Obaya, Rafael; Sanz, Ana M. Non-autonomous scalar linear-dissipative and purely dissipative parabolic PDEs over a compact base flow. (English) Zbl 07332803 J. Differ. Equations 285, 714-750 (2021). MSC: 37B55 35K57 37L30 PDF BibTeX XML Cite \textit{R. Obaya} and \textit{A. M. Sanz}, J. Differ. Equations 285, 714--750 (2021; Zbl 07332803) Full Text: DOI
Xiao, Yuanfen Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for \(\beta\)-transformation. (English) Zbl 07314354 Discrete Contin. Dyn. Syst. 41, No. 2, 525-536 (2021). MSC: 37B40 37B02 37C45 PDF BibTeX XML Cite \textit{Y. Xiao}, Discrete Contin. Dyn. Syst. 41, No. 2, 525--536 (2021; Zbl 07314354) Full Text: DOI
Langa, José A.; Obaya, Rafael; Sanz, Ana M. Forwards attraction properties in scalar non-autonomous linear-dissipative parabolic PDEs. The case of null upper Lyapunov exponent. (English) Zbl 07327537 Nonlinearity 33, No. 9, 4277-4309 (2020). MSC: 37B55 35K57 37L30 PDF BibTeX XML Cite \textit{J. A. Langa} et al., Nonlinearity 33, No. 9, 4277--4309 (2020; Zbl 07327537) Full Text: DOI
Liang, Wei; Guo, Haihong Chaotification of first-order partial difference equations. (English) Zbl 07306757 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2050229, 10 p. (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A33 39A14 39A12 39A60 37N35 PDF BibTeX XML Cite \textit{W. Liang} and \textit{H. Guo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2050229, 10 p. (2020; Zbl 07306757) Full Text: DOI
Chen, Zhijing; Huang, Yu; Sun, Haiwei; Zhou, Tongyang Chaotic behaviors of one-dimensional wave equations with van der Pol boundary conditions containing a source term. (English) Zbl 07306755 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2050227, 17 p. (2020). MSC: 35L20 35L05 34C28 PDF BibTeX XML Cite \textit{Z. Chen} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2050227, 17 p. (2020; Zbl 07306755) Full Text: DOI
Sanooj, B.; Vinodkumar, P. B. Li-Yorke chaotic eigen set of the backward shift operator on \(\ell^2 (\mathbb{N})\). (English) Zbl 07299527 Concr. Oper. 7, 180-182 (2020). MSC: 47 PDF BibTeX XML Cite \textit{B. Sanooj} and \textit{P. B. Vinodkumar}, Concr. Oper. 7, 180--182 (2020; Zbl 07299527) Full Text: DOI
He, Shengnan; Sun, Xiaoli; Xiao, Mingqing On transitive and chaotic dynamics of linear semiflows. (English) Zbl 07298352 Topology Appl. 286, Article ID 107417, 15 p. (2020). MSC: 37B02 37B05 37B40 37C10 PDF BibTeX XML Cite \textit{S. He} et al., Topology Appl. 286, Article ID 107417, 15 p. (2020; Zbl 07298352) Full Text: DOI
Mohtashamipour, Maliheh; Bahabadi, Alireza Zamani Chaos in iterated function systems. (English) Zbl 1452.37026 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050177, 11 p. (2020). MSC: 37C35 37D45 37C05 37B40 PDF BibTeX XML Cite \textit{M. Mohtashamipour} and \textit{A. Z. Bahabadi}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050177, 11 p. (2020; Zbl 1452.37026) Full Text: DOI
Caraballo, Blas M.; Favaro, Vinicius V. Chaos for convolution operators on the space of entire functions of infinitely many complex variables. (English) Zbl 07226620 Bull. Soc. Math. Fr. 148, No. 2, 237-251 (2020). MSC: 47A16 47B38 32A15 PDF BibTeX XML Cite \textit{B. M. Caraballo} and \textit{V. V. Favaro}, Bull. Soc. Math. Fr. 148, No. 2, 237--251 (2020; Zbl 07226620) Full Text: DOI
Wang, Huoyun; Liu, Qing; Li, Huahai; Fu, Heman Sensitivity, Devaney’s chaos and Li-Yorke \(\varepsilon \)-chaos. (English) Zbl 07203156 Semigroup Forum 100, No. 3, 888-909 (2020). MSC: 37B02 37B05 37B40 16W22 PDF BibTeX XML Cite \textit{H. Wang} et al., Semigroup Forum 100, No. 3, 888--909 (2020; Zbl 07203156) Full Text: DOI
Gonçalves, Daniel; Uggioni, Bruno Brogni Li-Yorke chaos for ultragraph shift spaces. (English) Zbl 1441.37009 Discrete Contin. Dyn. Syst. 40, No. 4, 2347-2365 (2020). Reviewer: Mihai Turinici (Iaşi) MSC: 37B02 37B10 37B20 37A55 05C63 PDF BibTeX XML Cite \textit{D. Gonçalves} and \textit{B. B. Uggioni}, Discrete Contin. Dyn. Syst. 40, No. 4, 2347--2365 (2020; Zbl 1441.37009) Full Text: DOI
Yan, Kesong; Zeng, Fanping Relative entropy and mean Li-Yorke chaos for biorderable amenable group actions. (English) Zbl 1442.37021 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 2, Article ID 2050032, 11 p. (2020). MSC: 37B02 37B05 37B40 22D40 PDF BibTeX XML Cite \textit{K. Yan} and \textit{F. Zeng}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 2, Article ID 2050032, 11 p. (2020; Zbl 1442.37021) Full Text: DOI
