 (2014). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 35J05 35B35 PDF BibTeX XML Cite \textit{E. Gselmann}, Result. Math. 65, No. 1--2, 95--103 (2014; Zbl 1307.35096) Full Text: DOI OpenURL
Dosiyev, Adiguzel A.; Celiker, Emine Approximation on the hexagonal grid of the Dirichlet problem for Laplace’s equation. (English) Zbl 1308.65182 Bound. Value Probl. 2014, Paper No. 73, 19 p. (2014). MSC: 65N06 35J05 65N50 PDF BibTeX XML Cite \textit{A. A. Dosiyev} and \textit{E. Celiker}, Bound. Value Probl. 2014, Paper No. 73, 19 p. (2014; Zbl 1308.65182) Full Text: DOI OpenURL
Takahashi, Yu; Scheeres, D. J. Small body surface gravity fields via spherical harmonic expansions. (English) Zbl 1298.70019 Celest. Mech. Dyn. Astron. 119, No. 2, 169-206 (2014). MSC: 70F15 33C10 33C55 35J05 70F10 PDF BibTeX XML Cite \textit{Y. Takahashi} and \textit{D. J. Scheeres}, Celest. Mech. Dyn. Astron. 119, No. 2, 169--206 (2014; Zbl 1298.70019) Full Text: DOI OpenURL
Obnosov, Yu. V. An \(\mathbb{R}\)-linear conjugation problem for a plane two-component heterogeneous structure with an array of periodically distributed sinks/sources. (English) Zbl 1351.76281 Appl. Math. Modelling 37, No. 5, 2830-2837 (2013). MSC: 76S05 35Q35 PDF BibTeX XML Cite \textit{Yu. V. Obnosov}, Appl. Math. Modelling 37, No. 5, 2830--2837 (2013; Zbl 1351.76281) Full Text: DOI OpenURL
Mehdiyeva, Galina; Aliyev, Aydin Difference scheme for solution of the Dirichlet’s problem. (English) Zbl 1314.65138 J. Concr. Appl. Math. 11, No. 1, 81-86 (2013). MSC: 65N06 35J05 65N15 PDF BibTeX XML Cite \textit{G. Mehdiyeva} and \textit{A. Aliyev}, J. Concr. Appl. Math. 11, No. 1, 81--86 (2013; Zbl 1314.65138) OpenURL
Ashton, A. C. L. The spectral Dirichlet-Neumann map for Laplace’s equation in a convex polygon. (English) Zbl 1296.35046 SIAM J. Math. Anal. 45, No. 6, 3575-3591 (2013). Reviewer: Ziheng Zhang (Tianjin) MSC: 35J25 30H99 45Q05 PDF BibTeX XML Cite \textit{A. C. L. Ashton}, SIAM J. Math. Anal. 45, No. 6, 3575--3591 (2013; Zbl 1296.35046) Full Text: DOI arXiv OpenURL
Gselmann, Eszter On some classes of partial difference equations. (English) Zbl 1289.39016 Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 40, 285-294 (2013). MSC: 39A14 39A12 35J05 35J30 PDF BibTeX XML Cite \textit{E. Gselmann}, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 40, 285--294 (2013; Zbl 1289.39016) Full Text: arXiv OpenURL
Hegyi, Balázs; Jung, Soon-Mo On the stability of Laplace’s equation. (English) Zbl 1266.35014 Appl. Math. Lett. 26, No. 5, 549-552 (2013). Reviewer: Andreas Kleefeld (Cottbus) MSC: 35J05 PDF BibTeX XML Cite \textit{B. Hegyi} and \textit{S.-M. Jung}, Appl. Math. Lett. 26, No. 5, 549--552 (2013; Zbl 1266.35014) Full Text: DOI OpenURL
