Atobe, Hiraku; Mínguez, Alberto The explicit Zelevinsky-Aubert duality. (English) Zbl 07657270 Compos. Math. 159, No. 2, 380-418 (2023). MSC: 22E50 11S37 PDF BibTeX XML Cite \textit{H. Atobe} and \textit{A. Mínguez}, Compos. Math. 159, No. 2, 380--418 (2023; Zbl 07657270) Full Text: DOI arXiv OpenURL
Zhang, Lihua; Wang, Zhenli; Shen, Bo Fractional complex transforms, reduced equations and exact solutions of the fractional Kraenkel-Manna-Merle system. (English) Zbl 07659561 Fractals 30, No. 9, Article ID 2250179, 15 p. (2022). MSC: 35Q60 78A55 35C05 35C08 35C09 35A24 34B30 33E05 17B81 26A33 35R11 PDF BibTeX XML Cite \textit{L. Zhang} et al., Fractals 30, No. 9, Article ID 2250179, 15 p. (2022; Zbl 07659561) Full Text: DOI OpenURL
Wang, Kangle; Wei, Chunfu; Ren, Feng New properties of the fractal Boussinesq-Kadomtsev-Petviashvili-like equation with unsmooth boundaries. (English) Zbl 07659557 Fractals 30, No. 9, Article ID 2250175, 9 p. (2022). MSC: 35Q35 76B15 35A24 35C07 35C08 37K35 28A80 26A33 35R11 PDF BibTeX XML Cite \textit{K. Wang} et al., Fractals 30, No. 9, Article ID 2250175, 9 p. (2022; Zbl 07659557) Full Text: DOI OpenURL
Teng, Wentao Hardy inequalities for fractional \((k,a)\)-generalized harmonic oscillators. (English) Zbl 07624545 J. Lie Theory 32, No. 4, 1007-1023 (2022). MSC: 22E46 26A33 17B22 47D03 33C55 43A32 33C45 PDF BibTeX XML Cite \textit{W. Teng}, J. Lie Theory 32, No. 4, 1007--1023 (2022; Zbl 07624545) Full Text: arXiv Link OpenURL
Bos, Martijn; Traversaro, Silvio; Pucci, Daniele; Saccon, Alessandro Efficient geometric linearization of moving-base rigid robot dynamics. (English) Zbl 1500.70013 J. Geom. Mech. 14, No. 4, 507-543 (2022). MSC: 70E55 22Exx 93-XX 65-XX PDF BibTeX XML Cite \textit{M. Bos} et al., J. Geom. Mech. 14, No. 4, 507--543 (2022; Zbl 1500.70013) Full Text: DOI arXiv OpenURL
Aimar, Hugo; Gómez, Ivana On generalized divergence and Laplace operators as a matter of division of distributions. (English) Zbl 1500.35102 Stud. Math. 267, No. 3, 261-294 (2022). MSC: 35J05 35R03 26A33 46F12 PDF BibTeX XML Cite \textit{H. Aimar} and \textit{I. Gómez}, Stud. Math. 267, No. 3, 261--294 (2022; Zbl 1500.35102) Full Text: DOI arXiv OpenURL
Faress, Moussa; Fahlaoui, Said U.P for wavelet transform on the affine automorporphism group of quaternionic Heisenberg group. (English) Zbl 1500.42018 Palest. J. Math. 11, No. 3, 205-215 (2022). Reviewer: Yuri A. Farkov (Moskva) MSC: 42C40 22E10 26A33 PDF BibTeX XML Cite \textit{M. Faress} and \textit{S. Fahlaoui}, Palest. J. Math. 11, No. 3, 205--215 (2022; Zbl 1500.42018) Full Text: Link OpenURL
Alqaraleh, Sahar M.; Talafha, Adeeb G.; Momani, Shaher; Al-Omari, Shrideh; Al-Smadi, Mohammed Exact soliton solutions for conformable fractional six wave interaction equations by the ansatz method. (English) Zbl 07578003 Fractals 30, No. 5, Article ID 2240143, 16 p. (2022). MSC: 35Q99 37K35 37K15 35C08 26A09 65H10 26A33 35R11 PDF BibTeX XML Cite \textit{S. M. Alqaraleh} et al., Fractals 30, No. 5, Article ID 2240143, 16 p. (2022; Zbl 07578003) Full Text: DOI OpenURL
van Schaftingen, Jean; Yung, Po-Lam Limiting Sobolev and Hardy inequalities on stratified homogeneous groups. (English) Zbl 1496.35023 Ann. Fenn. Math. 47, No. 2, 1065-1098 (2022). MSC: 35A23 35R03 26D15 35H20 43A80 46E35 PDF BibTeX XML Cite \textit{J. van Schaftingen} and \textit{P.-L. Yung}, Ann. Fenn. Math. 47, No. 2, 1065--1098 (2022; Zbl 1496.35023) Full Text: DOI arXiv OpenURL
Abolarinwa, Abimbola; Taheri, Ali Geometric estimates on weighted \(p\)-fundamental tone and applications to the first eigenvalue of submanifolds with bounded mean curvature. (English) Zbl 07548745 Complex Var. Elliptic Equ. 67, No. 6, 1379-1392 (2022). MSC: 22E30 26D10 35P30 47J10 58J05 PDF BibTeX XML Cite \textit{A. Abolarinwa} and \textit{A. Taheri}, Complex Var. Elliptic Equ. 67, No. 6, 1379--1392 (2022; Zbl 07548745) Full Text: DOI OpenURL
Roncal, Luz; Thangavelu, Sundaram Corrigendum to: “An extension problem and trace Hardy inequality for the sub-Laplacian on \(H\)-type groups”. (Corrigendum to: “An extension problem and trace Hardy inequality for the sublaplacian on \(H\)-type groups”.) (English) Zbl 1489.35003 Int. Math. Res. Not. 2022, No. 12, 9598-9602 (2022). MSC: 35A23 35H20 35R03 35R11 PDF BibTeX XML Cite \textit{L. Roncal} and \textit{S. Thangavelu}, Int. Math. Res. Not. 2022, No. 12, 9598--9602 (2022; Zbl 1489.35003) Full Text: DOI OpenURL