Roth, Samuel Dynamics on dendrites with closed endpoint sets. (English) Zbl 1434.37010 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111745, 13 p. (2020). MSC: 37B45 54C25 54F50 PDF BibTeX XML Cite \textit{S. Roth}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111745, 13 p. (2020; Zbl 1434.37010) Full Text: DOI
Shao, Hua; Chen, Guanrong; Shi, Yuming Some criteria of chaos in non-autonomous discrete dynamical systems. (English) Zbl 1440.37028 J. Difference Equ. Appl. 26, No. 3, 295-308 (2020). Reviewer: David Cheban (Chisinau) MSC: 37B55 37D45 37B10 39A33 PDF BibTeX XML Cite \textit{H. Shao} et al., J. Difference Equ. Appl. 26, No. 3, 295--308 (2020; Zbl 1440.37028) Full Text: DOI
Bernardes, N. C. Jr.; Darji, U. B.; Pires, B. Li-Yorke chaos for composition operators on \(L^p\)-spaces. (English) Zbl 07154794 Monatsh. Math. 191, No. 1, 13-35 (2020). MSC: 47A16 47B33 37D45 PDF BibTeX XML Cite \textit{N. C. Jr. Bernardes} et al., Monatsh. Math. 191, No. 1, 13--35 (2020; Zbl 07154794) Full Text: DOI
Bernardes, N. C. jun.; Bonilla, A.; Peris, A. Mean Li-Yorke chaos in Banach spaces. (English) Zbl 1440.47005 J. Funct. Anal. 278, No. 3, Article ID 108343, 31 p. (2020). Reviewer: Abdellatif Bourhim (Syracuse) MSC: 47A16 37D45 PDF BibTeX XML Cite \textit{N. C. Bernardes jun.} et al., J. Funct. Anal. 278, No. 3, Article ID 108343, 31 p. (2020; Zbl 1440.47005) Full Text: DOI
Kostić, Marko Disjoint Li-Yorke chaos in Fréchet spaces. (English) Zbl 1438.47006 Electron. J. Math. Analysis Appl. 8, No. 1, 248-272 (2020). MSC: 47A06 47A16 PDF BibTeX XML Cite \textit{M. Kostić}, Electron. J. Math. Analysis Appl. 8, No. 1, 248--272 (2020; Zbl 1438.47006) Full Text: Link
Li, Yan; Wang, Lidong Chaos in a duopoly model of technological innovation with bounded rationality based on constant conjectural variation. (English) Zbl 1448.91165 Chaos Solitons Fractals 120, 116-126 (2019). MSC: 91B54 37C70 35Q91 PDF BibTeX XML Cite \textit{Y. Li} and \textit{L. Wang}, Chaos Solitons Fractals 120, 116--126 (2019; Zbl 1448.91165) Full Text: DOI
Bonilla, Antonio; Kostić, Marko Reiterative distributional chaos on Banach spaces. (English) Zbl 1439.47006 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950201, 9 p. (2019). MSC: 47A16 37D45 PDF BibTeX XML Cite \textit{A. Bonilla} and \textit{M. Kostić}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950201, 9 p. (2019; Zbl 1439.47006) Full Text: DOI arXiv
Nag, Mayurakshi; Poria, Swarup Li-Yorke chaos in globally coupled map lattice with delays. (English) Zbl 1432.39004 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 13, Article ID 1950183, 7 p. (2019). MSC: 39A20 39A33 PDF BibTeX XML Cite \textit{M. Nag} and \textit{S. Poria}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 13, Article ID 1950183, 7 p. (2019; Zbl 1432.39004) Full Text: DOI
Liang, Wei; Zhang, Zihan Anti-control of chaos for first-order partial difference equations via sine and cosine functions. (English) Zbl 1432.39003 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950140, 8 p. (2019). MSC: 39A14 39A33 93C55 PDF BibTeX XML Cite \textit{W. Liang} and \textit{Z. Zhang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950140, 8 p. (2019; Zbl 1432.39003) Full Text: DOI
Hantáková, Jana Li-Yorke sensitivity does not imply Li-Yorke chaos. (English) Zbl 1422.37005 Ergodic Theory Dyn. Syst. 39, No. 11, 3066-3074 (2019). Reviewer: Thomas B. Ward (Leeds) MSC: 37B05 54H20 PDF BibTeX XML Cite \textit{J. Hantáková}, Ergodic Theory Dyn. Syst. 39, No. 11, 3066--3074 (2019; Zbl 1422.37005) Full Text: DOI arXiv
Wang, Jianjun On the iteration invariance of distributional chaos of type \(2\frac{1}{2}\) in non-autonomous discrete system. (English) Zbl 1419.37019 Qual. Theory Dyn. Syst. 18, No. 2, 711-721 (2019). MSC: 37B55 37D45 39A12 37B20 PDF BibTeX XML Cite \textit{J. Wang}, Qual. Theory Dyn. Syst. 18, No. 2, 711--721 (2019; Zbl 1419.37019) Full Text: DOI
Núñez, Carmen; Obaya, Rafael Li-Yorke chaos in nonautonomous Hopf bifurcation patterns. I. (English) Zbl 1419.37045 Nonlinearity 32, No. 10, 3940-3980 (2019). MSC: 37G35 37B55 37D45 34C23 PDF BibTeX XML Cite \textit{C. Núñez} and \textit{R. Obaya}, Nonlinearity 32, No. 10, 3940--3980 (2019; Zbl 1419.37045) Full Text: DOI
