El Abdalaoui, E. H.; Nadkarni, M. G. A non-singular transformation whose spectrum has Lebesgue component of multiplicity one. (English) Zbl 1356.37003 Ergodic Theory Dyn. Syst. 36, No. 3, 671-681 (2016). MSC: 37A25 37A05 37A30 PDF BibTeX XML Cite \textit{E. H. El Abdalaoui} and \textit{M. G. Nadkarni}, Ergodic Theory Dyn. Syst. 36, No. 3, 671--681 (2016; Zbl 1356.37003) Full Text: DOI arXiv OpenURL
Ageev, O. N. Dynamical systems with an even-multiplicity Lebesgue component in the spectrum. (English. Russian original) Zbl 0695.28009 Math. USSR, Sb. 64, No. 2, 305-317 (1989); translation from Mat. Sb., Nov. Ser. 136(178), No. 3(7), 307-319 (1988). MSC: 28D05 37A99 37A30 PDF BibTeX XML Cite \textit{O. N. Ageev}, Math. USSR, Sb. 64, No. 2, 305--317 (1989; Zbl 0695.28009); translation from Mat. Sb., Nov. Ser. 136(178), No. 3(7), 307--319 (1988) Full Text: DOI OpenURL
Lemańczyk, Mariusz Toeplitz \(Z_ 2\)-extensions. (English) Zbl 0647.28013 Ann. Inst. Henri Poincaré, Probab. Stat. 24, No. 1, 1-43 (1988). Reviewer: D.Newton MSC: 28D05 PDF BibTeX XML Cite \textit{M. Lemańczyk}, Ann. Inst. Henri Poincaré, Probab. Stat. 24, No. 1, 1--43 (1988; Zbl 0647.28013) Full Text: Numdam EuDML OpenURL