Kumari, Pinki; Gupta, R. K.; Kumar, Sachin The time fractional \(D(m, n)\) system: invariant analysis, explicit solution, conservation laws and optical soliton. (English) Zbl 1501.35440 Waves Random Complex Media 32, No. 3, 1322-1337 (2022). Reviewer: Jean-Claude Ndogmo (Thohoyandou) MSC: 35R11 35C08 26A33 76B15 76M60 35B06 PDF BibTeX XML Cite \textit{P. Kumari} et al., Waves Random Complex Media 32, No. 3, 1322--1337 (2022; Zbl 1501.35440) Full Text: DOI OpenURL
Garg, Rahul; Jotsaroop, K. Localisation of spectral sums corresponding to the sub-Laplacian on the Heisenberg group. (English) Zbl 1500.43004 Indiana Univ. Math. J. 71, No. 2, 579-609 (2022). MSC: 43A50 43A80 26D10 PDF BibTeX XML Cite \textit{R. Garg} and \textit{K. Jotsaroop}, Indiana Univ. Math. J. 71, No. 2, 579--609 (2022; Zbl 1500.43004) Full Text: DOI arXiv OpenURL
Gordina, Maria; Luo, Liangbing Logarithmic Sobolev inequalities on non-isotropic Heisenberg groups. (English) Zbl 1487.58023 J. Funct. Anal. 283, No. 2, Article ID 109500, 33 p. (2022). MSC: 58J35 22E30 22E66 35A23 35K08 35R03 60J65 PDF BibTeX XML Cite \textit{M. Gordina} and \textit{L. Luo}, J. Funct. Anal. 283, No. 2, Article ID 109500, 33 p. (2022; Zbl 1487.58023) Full Text: DOI arXiv OpenURL
Cresson, Jacky; Jiménez, Fernando; Ober-Blöbaum, Sina Continuous and discrete Noether’s fractional conserved quantities for restricted calculus of variations. (English) Zbl 1487.49027 J. Geom. Mech. 14, No. 1, 57-89 (2022). MSC: 49K21 26A33 70G65 37M15 PDF BibTeX XML Cite \textit{J. Cresson} et al., J. Geom. Mech. 14, No. 1, 57--89 (2022; Zbl 1487.49027) Full Text: DOI OpenURL
Zhao, Shiliang Centered Hardy-Littlewood maximal function on product manifolds. (English) Zbl 1486.42036 Adv. Nonlinear Anal. 11, 888-906 (2022). MSC: 42B25 43A80 42B20 26D10 PDF BibTeX XML Cite \textit{S. Zhao}, Adv. Nonlinear Anal. 11, 888--906 (2022; Zbl 1486.42036) Full Text: DOI OpenURL
Bhowmik, Mithun; Pusti, Sanjoy An extension problem and Hardy’s inequality for the fractional Laplace-Beltrami operator on Riemannian symmetric spaces of noncompact type. (English) Zbl 07489491 J. Funct. Anal. 282, No. 9, Article ID 109413, 40 p. (2022). MSC: 43A85 26A33 22E30 53C35 PDF BibTeX XML Cite \textit{M. Bhowmik} and \textit{S. Pusti}, J. Funct. Anal. 282, No. 9, Article ID 109413, 40 p. (2022; Zbl 07489491) Full Text: DOI arXiv OpenURL
Bruno, Tommaso; Peloso, Marco M.; Vallarino, Maria The Sobolev embedding constant on Lie groups. (English) Zbl 1492.46032 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112707, 17 p. (2022). MSC: 46E35 22E30 43A80 26D10 PDF BibTeX XML Cite \textit{T. Bruno} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112707, 17 p. (2022; Zbl 1492.46032) Full Text: DOI arXiv OpenURL
Rashidi, Saeede; Hejazi, S. Reza; Mohammadizadeh, Fatemeh Group formalism of Lie transformations, conservation laws, exact and numerical solutions of non-linear time-fractional Black-Scholes equation. (English) Zbl 1478.35015 J. Comput. Appl. Math. 403, Article ID 113863, 30 p. (2022). MSC: 35B06 35Q91 35R11 26A33 58D19 70S10 PDF BibTeX XML Cite \textit{S. Rashidi} et al., J. Comput. Appl. Math. 403, Article ID 113863, 30 p. (2022; Zbl 1478.35015) Full Text: DOI OpenURL
Jafari, H.; Kadkhoda, N.; Baleanu, Dumitru Lie group theory for nonlinear fractional \(K(m, n)\) type equation with variable coefficients. (English) Zbl 1479.35736 Singh, Jagdev (ed.) et al., Methods of mathematical modelling and computation for complex systems. Cham: Springer. Stud. Syst. Decis. Control 373, 207-227 (2022). MSC: 35Q53 17B81 44A10 31B10 35R03 26A33 35R11 PDF BibTeX XML Cite \textit{H. Jafari} et al., Stud. Syst. Decis. Control 373, 207--227 (2022; Zbl 1479.35736) Full Text: DOI arXiv OpenURL
Sethukumarasamy, K.; Vijayaraju, P.; Prakash, P. On Lie symmetry analysis of certain coupled fractional ordinary differential equations. (English) Zbl 1497.34015 J. Nonlinear Math. Phys. 28, No. 2, 219-241 (2021). MSC: 34A08 70G65 26A33 PDF BibTeX XML Cite \textit{K. Sethukumarasamy} et al., J. Nonlinear Math. Phys. 28, No. 2, 219--241 (2021; Zbl 1497.34015) Full Text: DOI OpenURL
Reza Hejazi, S.; Rashidi, Saeede Symmetries, conservation laws and exact solutions of the time-fractional diffusivity equation via Riemann-Liouville and Caputo derivatives. (English) Zbl 1496.76106 Waves Random Complex Media 31, No. 4, 690-711 (2021). MSC: 76M60 76R50 76M55 26A33 PDF BibTeX XML Cite \textit{S. Reza Hejazi} and \textit{S. Rashidi}, Waves Random Complex Media 31, No. 4, 690--711 (2021; Zbl 1496.76106) Full Text: DOI OpenURL