Meddaugh, Jonathan; Raines, Brian E. Weak specification and Baire space. (English) Zbl 1418.37019 J. Math. Anal. Appl. 479, No. 1, 1355-1363 (2019). MSC: 37B05 37B10 37B40 54H20 PDF BibTeX XML Cite \textit{J. Meddaugh} and \textit{B. E. Raines}, J. Math. Anal. Appl. 479, No. 1, 1355--1363 (2019; Zbl 1418.37019) Full Text: DOI
Zhang, Xu; Chen, Guanrong Polynomial maps with hidden complex dynamics. (English) Zbl 1429.37011 Discrete Contin. Dyn. Syst., Ser. B 24, No. 6, 2941-2954 (2019). Reviewer: Christian Pötzsche (Klagenfurt) MSC: 37C05 37C25 37D45 37E05 37G10 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{G. Chen}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 6, 2941--2954 (2019; Zbl 1429.37011) Full Text: DOI
Wang, Yunping; Chen, Ercai; Zhou, Xiaoyao Mean Li-Yorke chaos for random dynamical systems. (English) Zbl 1419.37016 J. Differ. Equations 267, No. 4, 2239-2260 (2019). MSC: 37B40 37H10 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Differ. Equations 267, No. 4, 2239--2260 (2019; Zbl 1419.37016) Full Text: DOI
Špitalský, Vladimír Recurrence determinism and Li-Yorke chaos for interval maps. (English) Zbl 1411.37042 Dyn. Syst. 34, No. 1, 53-70 (2019). MSC: 37E05 54H20 37D45 PDF BibTeX XML Cite \textit{V. Špitalský}, Dyn. Syst. 34, No. 1, 53--70 (2019; Zbl 1411.37042) Full Text: DOI arXiv
Danca, Marius; Fečkan, Michal; Pospíšil, Michal Difference equations with impulses. (English) Zbl 1403.39012 Opusc. Math. 39, No. 1, 5-22 (2019). MSC: 39A33 39A23 39A60 39A22 PDF BibTeX XML Cite \textit{M. Danca} et al., Opusc. Math. 39, No. 1, 5--22 (2019; Zbl 1403.39012) Full Text: DOI
Singh, Thangjam Birkramjit Construction of shift spaces of infinite type and Devaney’s chaos. (English) Zbl 1438.37006 Sci. Stud. Res., Ser. Math. Inform. 28, No. 2, 79-87 (2018). MSC: 37B10 37B02 37B51 PDF BibTeX XML Cite \textit{T. B. Singh}, Sci. Stud. Res., Ser. Math. Inform. 28, No. 2, 79--87 (2018; Zbl 1438.37006)
Xiang, Weijie; Jin, Yuguang Li-Yorke chaos and distributed chaos under strongly uniform convergence. (Chinese. English summary) Zbl 1424.37024 J. Chongqing Norm. Univ., Nat. Sci. 35, No. 2, 93-97 (2018). MSC: 37D45 54H20 PDF BibTeX XML Cite \textit{W. Xiang} and \textit{Y. Jin}, J. Chongqing Norm. Univ., Nat. Sci. 35, No. 2, 93--97 (2018; Zbl 1424.37024) Full Text: DOI
Akhmet, Marat; Feckan, Michal; Mehmet, Onur Fen; Kashkynbayev, Ardak Perturbed Li-Yorke homoclinic chaos. (English) Zbl 1413.34157 Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 75, 18 p. (2018). MSC: 34C28 34C37 34H10 34C27 34E10 PDF BibTeX XML Cite \textit{M. Akhmet} et al., Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 75, 18 p. (2018; Zbl 1413.34157) Full Text: DOI
Akhmet, Marat; Fen, Mehmet Onur Almost periodicity in chaos. (English) Zbl 1403.37032 Discontin. Nonlinearity Complex. 7, No. 1, 15-29 (2018). Reviewer: Ponnuraj Muthukumar (Gobichettipalayam) MSC: 37C55 37D45 34H10 PDF BibTeX XML Cite \textit{M. Akhmet} and \textit{M. O. Fen}, Discontin. Nonlinearity Complex. 7, No. 1, 15--29 (2018; Zbl 1403.37032) Full Text: DOI arXiv
Gao, Yang; Zheng, Zuo-huan Analysis of topological structure in transiently chaotic neural networks. (English) Zbl 1396.37044 Acta Math. Appl. Sin., Engl. Ser. 34, No. 3, 610-621 (2018). MSC: 37D45 39A33 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{Z.-h. Zheng}, Acta Math. Appl. Sin., Engl. Ser. 34, No. 3, 610--621 (2018; Zbl 1396.37044) Full Text: DOI
Caraballo, Tomás; Langa, José A.; Obaya, Rafael; Sanz, Ana M. Global and cocycle attractors for non-autonomous reaction-diffusion equations. The case of null upper Lyapunov exponent. (English) Zbl 1400.37100 J. Differ. Equations 265, No. 9, 3914-3951 (2018). MSC: 37L30 35K57 37L10 PDF BibTeX XML Cite \textit{T. Caraballo} et al., J. Differ. Equations 265, No. 9, 3914--3951 (2018; Zbl 1400.37100) Full Text: DOI
Hou, Bingzhe; Luo, Lvlin Li-Yorke chaos translation set for linear operators. (English) Zbl 06924002 Arch. Math. 111, No. 3, 267-278 (2018). MSC: 47A16 37D45 PDF BibTeX XML Cite \textit{B. Hou} and \textit{L. Luo}, Arch. Math. 111, No. 3, 267--278 (2018; Zbl 06924002) Full Text: DOI arXiv
Šotola, Jakub Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. (English) Zbl 1402.54034 Discrete Contin. Dyn. Syst. 38, No. 10, 5119-5128 (2018). Reviewer: Anna Giordano Bruno (Udine) MSC: 54H20 37B40 37B55 37B10 PDF BibTeX XML Cite \textit{J. Šotola}, Discrete Contin. Dyn. Syst. 38, No. 10, 5119--5128 (2018; Zbl 1402.54034) Full Text: DOI