Kublashvili, M.; Sanikidze, Z.; Zakradze, M. A method of conformal mapping for solving the generalized Dirichlet problem of Laplace’s equation. (English) Zbl 1290.30006 Proc. A. Razmadze Math. Inst. 160, 71-89 (2012). MSC: 30C30 65C05 65N38 65N99 PDF BibTeX XML Cite \textit{M. Kublashvili} et al., Proc. A. Razmadze Math. Inst. 160, 71--89 (2012; Zbl 1290.30006) Full Text: Link OpenURL
Ojala, Rikard A robust and accurate solver of Laplace’s equation with general boundary conditions on general domains in the plane. (English) Zbl 1274.65310 J. Comput. Math. 30, No. 4, 433-448 (2012). MSC: 65N38 65F08 35J05 PDF BibTeX XML Cite \textit{R. Ojala}, J. Comput. Math. 30, No. 4, 433--448 (2012; Zbl 1274.65310) Full Text: DOI Link OpenURL
Nasser, Mohamed M. S.; Murid, Ali H. M.; Al-Hatemi, Samer A. A. A boundary integral equation with the generalized Neumann kernel for a certain class of mixed boundary value problem. (English) Zbl 1272.35083 J. Appl. Math. 2012, Article ID 254123, 17 p. (2012). MSC: 35J25 30E25 PDF BibTeX XML Cite \textit{M. M. S. Nasser} et al., J. Appl. Math. 2012, Article ID 254123, 17 p. (2012; Zbl 1272.35083) Full Text: DOI OpenURL
Hemeda, A. A. Homotopy perturbation method for solving systems of nonlinear coupled equations. (English) Zbl 1262.65138 Appl. Math. Sci., Ruse 6, No. 93-96, 4787-4800 (2012). MSC: 65M70 PDF BibTeX XML Cite \textit{A. A. Hemeda}, Appl. Math. Sci., Ruse 6, No. 93--96, 4787--4800 (2012; Zbl 1262.65138) Full Text: Link OpenURL
El-Refaie, A. O.; Rawy, E. K.; Hassan, H. A. Z. Approximate solution to a singular, plane mixed boundary-value problem for Laplace’s equation in a curved rectangle. (English) Zbl 1261.65122 J. Egypt. Math. Soc. 20, No. 2, 87-91 (2012). MSC: 65N35 35J05 PDF BibTeX XML Cite \textit{A. O. El-Refaie} et al., J. Egypt. Math. Soc. 20, No. 2, 87--91 (2012; Zbl 1261.65122) Full Text: DOI OpenURL
Cohl, H. S.; Volkmer, H. Eigenfunction expansions for a fundamental solution of Laplace’s equation on \(R^{3}\) in parabolic and elliptic cylinder coordinates. (English) Zbl 1250.35071 J. Phys. A, Math. Theor. 45, No. 35, Article ID 355204, 20 p. (2012). MSC: 35J05 35A08 42C15 33C10 33C45 PDF BibTeX XML Cite \textit{H. S. Cohl} and \textit{H. Volkmer}, J. Phys. A, Math. Theor. 45, No. 35, Article ID 355204, 20 p. (2012; Zbl 1250.35071) Full Text: DOI arXiv OpenURL
Volkov, E. A. About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder. (Russian, English) Zbl 1249.35139 Zh. Vychisl. Mat. Mat. Fiz. 52, No. 1, 97-104 (2012); translation in Comput. Math. Math. Phys. 52, No. 1, 90-97 (2012). MSC: 35K20 65N38 PDF BibTeX XML Cite \textit{E. A. Volkov}, Zh. Vychisl. Mat. Mat. Fiz. 52, No. 1, 97--104 (2012; Zbl 1249.35139); translation in Comput. Math. Math. Phys. 52, No. 1, 90--97 (2012) Full Text: DOI OpenURL
Di Costanzo, E.; Marasco, A. Approximate analytic solution of the Dirichlet problems for Laplace’s equation in planar domains by a perturbation method. (English) Zbl 1238.65118 Comput. Math. Appl. 63, No. 1, 60-67 (2012). MSC: 65N99 35A01 PDF BibTeX XML Cite \textit{E. Di Costanzo} and \textit{A. Marasco}, Comput. Math. Appl. 63, No. 1, 60--67 (2012; Zbl 1238.65118) Full Text: DOI OpenURL