Jannelli, Alessandra; Speciale, Maria Paola On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations. (English) Zbl 1485.65079 AIMS Math. 6, No. 8, 9109-9125 (2021). MSC: 65L05 22E70 35R11 PDF BibTeX XML Cite \textit{A. Jannelli} and \textit{M. P. Speciale}, AIMS Math. 6, No. 8, 9109--9125 (2021; Zbl 1485.65079) Full Text: DOI OpenURL
Ruzhansky, Michael; Sabitbek, Bolys; Suragan, Durvudkhan Geometric Hardy inequalities on starshaped sets. (English) Zbl 1483.35009 J. Convex Anal. 28, No. 3, 927-938 (2021). MSC: 35A23 35H20 35R03 PDF BibTeX XML Cite \textit{M. Ruzhansky} et al., J. Convex Anal. 28, No. 3, 927--938 (2021; Zbl 1483.35009) Full Text: arXiv Link OpenURL
Wang, Yan; Xu, Li; Wang, Yu-Jin; Liu, Jian-Gen Lie group analysis of fractal differential-difference equations. (English) Zbl 1490.39010 Fractals 29, No. 7, Article ID 2150197, 7 p. (2021). MSC: 39A13 39A14 34K04 35B06 35R11 35Q51 34A08 26A33 70G65 PDF BibTeX XML Cite \textit{Y. Wang} et al., Fractals 29, No. 7, Article ID 2150197, 7 p. (2021; Zbl 1490.39010) Full Text: DOI OpenURL
Müller, Andreas; Kumar, Shivesh Closed-form time derivatives of the equations of motion of rigid body systems. (English) Zbl 1483.70026 Multibody Syst. Dyn. 53, No. 3, 257-273 (2021). MSC: 70E55 70E60 70G65 PDF BibTeX XML Cite \textit{A. Müller} and \textit{S. Kumar}, Multibody Syst. Dyn. 53, No. 3, 257--273 (2021; Zbl 1483.70026) Full Text: DOI OpenURL
Pitts, J. Brian Change in Hamiltonian general relativity with spinors. (English) Zbl 1476.83009 Found. Phys. 51, No. 6, Paper No. 109, 30 p. (2021). MSC: 83C05 83C45 83D05 81T13 53C80 PDF BibTeX XML Cite \textit{J. B. Pitts}, Found. Phys. 51, No. 6, Paper No. 109, 30 p. (2021; Zbl 1476.83009) Full Text: DOI arXiv OpenURL
Kassymov, Aidyn; Suragan, Durvudkhan Lyapunov-type inequality for fractional sub-Laplacians. (English) Zbl 1481.35018 Ashyralyev, Allaberen (ed.) et al., Functional analysis in interdisciplinary applications II. Collected papers based on the presentations at the mini-symposium, held as part of the fourth international conference on analysis and applied mathematics, ICAAM, September 6–9, 2018. Cham: Springer. Springer Proc. Math. Stat. 351, 91-103 (2021). MSC: 35A23 26A33 35H20 35R03 35R11 PDF BibTeX XML Cite \textit{A. Kassymov} and \textit{D. Suragan}, Springer Proc. Math. Stat. 351, 91--103 (2021; Zbl 1481.35018) Full Text: DOI OpenURL
Zhang, Zhi-Yong; Guo, Lei-Lei An alternative technique for the symmetry reduction of time-fractional partial differential equation. (English) Zbl 1484.35399 Math. Methods Appl. Sci. 44, No. 18, 14957-14962 (2021). MSC: 35R11 26A33 35C05 35C10 76M60 PDF BibTeX XML Cite \textit{Z.-Y. Zhang} and \textit{L.-L. Guo}, Math. Methods Appl. Sci. 44, No. 18, 14957--14962 (2021; Zbl 1484.35399) Full Text: DOI OpenURL
Foroozandeh, Mohammadali; Singh, Pranav Optimal control of spins by analytical Lie algebraic derivatives. (English) Zbl 1478.49032 Automatica 129, Article ID 109611, 7 p. (2021). MSC: 49M99 PDF BibTeX XML Cite \textit{M. Foroozandeh} and \textit{P. Singh}, Automatica 129, Article ID 109611, 7 p. (2021; Zbl 1478.49032) Full Text: DOI arXiv OpenURL
Srivastava, H. M.; Mandal, H.; Bira, B. Lie symmetry and exact solution of the time-fractional Hirota-Satsuma Korteweg-de Vries system. (English) Zbl 1477.35227 Russ. J. Math. Phys. 28, No. 3, 284-292 (2021). MSC: 35Q53 22E70 26A33 35R11 35R03 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Russ. J. Math. Phys. 28, No. 3, 284--292 (2021; Zbl 1477.35227) Full Text: DOI OpenURL
Aouadi, Moncef Robustness of global attractors for extensible coupled suspension bridge equations with fractional damping. (English) Zbl 1477.35256 Appl. Math. Optim. 84, Suppl. 1, S403-S435 (2021). MSC: 35Q74 37L05 35B40 35B41 35B20 35A01 35A02 37G35 74H45 74K10 22E70 26A33 35R11 PDF BibTeX XML Cite \textit{M. Aouadi}, Appl. Math. Optim. 84, S403--S435 (2021; Zbl 1477.35256) Full Text: DOI OpenURL
Budak, Hüseyin; Pinar, Kösem; Sundas, Khan On new Hermite-Hadamard type inequalities for \(F\)-convex functions via fractional integrals. (English) Zbl 1499.26009 Sarajevo J. Math. 17(30), No. 1, 23-35 (2021). MSC: 26A33 26A51 PDF BibTeX XML Cite \textit{H. Budak} et al., Sarajevo J. Math. 17(30), No. 1, 23--35 (2021; Zbl 1499.26009) OpenURL