Bahabadi, Alireza Zamani On chaos for iterated function systems. (English) Zbl 1394.37021 Asian-Eur. J. Math. 11, No. 4, Article ID 1850054, 9 p. (2018). MSC: 37B10 37B05 54H20 PDF BibTeX XML Cite \textit{A. Z. Bahabadi}, Asian-Eur. J. Math. 11, No. 4, Article ID 1850054, 9 p. (2018; Zbl 1394.37021) Full Text: DOI
Kim, Jinhyon; Ju, Hyonhui Hausdorff dimension of the sets of Li-Yorke pairs for some chaotic dynamical systems including \(A\)-coupled expanding systems. (English) Zbl 1390.37028 Chaos Solitons Fractals 109, 246-251 (2018). MSC: 37B45 PDF BibTeX XML Cite \textit{J. Kim} and \textit{H. Ju}, Chaos Solitons Fractals 109, 246--251 (2018; Zbl 1390.37028) Full Text: DOI
Sharma, Puneet; Raghav, Manish Dynamics of non-autonomous discrete dynamical systems. (English) Zbl 1390.37025 Topol. Proc. 52, 45-59 (2018). Reviewer: Marcin Kulczycki (Kraków) MSC: 37B20 37B55 54H20 PDF BibTeX XML Cite \textit{P. Sharma} and \textit{M. Raghav}, Topol. Proc. 52, 45--59 (2018; Zbl 1390.37025) Full Text: Link arXiv
Rajan, Ashvin Varada Positive measure scrambled sets of some chaotic functions. (English) Zbl 1390.37019 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 4, Article ID 1850052, 9 p. (2018). MSC: 37B10 37E05 28D05 PDF BibTeX XML Cite \textit{A. V. Rajan}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 4, Article ID 1850052, 9 p. (2018; Zbl 1390.37019) Full Text: DOI
Li, Jian; Qiao, Yixiao Mean Li-Yorke chaos along some good sequences. (English) Zbl 1387.37020 Monatsh. Math. 186, No. 1, 153-173 (2018). MSC: 37B40 37B35 37A30 54H20 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Qiao}, Monatsh. Math. 186, No. 1, 153--173 (2018; Zbl 1387.37020) Full Text: DOI
Mlíchová, Michaela; Štefánková, Marta On generic and dense chaos for maps induced on hyperspaces. (English) Zbl 1391.54026 J. Difference Equ. Appl. 24, No. 5, 685-700 (2018). Reviewer: Thomas B. Ward (Leeds) MSC: 54H20 37B05 PDF BibTeX XML Cite \textit{M. Mlíchová} and \textit{M. Štefánková}, J. Difference Equ. Appl. 24, No. 5, 685--700 (2018; Zbl 1391.54026) Full Text: DOI
Yin, Zongbin; He, Shengnan; Huang, Yu On Li-Yorke and distributionally chaotic direct sum operators. (English) Zbl 1393.37011 Topology Appl. 239, 35-45 (2018). Reviewer: Constantin Niculescu (Craiova) MSC: 37B05 54H20 47A16 PDF BibTeX XML Cite \textit{Z. Yin} et al., Topology Appl. 239, 35--45 (2018; Zbl 1393.37011) Full Text: DOI
Bernardes, Nilson C. jun.; Cirilo, Patricia R.; Darji, Udayan B.; Messaoudi, Ali; Pujals, Enrique R. Expansivity and shadowing in linear dynamics. (English) Zbl 1385.37041 J. Math. Anal. Appl. 461, No. 1, 796-816 (2018). MSC: 37D20 37C50 47B37 47A16 37D45 PDF BibTeX XML Cite \textit{N. C. Bernardes jun.} et al., J. Math. Anal. Appl. 461, No. 1, 796--816 (2018; Zbl 1385.37041) Full Text: DOI
Arai, Tatsuya Devaney’s and Li-Yorke’s chaos in uniform spaces. (English) Zbl 1384.54020 J. Dyn. Control Syst. 24, No. 1, 93-100 (2018); corrigendum ibid. 25, No. 3, 517–518 (2019). Reviewer: Mihai Turinici (Iaşi) MSC: 54H20 37B05 PDF BibTeX XML Cite \textit{T. Arai}, J. Dyn. Control Syst. 24, No. 1, 93--100 (2018; Zbl 1384.54020) Full Text: DOI
Shao, Hua; Shi, Yuming; Zhu, Hao On distributional chaos in non-autonomous discrete systems. (English) Zbl 1380.37038 Chaos Solitons Fractals 107, 234-243 (2018). MSC: 37B55 37D45 37A25 PDF BibTeX XML Cite \textit{H. Shao} et al., Chaos Solitons Fractals 107, 234--243 (2018; Zbl 1380.37038) Full Text: DOI
Deng, Liuchun; Khan, M. Ali On growing through cycles: Matsuyama’s M-map and Li-Yorke chaos. (English) Zbl 1388.91129 J. Math. Econ. 74, 46-55 (2018). MSC: 91B62 37N40 91B55 PDF BibTeX XML Cite \textit{L. Deng} and \textit{M. A. Khan}, J. Math. Econ. 74, 46--55 (2018; Zbl 1388.91129) Full Text: DOI
Shao, Song; Ye, Xiangdong A non-PI minimal system is Li-Yorke sensitive. (English) Zbl 1381.37017 Proc. Am. Math. Soc. 146, No. 3, 1105-1112 (2018). MSC: 37B05 54H20 PDF BibTeX XML Cite \textit{S. Shao} and \textit{X. Ye}, Proc. Am. Math. Soc. 146, No. 3, 1105--1112 (2018; Zbl 1381.37017) Full Text: DOI arXiv
Wang, Lidong; Zhao, Yingcui; Chu, Zhenyan Chaos for finitely generated semigroup actions. (English) Zbl 1412.54043 J. Nonlinear Sci. Appl. 10, No. 7, 3843-3850 (2017). MSC: 54H20 22B99 37B05 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Nonlinear Sci. Appl. 10, No. 7, 3843--3850 (2017; Zbl 1412.54043) Full Text: DOI
