×

Large time behavior of entropy solutions to a unipolar hydrodynamic model of semiconductors. (English) Zbl 1332.35046

Summary: In this paper, we study the large time behavior of entropy solutions to the one dimensional unipolar hydrodynamic model for semiconductors in the form of Euler-Poisson equations. First of all, a large time behavior framework for the time-increasing entropy solutions is given. In this framework, the global entropy solutions (which increase slowly with time) are proved to decay exponentially fast to the corresponding stationary solutions. Then, for an application purpose, the existence and time-increasing-rate of the global entropy solutions with large initial data is considered by using a modified fractional step Lax-Friedrichs scheme and the theory of compensated compactness. By using the large time behavior framework, the global entropy solutions are proved to decay exponentially fast to the stationary solutions when the adiabatic index \(\gamma >3\), without any assumption on smallness or regularity for the initial data.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
35Q31 Euler equations
PDFBibTeX XMLCite
Full Text: DOI