Kania, Maria B. MHD equations in a bounded domain. (English) Zbl 1479.35672 Ann. Math. Sil. 35, No. 2, 211-235 (2021). MSC: 35Q35 35S15 35K90 35B65 76W05 76M60 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{M. B. Kania}, Ann. Math. Sil. 35, No. 2, 211--235 (2021; Zbl 1479.35672) Full Text: DOI OpenURL
Pérez, Juan de Dios; Pérez-López, David Lie derivatives of the shape operator of a real hypersurface in a complex projective space. (English) Zbl 1477.53029 Mediterr. J. Math. 18, No. 5, Paper No. 207, 10 p. (2021). MSC: 53B25 53C15 32V40 PDF BibTeX XML Cite \textit{J. de D. Pérez} and \textit{D. Pérez-López}, Mediterr. J. Math. 18, No. 5, Paper No. 207, 10 p. (2021; Zbl 1477.53029) Full Text: DOI OpenURL
Chatibi, Youness; El Kinani, El Hassan; Ouhadan, Abdelaziz On the discrete symmetry analysis of some classical and fractional differential equations. (English) Zbl 1469.76081 Math. Methods Appl. Sci. 44, No. 4, 2868-2878 (2021). MSC: 76M60 76D10 76R50 26A33 PDF BibTeX XML Cite \textit{Y. Chatibi} et al., Math. Methods Appl. Sci. 44, No. 4, 2868--2878 (2021; Zbl 1469.76081) Full Text: DOI OpenURL
Flynn, Joshua; Lam, Nguyen; Lu, Guozhen Sharp Hardy identities and inequalities on Carnot groups. (English) Zbl 1479.43012 Adv. Nonlinear Stud. 21, No. 2, 281-302 (2021). MSC: 43A80 43A15 42B35 46E35 35J15 26D10 22E30 PDF BibTeX XML Cite \textit{J. Flynn} et al., Adv. Nonlinear Stud. 21, No. 2, 281--302 (2021; Zbl 1479.43012) Full Text: DOI OpenURL
Singla, Komal Existence of series solutions for certain nonlinear systems of time fractional partial differential equations. (English) Zbl 1469.35231 J. Geom. Phys. 167, Article ID 104301, 14 p. (2021). MSC: 35R11 35C10 26A33 34A08 76M60 PDF BibTeX XML Cite \textit{K. Singla}, J. Geom. Phys. 167, Article ID 104301, 14 p. (2021; Zbl 1469.35231) Full Text: DOI OpenURL
Carbotti, Alessandro; Don, Sebastiano; Pallara, Diego; Pinamonti, Andrea Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups. (English) Zbl 1470.53030 ESAIM, Control Optim. Calc. Var. 27, Suppl., Paper No. S11, 27 p. (2021). MSC: 53C17 22E25 49Q15 53C38 26A33 49Q05 PDF BibTeX XML Cite \textit{A. Carbotti} et al., ESAIM, Control Optim. Calc. Var. 27, Paper No. S11, 27 p. (2021; Zbl 1470.53030) Full Text: DOI arXiv OpenURL
Jia, Yundie; Zhang, Yi Fractional Birkhoffian dynamics based on quasi-fractional dynamics models and its Lie symmetry. (English) Zbl 1474.70026 Trans. Nanjing Univ. Aeronaut. Astronaut. 38, No. 1, 84-95 (2021). MSC: 70H33 26A33 PDF BibTeX XML Cite \textit{Y. Jia} and \textit{Y. Zhang}, Trans. Nanjing Univ. Aeronaut. Astronaut. 38, No. 1, 84--95 (2021; Zbl 1474.70026) Full Text: DOI OpenURL
Won, Yong Sul An \(L_2\)-approximation method for construction and smoothing estimates of Markov semigroups for interacting diffusion processes on a lattice. (English) Zbl 07362260 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 24, No. 1, Article ID 2150004, 21 p. (2021). Reviewer: Heinrich Hering (Rockenberg) MSC: 47D07 60K35 37L65 62-02 60J60 60H10 60H15 26D10 22E30 35B40 35H10 37L55 46N50 PDF BibTeX XML Cite \textit{Y. S. Won}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 24, No. 1, Article ID 2150004, 21 p. (2021; Zbl 07362260) Full Text: DOI OpenURL
Maarouf, Nisrine; Maadan, Hicham; Hilal, Khalid Lie symmetry analysis and explicit solutions for the time-fractional regularized long-wave equation. (English) Zbl 1473.76043 Int. J. Differ. Equ. 2021, Article ID 6614231, 11 p. (2021). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 76M60 76B15 76M45 26A33 PDF BibTeX XML Cite \textit{N. Maarouf} et al., Int. J. Differ. Equ. 2021, Article ID 6614231, 11 p. (2021; Zbl 1473.76043) Full Text: DOI OpenURL
Xi, Lin; Dou, Jingbo Some weighted Hardy and Rellich inequalities on the Heisenberg group. (English) Zbl 1461.35009 Int. J. Math. 32, No. 3, Article ID 2150011, 28 p. (2021). MSC: 35A23 35R03 43A80 35H20 PDF BibTeX XML Cite \textit{L. Xi} and \textit{J. Dou}, Int. J. Math. 32, No. 3, Article ID 2150011, 28 p. (2021; Zbl 1461.35009) Full Text: DOI OpenURL
Franceschi, Valentina; Prandi, Dario Hardy-type inequalities for the Carnot-Carathéodory distance in the Heisenberg group. (English) Zbl 1470.35010 J. Geom. Anal. 31, No. 3, 2455-2480 (2021). MSC: 35A23 35R03 53C17 PDF BibTeX XML Cite \textit{V. Franceschi} and \textit{D. Prandi}, J. Geom. Anal. 31, No. 3, 2455--2480 (2021; Zbl 1470.35010) Full Text: DOI arXiv OpenURL