Li, Risong; Zhao, Yu; Lu, Tianxiu; Jiang, Ru; Wang, Hongqing; Liang, Haihua Spatio-temporal chaos in duopoly games. (English) Zbl 1412.37046 J. Nonlinear Sci. Appl. 10, No. 7, 3784-3791 (2017). MSC: 37D45 54H20 37B40 26A18 28D20 PDF BibTeX XML Cite \textit{R. Li} et al., J. Nonlinear Sci. Appl. 10, No. 7, 3784--3791 (2017; Zbl 1412.37046) Full Text: DOI
Dai, Xiongping; Tang, Xinjia Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics. (English) Zbl 1405.37014 J. Differ. Equations 263, No. 9, 5521-5553 (2017). MSC: 37B05 37B20 20M20 PDF BibTeX XML Cite \textit{X. Dai} and \textit{X. Tang}, J. Differ. Equations 263, No. 9, 5521--5553 (2017; Zbl 1405.37014) Full Text: DOI arXiv
Akhmet, Marat; Fen, Mehmet Onur; Kashkynbayev, Ardak Persistence of Li-Yorke chaos in systems with relay. (English) Zbl 1413.35026 Electron. J. Qual. Theory Differ. Equ. 2017, Paper No. 72, 18 p. (2017). MSC: 35A24 34C27 34C28 54H20 PDF BibTeX XML Cite \textit{M. Akhmet} et al., Electron. J. Qual. Theory Differ. Equ. 2017, Paper No. 72, 18 p. (2017; Zbl 1413.35026) Full Text: DOI arXiv
Chen, Zhijing; Dai, Xiongping Chaotic dynamics of minimal center of attraction of discrete amenable group actions. (English) Zbl 1385.37038 J. Math. Anal. Appl. 456, No. 2, 1397-1414 (2017). MSC: 37C85 37B05 54H20 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{X. Dai}, J. Math. Anal. Appl. 456, No. 2, 1397--1414 (2017; Zbl 1385.37038) Full Text: DOI
Hantáková, Jana Iteration problem for distributional chaos. (English) Zbl 1381.37026 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 12, Article ID 1750183, 10 p. (2017). MSC: 37B40 37D45 37B20 PDF BibTeX XML Cite \textit{J. Hantáková}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 12, Article ID 1750183, 10 p. (2017; Zbl 1381.37026) Full Text: DOI arXiv
Zhou, Xiaomin; Chen, Ercai; Zhou, Xiaoyao Relative entropy and mean Li-Yorke chaos. (English) Zbl 1389.37004 Adv. Math., Beijing 46, No. 3, 407-414 (2017). MSC: 37A35 37D45 PDF BibTeX XML Cite \textit{X. Zhou} et al., Adv. Math., Beijing 46, No. 3, 407--414 (2017; Zbl 1389.37004) Full Text: DOI
Kawaguchi, Noriaki Properties of shadowable points: chaos and equicontinuity. (English) Zbl 1380.37053 Bull. Braz. Math. Soc. (N.S.) 48, No. 4, 599-622 (2017). MSC: 37C50 37B40 37B20 PDF BibTeX XML Cite \textit{N. Kawaguchi}, Bull. Braz. Math. Soc. (N.S.) 48, No. 4, 599--622 (2017; Zbl 1380.37053) Full Text: DOI
Li, Jian; Oprocha, Piotr; Yang, Yini; Zeng, Tiaoying On dynamics of graph maps with zero topological entropy. (English) Zbl 1380.37088 Nonlinearity 30, No. 12, 4260-4276 (2017). MSC: 37E25 37B40 37B05 PDF BibTeX XML Cite \textit{J. Li} et al., Nonlinearity 30, No. 12, 4260--4276 (2017; Zbl 1380.37088) Full Text: DOI
Wang, Lidong; Zhao, Yingcui; Gao, Yuelin; Liu, Heng Chaos to multiple mappings. (English) Zbl 1377.37061 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 8, Article ID 1750119, 7 p. (2017). MSC: 37D45 37B99 PDF BibTeX XML Cite \textit{L. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 8, Article ID 1750119, 7 p. (2017; Zbl 1377.37061) Full Text: DOI
Bernardes, N. C. jun.; Peris, A.; Rodenas, F. Set-valued chaos in linear dynamics. (English) Zbl 06804515 Integral Equations Oper. Theory 88, No. 4, 451-463 (2017). MSC: 47A16 37B99 PDF BibTeX XML Cite \textit{N. C. Bernardes jun.} et al., Integral Equations Oper. Theory 88, No. 4, 451--463 (2017; Zbl 06804515) Full Text: DOI
Wu, Xinxing A remark on topological sequence entropy. (English) Zbl 1370.37017 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 7, Article ID 1750107, 7 p. (2017). MSC: 37A35 PDF BibTeX XML Cite \textit{X. Wu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 7, Article ID 1750107, 7 p. (2017; Zbl 1370.37017) Full Text: DOI
Dai, Xiongping; Huang, Tingwen; Huang, Yu; Luo, Yi; Wang, Gang; Xiao, Mingqing Chaotic behavior of discrete-time linear inclusion dynamical systems. (English) Zbl 1367.93270 J. Franklin Inst. 354, No. 10, 4126-4155 (2017). MSC: 93C10 93C55 37D45 PDF BibTeX XML Cite \textit{X. Dai} et al., J. Franklin Inst. 354, No. 10, 4126--4155 (2017; Zbl 1367.93270) Full Text: DOI
Khan, M. Ali; Rajan, Ashvin V. On the eventual periodicity of piecewise linear chaotic maps. (English) Zbl 1375.37043 Bull. Aust. Math. Soc. 95, No. 3, 467-475 (2017). MSC: 37B20 65Q10 91B55 PDF BibTeX XML Cite \textit{M. A. Khan} and \textit{A. V. Rajan}, Bull. Aust. Math. Soc. 95, No. 3, 467--475 (2017; Zbl 1375.37043) Full Text: DOI