Bremer, James On the Nyström discretization of integral equations on planar curves with corners. (English) Zbl 1269.65131 Appl. Comput. Harmon. Anal. 32, No. 1, 45-64 (2012). MSC: 65N38 35J05 65N12 PDF BibTeX XML Cite \textit{J. Bremer}, Appl. Comput. Harmon. Anal. 32, No. 1, 45--64 (2012; Zbl 1269.65131) Full Text: DOI OpenURL
Cheng, Pan; Huang, Jin; Zeng, Guang Splitting extrapolation algorithms for solving the boundary integral equations of Steklov problems on polygons by mechanical quadrature methods. (English) Zbl 1259.65166 Eng. Anal. Bound. Elem. 35, No. 10, 1136-1141 (2011). MSC: 65N25 65N99 PDF BibTeX XML Cite \textit{P. Cheng} et al., Eng. Anal. Bound. Elem. 35, No. 10, 1136--1141 (2011; Zbl 1259.65166) Full Text: DOI OpenURL
Gavrilov, S. V.; Denisov, A. M. Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace’s equation in a piecewise homogeneous medium. (Russian, English) Zbl 1249.35063 Zh. Vychisl. Mat. Mat. Fiz. 51, No. 8, 1476-1489 (2011); translation in Comput. Math. Math. Phys. 51, No. 8, 1377-1390 (2011). MSC: 35J05 PDF BibTeX XML Cite \textit{S. V. Gavrilov} and \textit{A. M. Denisov}, Zh. Vychisl. Mat. Mat. Fiz. 51, No. 8, 1476--1489 (2011; Zbl 1249.35063); translation in Comput. Math. Math. Phys. 51, No. 8, 1377--1390 (2011) Full Text: DOI OpenURL
Cohl, Howard S. Fundamental solution of Laplace’s equation in hyperspherical geometry. (English) Zbl 1244.35002 SIGMA, Symmetry Integrability Geom. Methods Appl. 7, Paper 108, 14 p. (2011). MSC: 35A08 35J05 32Q10 31C12 33C05 PDF BibTeX XML Cite \textit{H. S. Cohl}, SIGMA, Symmetry Integrability Geom. Methods Appl. 7, Paper 108, 14 p. (2011; Zbl 1244.35002) Full Text: DOI arXiv OpenURL
Nestoridis, Vassili; Schmutzhard, Sebastian; Stefanopoulos, Vangelis Universal series induced by approximate identities and some relevant applications. (English) Zbl 1231.35038 J. Approx. Theory 163, No. 12, 1783-1797 (2011). MSC: 35C10 35J05 35K05 PDF BibTeX XML Cite \textit{V. Nestoridis} et al., J. Approx. Theory 163, No. 12, 1783--1797 (2011; Zbl 1231.35038) Full Text: DOI Backlinks: MO OpenURL
Cheng, Pan; Huang, Jin Extrapolation algorithms for solving nonlinear boundary integral equations by mechanical quadrature methods. (English) Zbl 1241.65104 Numer. Algorithms 58, No. 4, 545-554 (2011). Reviewer: Ariadna Lucia Pletea (Iaşi) MSC: 65N38 35J05 35J65 65N15 PDF BibTeX XML Cite \textit{P. Cheng} and \textit{J. Huang}, Numer. Algorithms 58, No. 4, 545--554 (2011; Zbl 1241.65104) Full Text: DOI OpenURL
Kong, Wai Yip; Bremer, James; Rokhlin, Vladimir An adaptive fast direct solver for boundary integral equations in two dimensions. (English) Zbl 1227.65118 Appl. Comput. Harmon. Anal. 31, No. 3, 346-369 (2011). MSC: 65N38 35J05 65Y20 PDF BibTeX XML Cite \textit{W. Y. Kong} et al., Appl. Comput. Harmon. Anal. 31, No. 3, 346--369 (2011; Zbl 1227.65118) Full Text: DOI OpenURL