Singla, Komal; Gupta, R. K. Symmetry classification and exact solutions of \((3+1)\)-dimensional fractional nonlinear incompressible non-hydrostatic coupled Boussinesq equations. (English) Zbl 1456.76024 J. Math. Phys. 62, No. 1, 011504, 17 p. (2021). MSC: 76B15 76M60 76M55 26A33 PDF BibTeX XML Cite \textit{K. Singla} and \textit{R. K. Gupta}, J. Math. Phys. 62, No. 1, 011504, 17 p. (2021; Zbl 1456.76024) Full Text: DOI OpenURL
Singla, Komal; Rana, M. Exact solutions and conservation laws of multi Kaup-Boussinesq system with fractional order. (English) Zbl 1456.35221 Anal. Math. Phys. 11, No. 1, Paper No. 30, 15 p. (2021). MSC: 35R11 35B06 26A33 34A08 76M60 70S10 PDF BibTeX XML Cite \textit{K. Singla} and \textit{M. Rana}, Anal. Math. Phys. 11, No. 1, Paper No. 30, 15 p. (2021; Zbl 1456.35221) Full Text: DOI OpenURL
Liu, Jian-Gen; Yang, Xiao-Jun; Feng, Yi-Ying; Cui, Ping; Geng, Lu-Lu On integrability of the higher dimensional time fractional KdV-type equation. (English) Zbl 1458.37070 J. Geom. Phys. 160, Article ID 104000, 16 p. (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 37K10 26A33 35Q53 35R11 PDF BibTeX XML Cite \textit{J.-G. Liu} et al., J. Geom. Phys. 160, Article ID 104000, 16 p. (2021; Zbl 1458.37070) Full Text: DOI OpenURL
Li, Jiongyue; Zang, Yunlong A vector field method for some nonlinear Dirac models in Minkowski spacetime. (English) Zbl 1464.35276 J. Differ. Equations 273, 58-82 (2021). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35Q41 35L05 35B40 35A01 83C60 15A66 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Zang}, J. Differ. Equations 273, 58--82 (2021; Zbl 1464.35276) Full Text: DOI OpenURL
Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M. S.; Sergeyev, Ya. D. Computation of higher order Lie derivatives on the infinity computer. (English) Zbl 1451.65090 J. Comput. Appl. Math. 383, Article ID 113135, 14 p. (2021). MSC: 65L06 65D25 PDF BibTeX XML Cite \textit{F. Iavernaro} et al., J. Comput. Appl. Math. 383, Article ID 113135, 14 p. (2021; Zbl 1451.65090) Full Text: DOI Link OpenURL
Iskenderoglu, Gulistan; Kaya, Dogan Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense. (English) Zbl 1483.35319 Chaos Solitons Fractals 134, Article ID 109684, 7 p. (2020). MSC: 35R11 26A33 35B06 PDF BibTeX XML Cite \textit{G. Iskenderoglu} and \textit{D. Kaya}, Chaos Solitons Fractals 134, Article ID 109684, 7 p. (2020; Zbl 1483.35319) Full Text: DOI arXiv OpenURL
Jafari, Hossein; Sun, Hong Guang; Azadi, Marzieh Lie symmetry reductions and conservation laws for fractional order coupled KdV system. (English) Zbl 1485.35391 Adv. Difference Equ. 2020, Paper No. 700, 10 p. (2020). MSC: 35R11 35B06 35Q53 26A33 PDF BibTeX XML Cite \textit{H. Jafari} et al., Adv. Difference Equ. 2020, Paper No. 700, 10 p. (2020; Zbl 1485.35391) Full Text: DOI OpenURL
Roncal, Luz; Thangavelu, Sundaram An extension problem and trace Hardy inequality for the sub-Laplacian on \(H\)-type groups. (English) Zbl 1484.35015 Int. Math. Res. Not. 2020, No. 14, 4238-4294 (2020); corrigendum ibid. 2022, No. 12, 9598-9602 (2022). MSC: 35A23 35H20 35R03 35R11 PDF BibTeX XML Cite \textit{L. Roncal} and \textit{S. Thangavelu}, Int. Math. Res. Not. 2020, No. 14, 4238--4294 (2020; Zbl 1484.35015) Full Text: DOI arXiv OpenURL
Nhangumbe, Clarinda; Fredericks, Ebrahim; Canhanga, Betuel Lie symmetry analysis on pricing weather derivatives by partial differential equations. (English) Zbl 1496.60073 Silvestrov, Sergei (ed.) et al., Algebraic structures and applications. Selected papers based on the presentations at the international conference on stochastic processes and algebraic structures – from theory towards applications, SPAS 2017, Västerås and Stockholm, Sweden, October 4–6, 2017. Cham: Springer. Springer Proc. Math. Stat. 317, 875-901 (2020). Reviewer: Latifa Debbi (M’Sila) MSC: 60H15 76M60 PDF BibTeX XML Cite \textit{C. Nhangumbe} et al., Springer Proc. Math. Stat. 317, 875--901 (2020; Zbl 1496.60073) Full Text: DOI OpenURL
Ruzhansky, Michael; Yessirkegenov, Nurgissa Factorizations and Hardy-Rellich inequalities on stratified groups. (English) Zbl 1487.22011 J. Spectr. Theory 10, No. 4, 1361-1411 (2020). MSC: 22E30 43A80 35A23 58C40 PDF BibTeX XML Cite \textit{M. Ruzhansky} and \textit{N. Yessirkegenov}, J. Spectr. Theory 10, No. 4, 1361--1411 (2020; Zbl 1487.22011) Full Text: DOI arXiv OpenURL