Garcia-Ramos, Felipe; Jin, Lei Mean proximality and mean Li-Yorke chaos. (English) Zbl 1375.37107 Proc. Am. Math. Soc. 145, No. 7, 2959-2969 (2017). MSC: 37D45 37B05 54H20 PDF BibTeX XML Cite \textit{F. Garcia-Ramos} and \textit{L. Jin}, Proc. Am. Math. Soc. 145, No. 7, 2959--2969 (2017; Zbl 1375.37107) Full Text: DOI
Askri, Ghassen Li-Yorke chaos for dendrite maps with zero topological entropy and \(\omega\)-limit sets. (English) Zbl 1360.37049 Discrete Contin. Dyn. Syst. 37, No. 6, 2957-2976 (2017). MSC: 37B45 37B40 37B10 PDF BibTeX XML Cite \textit{G. Askri}, Discrete Contin. Dyn. Syst. 37, No. 6, 2957--2976 (2017; Zbl 1360.37049) Full Text: DOI arXiv
Luo, Lvlin; Hou, Bingzhe Li-Yorke chaos for invertible mappings on compact metric spaces. (English) Zbl 1361.37017 Arch. Math. 108, No. 1, 65-69 (2017). MSC: 37B25 54H20 37C15 PDF BibTeX XML Cite \textit{L. Luo} and \textit{B. Hou}, Arch. Math. 108, No. 1, 65--69 (2017; Zbl 1361.37017) Full Text: DOI arXiv
Huang, Wen; Li, Jian; Ye, Xiangdong; Zhou, Xiaoyao Positive topological entropy and \(\Delta\)-weakly mixing sets. (English) Zbl 1418.37017 Adv. Math. 306, 653-683 (2017). MSC: 37B05 37B40 37A35 37A25 PDF BibTeX XML Cite \textit{W. Huang} et al., Adv. Math. 306, 653--683 (2017; Zbl 1418.37017) Full Text: DOI arXiv
Hou, Bingzhe; Luo, Lvlin Li-Yorke chaos for invertible mappings on noncompact spaces. (English) Zbl 1424.37011 Turk. J. Math. 40, No. 2, 411-416 (2016). MSC: 37C15 54H20 37D45 PDF BibTeX XML Cite \textit{B. Hou} and \textit{L. Luo}, Turk. J. Math. 40, No. 2, 411--416 (2016; Zbl 1424.37011) Full Text: DOI
Ayatollah Zadeh Shirazi, F.; Ebrahinifar, F.; Gharagozlou, A. Counterexamples in chaotic generalized shifts. (English) Zbl 1410.54041 J. Mahani Math. Res. Cent. 5, No. 2, 85-97 (2016). MSC: 54H20 37D99 PDF BibTeX XML Cite \textit{F. Ayatollah Zadeh Shirazi} et al., J. Mahani Math. Res. Cent. 5, No. 2, 85--97 (2016; Zbl 1410.54041) Full Text: DOI
Şaylı, Mustafa; Yılmaz, Enes Chaotifying delayed recurrent neural networks via impulsive effects. (English) Zbl 1390.37062 Chaos 26, No. 2, 023114, 16 p. (2016). MSC: 37D45 37B05 34H10 92B20 PDF BibTeX XML Cite \textit{M. Şaylı} and \textit{E. Yılmaz}, Chaos 26, No. 2, 023114, 16 p. (2016; Zbl 1390.37062) Full Text: DOI
Balibrea, Francisco On problems of topological dynamics in non-autonomous discrete systems. (English) Zbl 1379.37041 Appl. Math. Nonlinear Sci. 1, No. 2, 391-404 (2016). MSC: 37B55 54H20 37B10 37B05 PDF BibTeX XML Cite \textit{F. Balibrea}, Appl. Math. Nonlinear Sci. 1, No. 2, 391--404 (2016; Zbl 1379.37041) Full Text: DOI
Huang, Wen; Jin, Lei Stable sets and mean Li-Yorke chaos in positive entropy actions of bi-orderable amenable groups. (English) Zbl 1362.37079 Ergodic Theory Dyn. Syst. 36, No. 8, 2482-2497 (2016). MSC: 37D45 37C85 37A25 PDF BibTeX XML Cite \textit{W. Huang} and \textit{L. Jin}, Ergodic Theory Dyn. Syst. 36, No. 8, 2482--2497 (2016; Zbl 1362.37079) Full Text: DOI arXiv
Doleželová-Hantáková, Jana; Roth, Zuzana; Roth, Samuel On the weakest version of distributional chaos. (English) Zbl 1357.37012 Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 14, Article ID 1650235, 13 p. (2016). MSC: 37B05 37D45 PDF BibTeX XML Cite \textit{J. Doleželová-Hantáková} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 14, Article ID 1650235, 13 p. (2016; Zbl 1357.37012) Full Text: DOI
Averbeck, Nathan; Raines, Brian E. Chaotic pairs for shift maps. (English) Zbl 1364.37082 Houston J. Math. 42, No. 4, 1367-1372 (2016). MSC: 37D45 37B50 37B10 37B20 54H20 PDF BibTeX XML Cite \textit{N. Averbeck} and \textit{B. E. Raines}, Houston J. Math. 42, No. 4, 1367--1372 (2016; Zbl 1364.37082)
Balibrea, Francisco; Cascales, Antonio Li-Yorke chaos in perturbed rational difference equations. (English) Zbl 1355.39026 Alsedà i Soler, Lluís (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23–27, 2012. Proceedings of the 18th international conference. Berlin: Springer (ISBN 978-3-662-52926-3/hbk; 978-3-662-52927-0/ebook). Springer Proceedings in Mathematics & Statistics 180, 49-61 (2016). MSC: 39A33 39A20 92D25 PDF BibTeX XML Cite \textit{F. Balibrea} and \textit{A. Cascales}, in: Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23--27, 2012. Proceedings of the 18th international conference. Berlin: Springer. 49--61 (2016; Zbl 1355.39026) Full Text: DOI