Huang, Jin; Li, Zi-Cai; Chen, I-Lin; Cheng, Alexander H. D. Advanced quadrature methods and splitting extrapolation algorithms for first kind boundary integral equations of Laplace’s equation with discontinuity solutions. (English) Zbl 1244.65201 Eng. Anal. Bound. Elem. 34, No. 12, 1003-1008 (2010). MSC: 65N38 65N99 PDF BibTeX XML Cite \textit{J. Huang} et al., Eng. Anal. Bound. Elem. 34, No. 12, 1003--1008 (2010; Zbl 1244.65201) Full Text: DOI OpenURL
Volkov, E. A. Application of a 14-point averaging operator in the grid method. (Russian, English) Zbl 1224.65241 Zh. Vychisl. Mat. Mat. Fiz. 50, No. 12, 2134-2143 (2010); translation in Comput. Math. Math. Phys. 50, No. 12, 2023-2032 (2010). MSC: 65N06 65N50 35J05 65N12 PDF BibTeX XML Cite \textit{E. A. Volkov}, Zh. Vychisl. Mat. Mat. Fiz. 50, No. 12, 2134--2143 (2010; Zbl 1224.65241); translation in Comput. Math. Math. Phys. 50, No. 12, 2023--2032 (2010) Full Text: DOI OpenURL
Bremer, James; Gimbutas, Zydrunas; Rokhlin, Vladimir A nonlinear optimization procedure for generalized Gaussian quadratures. (English) Zbl 1215.65045 SIAM J. Sci. Comput. 32, No. 4, 1761-1788 (2010). MSC: 65D32 41A55 65N38 35J05 PDF BibTeX XML Cite \textit{J. Bremer} et al., SIAM J. Sci. Comput. 32, No. 4, 1761--1788 (2010; Zbl 1215.65045) Full Text: DOI Link OpenURL
Gavrilov, S. V.; Denisov, A. M. Numerical method for determining the inhomogeneity boundary in the Dirichlet problem for Laplace’s equation in a piecewise homogeneous medium. (Russian, English) Zbl 1224.35093 Zh. Vychisl. Mat. Mat. Fiz. 50, No. 8, 1462-1470 (2010); translation in Comput. Math., Math. Phys. 50, No. 8, 1391-1398 (2010). MSC: 35J25 PDF BibTeX XML Cite \textit{S. V. Gavrilov} and \textit{A. M. Denisov}, Zh. Vychisl. Mat. Mat. Fiz. 50, No. 8, 1462--1470 (2010; Zbl 1224.35093); translation in Comput. Math., Math. Phys. 50, No. 8, 1391--1398 (2010) Full Text: DOI OpenURL
Baganis, G.; Hadjinicolaou, M. Analytic solution of an exterior Neumann problem in a non-convex domain. (English) Zbl 1221.35123 Math. Methods Appl. Sci. 33, No. 17, 2067-2075 (2010). MSC: 35J25 35J05 35C15 31A10 31A25 35A22 PDF BibTeX XML Cite \textit{G. Baganis} and \textit{M. Hadjinicolaou}, Math. Methods Appl. Sci. 33, No. 17, 2067--2075 (2010; Zbl 1221.35123) Full Text: DOI OpenURL
Bremer, James; Rokhlin, Vladimir; Sammis, Ian Universal quadratures for boundary integral equations on two-dimensional domains with corners. (English) Zbl 1201.65213 J. Comput. Phys. 229, No. 22, 8259-8280 (2010). MSC: 65N38 35J05 PDF BibTeX XML Cite \textit{J. Bremer} et al., J. Comput. Phys. 229, No. 22, 8259--8280 (2010; Zbl 1201.65213) Full Text: DOI Link OpenURL
Bourgeois, L.; Dardé, J. A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data. (English) Zbl 1200.35315 Inverse Probl. 26, No. 9, Article ID 095016, 21 p. (2010). MSC: 35R25 65N20 65N30 49J20 PDF BibTeX XML Cite \textit{L. Bourgeois} and \textit{J. Dardé}, Inverse Probl. 26, No. 9, Article ID 095016, 21 p. (2010; Zbl 1200.35315) Full Text: DOI OpenURL