Ruzhansky, Michael; Sabitbek, Bolys; Suragan, Durvudkhan Geometric Hardy and Hardy-Sobolev inequalities on Heisenberg groups. (English) Zbl 1467.35016 Bull. Math. Sci. 10, No. 3, Article ID 2050016, 17 p. (2020). MSC: 35A23 35H20 35R03 PDF BibTeX XML Cite \textit{M. Ruzhansky} et al., Bull. Math. Sci. 10, No. 3, Article ID 2050016, 17 p. (2020; Zbl 1467.35016) Full Text: DOI arXiv OpenURL
Ceballos, Johan; Coloma, Nicolás; Di Teodoro, Antonio; Ochoa-Tocachi, Diego Generalized fractional Cauchy-Riemann operator associated with the fractional Cauchy-Riemann operator. (English) Zbl 1452.35235 Adv. Appl. Clifford Algebr. 30, No. 5, Paper No. 70, 21 p. (2020). MSC: 35R11 26A33 34A08 22E30 32A30 PDF BibTeX XML Cite \textit{J. Ceballos} et al., Adv. Appl. Clifford Algebr. 30, No. 5, Paper No. 70, 21 p. (2020; Zbl 1452.35235) Full Text: DOI OpenURL
Bonnefont, Michel; Chafaï, Djalil; Herry, Ronan On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group. (English. French summary) Zbl 1451.35009 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 2, 335-355 (2020). MSC: 35A23 35R03 22E30 35K08 60J65 PDF BibTeX XML Cite \textit{M. Bonnefont} et al., Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 2, 335--355 (2020; Zbl 1451.35009) Full Text: DOI arXiv OpenURL
Kassymov, A.; Suragan, D. Fractional Hardy-Sobolev inequalities and existence results for fractional sub-Laplacians. (English. Russian original) Zbl 1450.35012 J. Math. Sci., New York 250, No. 2, 337-350 (2020); translation from Probl. Mat. Anal. 105, 135-145 (2020). MSC: 35A23 35R11 35H20 35R03 PDF BibTeX XML Cite \textit{A. Kassymov} and \textit{D. Suragan}, J. Math. Sci., New York 250, No. 2, 337--350 (2020; Zbl 1450.35012); translation from Probl. Mat. Anal. 105, 135--145 (2020) Full Text: DOI OpenURL
Peyghan, Esmaeil; Popescu, Liviu Study on geometric structures on Lie algebroids with optimal control applications. (English) Zbl 1441.17021 J. Nonlinear Math. Phys. 27, No. 4, 550-580 (2020). MSC: 17B66 34A26 53C05 49Q99 PDF BibTeX XML Cite \textit{E. Peyghan} and \textit{L. Popescu}, J. Nonlinear Math. Phys. 27, No. 4, 550--580 (2020; Zbl 1441.17021) Full Text: DOI OpenURL
Ozawa, Tohru; Suragan, Durvudkhan Sharp remainder of the Poincaré inequality. (English) Zbl 1446.35010 Proc. Am. Math. Soc. 148, No. 10, 4235-4239 (2020). MSC: 35A23 22E30 35R03 PDF BibTeX XML Cite \textit{T. Ozawa} and \textit{D. Suragan}, Proc. Am. Math. Soc. 148, No. 10, 4235--4239 (2020; Zbl 1446.35010) Full Text: DOI OpenURL
Bethencourt de Léon, Aythami; Holm, Darryl D.; Luesink, Erwin; Takao, So Implications of Kunita-Itô-Wentzell formula for \(k\)-forms in stochastic fluid dynamics. (English) Zbl 1448.70059 J. Nonlinear Sci. 30, No. 4, 1421-1454 (2020). MSC: 70L10 70H25 70H33 70S05 70S10 70S20 76M35 60H15 PDF BibTeX XML Cite \textit{A. Bethencourt de Léon} et al., J. Nonlinear Sci. 30, No. 4, 1421--1454 (2020; Zbl 1448.70059) Full Text: DOI arXiv OpenURL
Ranaiy, M.; Moayedi, S. K. The short-distance behavior of an abelian Proca model based on a one-parameter extension of the covariant Heisenberg algebra. (English) Zbl 1434.70066 Mod. Phys. Lett. A 35, No. 8, Article ID 2050038, 12 p. (2020). MSC: 70S15 17B81 PDF BibTeX XML Cite \textit{M. Ranaiy} and \textit{S. K. Moayedi}, Mod. Phys. Lett. A 35, No. 8, Article ID 2050038, 12 p. (2020; Zbl 1434.70066) Full Text: DOI arXiv OpenURL
Fässler, Katrin; Orponen, Tuomas Vertical versus horizontal Sobolev spaces. (English) Zbl 1444.46030 J. Funct. Anal. 279, No. 2, Article ID 108517, 37 p. (2020). Reviewer: Koichi Saka (Akita) MSC: 46E36 42B25 42B35 26A33 22E30 43A80 PDF BibTeX XML Cite \textit{K. Fässler} and \textit{T. Orponen}, J. Funct. Anal. 279, No. 2, Article ID 108517, 37 p. (2020; Zbl 1444.46030) Full Text: DOI arXiv OpenURL
Jannelli, Alessandra; Ruggieri, Marianna; Speciale, Maria Paola Numerical solutions of space-fractional advection-diffusion equations with nonlinear source term. (English) Zbl 1436.35022 Appl. Numer. Math. 155, 93-102 (2020). MSC: 35B06 35R11 35K10 35A35 PDF BibTeX XML Cite \textit{A. Jannelli} et al., Appl. Numer. Math. 155, 93--102 (2020; Zbl 1436.35022) Full Text: DOI OpenURL
Flynn, Joshua Sharp Caffarelli-Kohn-Nirenberg-type inequalities on Carnot groups. (English) Zbl 1450.46021 Adv. Nonlinear Stud. 20, No. 1, 95-111 (2020). MSC: 46E35 35R45 35R03 35A23 PDF BibTeX XML Cite \textit{J. Flynn}, Adv. Nonlinear Stud. 20, No. 1, 95--111 (2020; Zbl 1450.46021) Full Text: DOI OpenURL