Ju, Hyonhui; Shao, Hua; Choe, Yunmi; Shi, Yuming Conditions for maps to be topologically conjugate or semi-conjugate to subshifts of finite type and criteria of chaos. (English) Zbl 1367.37021 Dyn. Syst. 31, No. 4, 496-505 (2016). MSC: 37C15 37B10 37D45 PDF BibTeX XML Cite \textit{H. Ju} et al., Dyn. Syst. 31, No. 4, 496--505 (2016; Zbl 1367.37021) Full Text: DOI
Wang, Zhaolong; Zhang, Guohua Chaotic behavior of group actions. (English) Zbl 1376.37027 Kolyada, Sergiǐ (ed.) et al., Dynamics and numbers. A special programm: June 1 – July 31, 2014. International conference: July 21–25, 2014, Max-Planck Institute for Mathematics, Bonn, Germany. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2020-8/pbk; 978-1-4704-3498-4/ebook). Contemporary Mathematics 669, 299-315 (2016). MSC: 37B05 37D45 37C85 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{G. Zhang}, Contemp. Math. 669, 299--315 (2016; Zbl 1376.37027) Full Text: DOI arXiv
Fen, Mehmet Onur; Akhmet, Marat Impulsive SICNNs with chaotic postsynaptic currents. (English) Zbl 1351.34051 Discrete Contin. Dyn. Syst., Ser. B 21, No. 4, 1119-1148 (2016). MSC: 34C60 34C28 92B20 37D45 34A37 92C20 PDF BibTeX XML Cite \textit{M. O. Fen} and \textit{M. Akhmet}, Discrete Contin. Dyn. Syst., Ser. B 21, No. 4, 1119--1148 (2016; Zbl 1351.34051) Full Text: DOI
Málek, Michal Omega-limit sets and invariant chaos in dimension one. (English) Zbl 1376.37086 J. Difference Equ. Appl. 22, No. 3, 468-473 (2016). Reviewer: Dominik Kwietniak (Krakow) MSC: 37E25 37B05 37B40 PDF BibTeX XML Cite \textit{M. Málek}, J. Difference Equ. Appl. 22, No. 3, 468--473 (2016; Zbl 1376.37086) Full Text: DOI arXiv
Wu, Xinxing; Chen, Guanrong Scrambled sets of shift operators. (English) Zbl 1341.54022 J. Nonlinear Sci. Appl. 9, No. 5, 2631-2637 (2016). MSC: 54H20 26A18 37E05 PDF BibTeX XML Cite \textit{X. Wu} and \textit{G. Chen}, J. Nonlinear Sci. Appl. 9, No. 5, 2631--2637 (2016; Zbl 1341.54022) Full Text: DOI Link
Lee, Manseob The limit shadowing property and Li-Yorke’s chaos. (English) Zbl 1344.37029 Asian-Eur. J. Math. 9, No. 1, Article ID 1650007, 7 p. (2016). MSC: 37C50 37B20 54H20 PDF BibTeX XML Cite \textit{M. Lee}, Asian-Eur. J. Math. 9, No. 1, Article ID 1650007, 7 p. (2016; Zbl 1344.37029) Full Text: DOI
Štefánková, Marta The Sharkovsky program of classification of triangular maps – a survey. (English) Zbl 1357.37014 Topol. Proc. 48, 135-150 (2016). Reviewer: Marcin Kulczycki (Kraków) MSC: 37B05 37B20 37B40 54H20 PDF BibTeX XML Cite \textit{M. Štefánková}, Topol. Proc. 48, 135--150 (2016; Zbl 1357.37014) Full Text: Link
Li, Jian; Ye, Xiang Dong Recent development of chaos theory in topological dynamics. (English) Zbl 1335.54039 Acta Math. Sin., Engl. Ser. 32, No. 1, 83-114 (2016). MSC: 54H20 37B05 37B40 54-02 37-02 PDF BibTeX XML Cite \textit{J. Li} and \textit{X. D. Ye}, Acta Math. Sin., Engl. Ser. 32, No. 1, 83--114 (2016; Zbl 1335.54039) Full Text: DOI arXiv
Štefánková, Marta Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. (English) Zbl 1342.37019 Discrete Contin. Dyn. Syst. 36, No. 6, 3435-3443 (2016). Reviewer: Sylvia Novo (Valladolid) MSC: 37B55 37B40 54H20 37B05 37B20 PDF BibTeX XML Cite \textit{M. Štefánková}, Discrete Contin. Dyn. Syst. 36, No. 6, 3435--3443 (2016; Zbl 1342.37019) Full Text: DOI
Raines, Brian E.; Underwood, Tyler Scrambled sets in shift spaces on a countable alphabet. (English) Zbl 1352.37038 Proc. Am. Math. Soc. 144, No. 1, 217-224 (2016). MSC: 37B10 37B20 37D40 54H20 37B50 PDF BibTeX XML Cite \textit{B. E. Raines} and \textit{T. Underwood}, Proc. Am. Math. Soc. 144, No. 1, 217--224 (2016; Zbl 1352.37038) Full Text: DOI
Li, Zongcheng; Zhu, Xiaoying Existence of chaos for a simple delay difference equation. (English) Zbl 1346.37041 Adv. Difference Equ. 2015, Paper No. 39, 8 p. (2015). MSC: 37D45 PDF BibTeX XML Cite \textit{Z. Li} and \textit{X. Zhu}, Adv. Difference Equ. 2015, Paper No. 39, 8 p. (2015; Zbl 1346.37041) Full Text: DOI
Wang, Wei; Li, Jian; Zhu, Xiaogang; Liao, Menglan; Chen, Bingbing A class of substitution systems and the hyperspace systems. (Chinese. English summary) Zbl 1349.37039 J. Northeast Norm. Univ., Nat. Sci. Ed. 47, No. 3, 9-11 (2015). MSC: 37D45 54C60 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Northeast Norm. Univ., Nat. Sci. Ed. 47, No. 3, 9--11 (2015; Zbl 1349.37039) Full Text: DOI
Akhmet, Marat; Fen, Mehmet Onur Li-Yorke chaos in hybrid systems on a time scale. (English) Zbl 1334.37028 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 14, Article ID 1540024, 10 p. (2015). MSC: 37D45 34C20 34N05 PDF BibTeX XML Cite \textit{M. Akhmet} and \textit{M. O. Fen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 14, Article ID 1540024, 10 p. (2015; Zbl 1334.37028) Full Text: DOI arXiv