Bryan, Kurt; Leise, Tanya Impedance imaging, inverse problems, and Harry Potter’s cloak. (English) Zbl 1193.35248 SIAM Rev. 52, No. 2, 359-377 (2010). MSC: 35R30 35-01 78-01 78A46 PDF BibTeX XML Cite \textit{K. Bryan} and \textit{T. Leise}, SIAM Rev. 52, No. 2, 359--377 (2010; Zbl 1193.35248) Full Text: DOI Link OpenURL
Li, Zi-Cai; Huang, Jin; Huang, Hung-Tsai Stability analysis of method of fundamental solutions for mixed boundary value problems of Laplace’s equation. (English) Zbl 1223.65085 Computing 88, No. 1-2, 1-29 (2010). Reviewer: Yaşar Sözen (Istanbul) MSC: 65N12 65N80 65F35 35J05 PDF BibTeX XML Cite \textit{Z.-C. Li} et al., Computing 88, No. 1--2, 1--29 (2010; Zbl 1223.65085) Full Text: DOI OpenURL
Smyrlis, Yiorgos-Sokratis; Karageorghis, Andreas The under-determined version of the MFS: taking more sources than collocation points. (English) Zbl 1196.65187 Appl. Numer. Math. 60, No. 4, 337-357 (2010). Reviewer: Adrian Carabineanu (Bucureşti) MSC: 65N80 65N35 35J05 PDF BibTeX XML Cite \textit{Y.-S. Smyrlis} and \textit{A. Karageorghis}, Appl. Numer. Math. 60, No. 4, 337--357 (2010; Zbl 1196.65187) Full Text: DOI Link OpenURL
Aarão, J.; Bradshaw-Hajek, B. H.; Miklavcic, S. J.; Ward, D. A. The extended-domain-eigenfunction method for solving elliptic boundary value problems with annular domains. (English) Zbl 1205.35049 J. Phys. A, Math. Theor. 43, No. 18, Article ID 185202, 18 p. (2010). MSC: 35J05 35J25 65N99 PDF BibTeX XML Cite \textit{J. Aarão} et al., J. Phys. A, Math. Theor. 43, No. 18, Article ID 185202, 18 p. (2010; Zbl 1205.35049) Full Text: DOI OpenURL
Bremer, James; Rokhlin, Vladimir Efficient discretization of Laplace boundary integral equations on polygonal domains. (English) Zbl 1185.65219 J. Comput. Phys. 229, No. 7, 2507-2525 (2010). MSC: 65N38 35J05 65D32 PDF BibTeX XML Cite \textit{J. Bremer} and \textit{V. Rokhlin}, J. Comput. Phys. 229, No. 7, 2507--2525 (2010; Zbl 1185.65219) Full Text: DOI Link OpenURL
Kang, Sooran The Yang-Mills functional and Laplace’s equation on quantum Heisenberg manifolds. (English) Zbl 1186.58007 J. Funct. Anal. 258, No. 1, 307-327 (2010). Reviewer: Chun-Gil Park (Daejeon) MSC: 58B34 58J05 46L89 58E15 PDF BibTeX XML Cite \textit{S. Kang}, J. Funct. Anal. 258, No. 1, 307--327 (2010; Zbl 1186.58007) Full Text: DOI arXiv OpenURL
Tankelevich, R.; Fairweather, G.; Karageorghis, A. Three-dimensional image reconstruction using the PF/MFS technique. (English) Zbl 1244.65224 Eng. Anal. Bound. Elem. 33, No. 12, 1403-1410 (2009). MSC: 65N80 65D17 35J05 35J40 PDF BibTeX XML Cite \textit{R. Tankelevich} et al., Eng. Anal. Bound. Elem. 33, No. 12, 1403--1410 (2009; Zbl 1244.65224) Full Text: DOI OpenURL