Benibrir, Fatiha; Hakem, Ali Global nonexitence for damped wave equation with nonlinear memory on the Heisenberg group. (English) Zbl 1435.35079 Funct. Anal. Approx. Comput. 12, No. 1, 23-31 (2020). MSC: 35B44 35L71 35R03 35R09 PDF BibTeX XML Cite \textit{F. Benibrir} and \textit{A. Hakem}, Funct. Anal. Approx. Comput. 12, No. 1, 23--31 (2020; Zbl 1435.35079) Full Text: Link OpenURL
Chadha, Mayank; Todd, Michael D. On the derivatives of curvature of framed space curve and their time-updating scheme. (English) Zbl 1426.53006 Appl. Math. Lett. 99, Article ID 105989, 9 p. (2020). Reviewer: Ergin Bayram (Samsun) MSC: 53A05 65D17 PDF BibTeX XML Cite \textit{M. Chadha} and \textit{M. D. Todd}, Appl. Math. Lett. 99, Article ID 105989, 9 p. (2020; Zbl 1426.53006) Full Text: DOI arXiv OpenURL
Chatibi, Youness; El Kinani, El Hassan; Abdelaziz, Ouhadan Lie symmetry analysis of conformable differential equations. (English) Zbl 1484.34097 AIMS Math. 4, No. 4, 1133-1144 (2019). MSC: 34C14 26A24 34A08 35A30 35R11 PDF BibTeX XML Cite \textit{Y. Chatibi} et al., AIMS Math. 4, No. 4, 1133--1144 (2019; Zbl 1484.34097) Full Text: DOI OpenURL
EL-Kalaawy, O. H.; Moawad, S. M.; Tharwat, M. M.; Al-Denari, Rasha B. Conservation laws, analytical solutions and stability analysis for the time-fractional Schamel-Zakharov-Kuznetsov-Burgers equation. (English) Zbl 1485.35380 Adv. Difference Equ. 2019, Paper No. 445, 23 p. (2019). MSC: 35R11 35Q51 35B06 35C08 PDF BibTeX XML Cite \textit{O. H. EL-Kalaawy} et al., Adv. Difference Equ. 2019, Paper No. 445, 23 p. (2019; Zbl 1485.35380) Full Text: DOI OpenURL
Boggarapu, Pradeep; Roncal, Luz; Thangavelu, Sundaram On extension problem, trace Hardy and Hardy’s inequalities for some fractional Laplacians. (English) Zbl 1481.35017 Commun. Pure Appl. Anal. 18, No. 5, 2575-2605 (2019). MSC: 35A23 26A33 26D15 33C50 43A80 PDF BibTeX XML Cite \textit{P. Boggarapu} et al., Commun. Pure Appl. Anal. 18, No. 5, 2575--2605 (2019; Zbl 1481.35017) Full Text: DOI OpenURL
Wang, Hua Morrey spaces related to certain nonnegative potentials and fractional integrals on the Heisenberg groups. (English) Zbl 1499.42083 J. Inequal. Appl. 2019, Paper No. 232, 21 p. (2019). MSC: 42B20 35J10 22E25 22E30 26A33 PDF BibTeX XML Cite \textit{H. Wang}, J. Inequal. Appl. 2019, Paper No. 232, 21 p. (2019; Zbl 1499.42083) Full Text: DOI arXiv OpenURL
Chauhan, Astha; Arora, Rajan Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis. (English) Zbl 1464.34018 Commun. Math. 27, No. 2, 171-185 (2019). MSC: 34A08 26A33 76M60 PDF BibTeX XML Cite \textit{A. Chauhan} and \textit{R. Arora}, Commun. Math. 27, No. 2, 171--185 (2019; Zbl 1464.34018) Full Text: DOI OpenURL
Gazizov, Rafail Kavyevich; Kasatkin, Alekseĭ Aleksandrovich; Lukashchuk, Stanislav Yur’evich Group classification and symmetry reduction of three-dimensional nonlinear anomalous diffusion equation. (Russian. English summary) Zbl 1463.35497 Ufim. Mat. Zh. 11, No. 4, 14-28 (2019); translation in Ufa Math. J. 11, No. 4, 13-26 (2019). MSC: 35R11 35B06 76M60 PDF BibTeX XML Cite \textit{R. K. Gazizov} et al., Ufim. Mat. Zh. 11, No. 4, 14--28 (2019; Zbl 1463.35497); translation in Ufa Math. J. 11, No. 4, 13--26 (2019) Full Text: DOI MNR OpenURL
Artemovych, Orest D.; Balinsky, Alexander A.; Prykarpatski, Anatolij K. Hamiltonian operators and related differential-algebraic Balinsky-Novikov, Riemann and Leibniz type structures on nonassociative noncommutative algebras. (English) Zbl 1472.37061 Proc. Int. Geom. Cent. 12, No. 4, 1-49 (2019). MSC: 37J37 37J39 17B80 17A30 17A32 PDF BibTeX XML Cite \textit{O. D. Artemovych} et al., Proc. Int. Geom. Cent. 12, No. 4, 1--49 (2019; Zbl 1472.37061) Full Text: DOI OpenURL
Kasatkin, Alexey A.; Gainetdinova, Aliya A. Symbolic and numerical methods for searching symmetries of ordinary differential equations with a small parameter and reducing its order. (English) Zbl 1439.37081 England, Matthew (ed.) et al., Computer algebra in scientific computing. 21st international workshop, CASC 2019, Moscow, Russia, August 26–30, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11661, 280-299 (2019). MSC: 37M21 65L05 65P99 68W30 34C14 PDF BibTeX XML Cite \textit{A. A. Kasatkin} and \textit{A. A. Gainetdinova}, Lect. Notes Comput. Sci. 11661, 280--299 (2019; Zbl 1439.37081) Full Text: DOI OpenURL