Li, Jian; Kwietniak, Dominik; Kulczycki, Marcin; Falniowski, Fryderyk Two results on entropy, chaos and independence in symbolic dynamics. (English) Zbl 1366.37036 Discrete Contin. Dyn. Syst., Ser. B 20, No. 10, 3487-3505 (2015). MSC: 37B40 37B10 37A35 PDF BibTeX XML Cite \textit{J. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 20, No. 10, 3487--3505 (2015; Zbl 1366.37036) Full Text: DOI arXiv
Shao, Hua; Shi, Yuming; Zhu, Hao Strong Li-Yorke chaos for time-varying discrete dynamical systems with a-coupled-expansion. (English) Zbl 1330.37036 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 13, Article ID 1550186, 10 p. (2015). MSC: 37D45 37B55 PDF BibTeX XML Cite \textit{H. Shao} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 13, Article ID 1550186, 10 p. (2015; Zbl 1330.37036) Full Text: DOI arXiv
Li, Risong; Zhao, Yu Remark on positive entropy of a coupled lattice system related with Belusov-Zhabotinskii reaction. (English) Zbl 1328.92030 J. Math. Chem. 53, No. 10, 2115-2119 (2015). MSC: 92C45 37L60 PDF BibTeX XML Cite \textit{R. Li} and \textit{Y. Zhao}, J. Math. Chem. 53, No. 10, 2115--2119 (2015; Zbl 1328.92030) Full Text: DOI
Szała, Leszek Chaotic behaviour of uniformly convergent non-autonomous systems with randomly perturbed trajectories. (English) Zbl 1358.37044 J. Difference Equ. Appl. 21, No. 7, 592-605 (2015). MSC: 37B55 37B20 37D45 PDF BibTeX XML Cite \textit{L. Szała}, J. Difference Equ. Appl. 21, No. 7, 592--605 (2015; Zbl 1358.37044) Full Text: DOI
Bernardes, N. C.; Bonilla, A.; Müller, V.; Peris, A. Li-Yorke chaos in linear dynamics. (English) Zbl 1352.37100 Ergodic Theory Dyn. Syst. 35, No. 6, 1723-1745 (2015). MSC: 37D45 47A16 47B33 PDF BibTeX XML Cite \textit{N. C. Bernardes} et al., Ergodic Theory Dyn. Syst. 35, No. 6, 1723--1745 (2015; Zbl 1352.37100) Full Text: DOI
Shirazi, F. Ayatollah Zadeh; Sarkooh, J. Nazarian Li-Yorke chaotic generalized shift dynamical systems. (English) Zbl 1415.37022 Casp. J. Math. Sci. 3, No. 2, 289-295 (2014). MSC: 37B99 PDF BibTeX XML Cite \textit{F. A. Z. Shirazi} and \textit{J. N. Sarkooh}, Casp. J. Math. Sci. 3, No. 2, 289--295 (2014; Zbl 1415.37022) Full Text: Link
Wang, Hui; Lei, Fengchun; Wang, Lidong DC3 and Li-Yorke chaos. (English) Zbl 1311.37027 Appl. Math. Lett. 31, 29-33 (2014). MSC: 37D45 PDF BibTeX XML Cite \textit{H. Wang} et al., Appl. Math. Lett. 31, 29--33 (2014; Zbl 1311.37027) Full Text: DOI
Lee, M. Howard Solving for the fixed points of 3-cycle in the logistic map and toward realizing chaos by the theorems of Sharkovskii and Li-Yorke. (English) Zbl 1301.37024 Commun. Theor. Phys. 62, No. 4, 485-496 (2014). MSC: 37E05 37C25 34C28 PDF BibTeX XML Cite \textit{M. H. Lee}, Commun. Theor. Phys. 62, No. 4, 485--496 (2014; Zbl 1301.37024) Full Text: DOI
Chen, Zhijing; Li, Jian; Lü, Jie On multi-transitivity with respect to a vector. (English) Zbl 1311.54030 Sci. China, Math. 57, No. 8, 1639-1648 (2014). Reviewer: Pooja Singh (Allahabad) MSC: 54H20 37B40 58K15 37B45 PDF BibTeX XML Cite \textit{Z. Chen} et al., Sci. China, Math. 57, No. 8, 1639--1648 (2014; Zbl 1311.54030) Full Text: DOI arXiv
Li, Risong Comment on “A note on the principal measure and distributional \((p, q)\)-chaos of a coupled lattice system related with Belusov-Zhabotinskii reaction”. (English) Zbl 1300.54054 J. Math. Chem. 52, No. 3, 775-780 (2014). MSC: 54H20 37B40 37D45 PDF BibTeX XML Cite \textit{R. Li}, J. Math. Chem. 52, No. 3, 775--780 (2014; Zbl 1300.54054) Full Text: DOI
Akhmet, Marat; Fen, Mehmet Onur Chaotification of impulsive systems by perturbations. (English) Zbl 1296.34108 Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 6, Article ID 1450078, 16 p. (2014). MSC: 34C28 34A37 34D10 34H10 PDF BibTeX XML Cite \textit{M. Akhmet} and \textit{M. O. Fen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 6, Article ID 1450078, 16 p. (2014; Zbl 1296.34108) Full Text: DOI
Ruette, Sylvie; Snoha, L’ubomír For graph maps, one scrambled pair implies Li-Yorke chaos. (English) Zbl 1348.37068 Proc. Am. Math. Soc. 142, No. 6, 2087-2100 (2014). MSC: 37E25 37B05 54H20 PDF BibTeX XML Cite \textit{S. Ruette} and \textit{L. Snoha}, Proc. Am. Math. Soc. 142, No. 6, 2087--2100 (2014; Zbl 1348.37068) Full Text: DOI arXiv