Li, Z. C.; Lu, T. T.; Huang, H. T.; Cheng, A. H.-D. Error analysis of Trefftz methods for Laplace’s equations and its applications. (English) Zbl 1231.65231 CMES, Comput. Model. Eng. Sci. 52, No. 1, 39-81 (2009). MSC: 65N35 PDF BibTeX XML Cite \textit{Z. C. Li} et al., CMES, Comput. Model. Eng. Sci. 52, No. 1, 39--81 (2009; Zbl 1231.65231) Full Text: DOI OpenURL
Kholodovskij, S. E. Solution of boundary value problems for Laplace’s equation in a piecewise homogeneous plane with a parabolic crack (screen). (Russian, English) Zbl 1224.35094 Zh. Vychisl. Mat. Mat. Fiz. 49, No. 11, 1931-1936 (2009); translation in Comput. Math., Math. Phys. 49, No. 11, 1847-1852 (2009). MSC: 35J25 86A15 PDF BibTeX XML Cite \textit{S. E. Kholodovskij}, Zh. Vychisl. Mat. Mat. Fiz. 49, No. 11, 1931--1936 (2009; Zbl 1224.35094); translation in Comput. Math., Math. Phys. 49, No. 11, 1847--1852 (2009) Full Text: DOI OpenURL
Hu, L.; Zou, J.; Fu, X.; Yang, H. Y.; Ruan, X. D.; Wang, C. Y. Divisionally analytical solutions of Laplace’s equations for dry calibration of electromagnetic velocity probes. (English) Zbl 1205.78040 Appl. Math. Modelling 33, No. 7, 3130-3150 (2009). MSC: 78A55 PDF BibTeX XML Cite \textit{L. Hu} et al., Appl. Math. Modelling 33, No. 7, 3130--3150 (2009; Zbl 1205.78040) Full Text: DOI OpenURL
Baganis, G.; Hadjinicolaou, M. Analytic solution of an exterior Dirichlet problem in a non-convex domain. (English) Zbl 1185.35053 IMA J. Appl. Math. 74, No. 5, 668-684 (2009). MSC: 35J25 35J05 35C15 35A22 PDF BibTeX XML Cite \textit{G. Baganis} and \textit{M. Hadjinicolaou}, IMA J. Appl. Math. 74, No. 5, 668--684 (2009; Zbl 1185.35053) Full Text: DOI OpenURL
Saker, H.; Djellit, A. On a nonlinear boundary integral equation. (English) Zbl 1188.65161 Proc. Jangjeon Math. Soc. 12, No. 1, 69-76 (2009). Reviewer: Daniel Lesnic (Leeds) MSC: 65N38 35J05 35J65 PDF BibTeX XML Cite \textit{H. Saker} and \textit{A. Djellit}, Proc. Jangjeon Math. Soc. 12, No. 1, 69--76 (2009; Zbl 1188.65161) OpenURL
Helsing, Johan Integral equation methods for elliptic problems with boundary conditions of mixed type. (English) Zbl 1177.65176 J. Comput. Phys. 228, No. 23, 8892-8907 (2009). MSC: 65N38 PDF BibTeX XML Cite \textit{J. Helsing}, J. Comput. Phys. 228, No. 23, 8892--8907 (2009; Zbl 1177.65176) Full Text: DOI Link OpenURL
Parpas, Panos; Rustem, Berç Convergence analysis of a global optimization algorithm using stochastic differential equations. (English) Zbl 1192.90147 J. Glob. Optim. 45, No. 1, 95-110 (2009). MSC: 90C26 90C15 60H10 PDF BibTeX XML Cite \textit{P. Parpas} and \textit{B. Rustem}, J. Glob. Optim. 45, No. 1, 95--110 (2009; Zbl 1192.90147) Full Text: DOI OpenURL
Hild, Patrick; Lleras, Vanessa; Renard, Yves A posteriori error analysis for Poisson’s equation approximated by XFEM. (English) Zbl 1169.65107 ESAIM, Proc. 27, 107-121 (2009). MSC: 65N15 35J05 65N30 74S05 PDF BibTeX XML Cite \textit{P. Hild} et al., ESAIM, Proc. 27, 107--121 (2009; Zbl 1169.65107) Full Text: DOI OpenURL