Inglis, James; Papageorgiou, Ioannis Log-Sobolev inequalities for infinite-dimensional Gibbs measures with non-quadratic interactions. (English) Zbl 1442.60101 Markov Process. Relat. Fields 25, No. 5, 879-897 (2019). MSC: 60K35 39B62 26D10 22E30 82B20 PDF BibTeX XML Cite \textit{J. Inglis} and \textit{I. Papageorgiou}, Markov Process. Relat. Fields 25, No. 5, 879--897 (2019; Zbl 1442.60101) Full Text: arXiv OpenURL
Nguyen, Duy Tuan; Lam-Hoang, Nguyen; Nguyen, Triet Anh Hardy and Rellich inequalities with exact missing terms on homogeneous groups. (English) Zbl 1442.22012 J. Math. Soc. Japan 71, No. 4, 1243-1256 (2019). Reviewer: Lubomira Softova (Salerno) MSC: 22E30 43A80 26D10 43A85 PDF BibTeX XML Cite \textit{D. T. Nguyen} et al., J. Math. Soc. Japan 71, No. 4, 1243--1256 (2019; Zbl 1442.22012) Full Text: DOI Euclid OpenURL
Abdel-Salam, Emad A.-B.; Mourad, Mohamed F. Fractional quasi AKNS-technique for nonlinear space-time fractional evolution equations. (English) Zbl 1431.37052 Math. Methods Appl. Sci. 42, No. 18, 5953-5968 (2019). MSC: 37K10 35Q51 35R11 37K35 26A33 PDF BibTeX XML Cite \textit{E. A. B. Abdel-Salam} and \textit{M. F. Mourad}, Math. Methods Appl. Sci. 42, No. 18, 5953--5968 (2019; Zbl 1431.37052) Full Text: DOI OpenURL
Izadi, A.; Moayedi, S. K. Lagrangian formulation of an infinite derivative real scalar field theory in the framework of the covariant Kempf-Mangano algebra in a \((D+1)\)-dimensional Minkowski space-time. (English) Zbl 1457.70030 Ann. Phys. 411, Article ID 167956, 9 p. (2019). MSC: 70S05 37K30 PDF BibTeX XML Cite \textit{A. Izadi} and \textit{S. K. Moayedi}, Ann. Phys. 411, Article ID 167956, 9 p. (2019; Zbl 1457.70030) Full Text: DOI arXiv OpenURL
Chan, Kei Yuen; Savin, Gordan Bernstein-Zelevinsky derivatives: a Hecke algebra approach. (English) Zbl 1476.20003 Int. Math. Res. Not. 2019, No. 3, 731-760 (2019). Reviewer: Hu Jun (Beijing) MSC: 20C08 22E50 PDF BibTeX XML Cite \textit{K. Y. Chan} and \textit{G. Savin}, Int. Math. Res. Not. 2019, No. 3, 731--760 (2019; Zbl 1476.20003) Full Text: DOI arXiv OpenURL
Han, Xuemei; Zhang, Yi Conformal invariance and conserved quantity of a fractional Lagrange system. (Chinese. English summary) Zbl 1438.37031 J. Yunnan Univ., Nat. Sci. 41, No. 2, 298-308 (2019). MSC: 37J06 37J51 34A08 26A33 PDF BibTeX XML Cite \textit{X. Han} and \textit{Y. Zhang}, J. Yunnan Univ., Nat. Sci. 41, No. 2, 298--308 (2019; Zbl 1438.37031) OpenURL
Hivert, Florent; Pali, Nefton Multiple Lie derivatives and forests. (English) Zbl 1423.53013 Adv. Math. 354, Article ID 106732, 28 p. (2019). MSC: 53A45 05C05 PDF BibTeX XML Cite \textit{F. Hivert} and \textit{N. Pali}, Adv. Math. 354, Article ID 106732, 28 p. (2019; Zbl 1423.53013) Full Text: DOI arXiv OpenURL
Ozawa, Tohru; Ruzhansky, Michael; Suragan, Durvudkhan \(L^p\)-Caffarelli-Kohn-Nirenberg type inequalities on homogeneous groups. (English) Zbl 1419.35194 Q. J. Math. 70, No. 1, 305-318 (2019). Reviewer: Xiaodan Zhou (Worcester) MSC: 35R03 22E25 35A23 PDF BibTeX XML Cite \textit{T. Ozawa} et al., Q. J. Math. 70, No. 1, 305--318 (2019; Zbl 1419.35194) Full Text: DOI arXiv OpenURL
Sadat, R.; Kassem, M. M. Lie analysis and novel analytical solutions for the time-fractional coupled Whitham-Broer-Kaup equations. (English) Zbl 1412.35019 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 28, 12 p. (2019). MSC: 35B06 35R11 35Q35 PDF BibTeX XML Cite \textit{R. Sadat} and \textit{M. M. Kassem}, Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 28, 12 p. (2019; Zbl 1412.35019) Full Text: DOI OpenURL
Ruzhansky, Michael; Sabitbek, Bolys; Suragan, Durvudkhan Weighted \(L^p\)-Hardy and \(L^p\)-Rellich inequalities with boundary terms on stratified Lie groups. (English) Zbl 1409.35012 Rev. Mat. Complut. 32, No. 1, 19-35 (2019). MSC: 35A23 35H20 35R03 PDF BibTeX XML Cite \textit{M. Ruzhansky} et al., Rev. Mat. Complut. 32, No. 1, 19--35 (2019; Zbl 1409.35012) Full Text: DOI arXiv OpenURL
Kombe, Ismail; Yener, Abdullah A general approach to weighted \(L^{p}\) Rellich type inequalities related to Greiner operator. (English) Zbl 1404.26021 Commun. Pure Appl. Anal. 18, No. 2, 869-886 (2019). MSC: 26D10 22E30 43A80 PDF BibTeX XML Cite \textit{I. Kombe} and \textit{A. Yener}, Commun. Pure Appl. Anal. 18, No. 2, 869--886 (2019; Zbl 1404.26021) Full Text: DOI OpenURL
Liu, Heping; Zhang, An On sharp inequalities on nilpotent Lie groups. (Chinese. English summary) Zbl 1499.22019 Sci. Sin., Math. 48, No. 10, 1371-1386 (2018). MSC: 22E25 26D10 PDF BibTeX XML Cite \textit{H. Liu} and \textit{A. Zhang}, Sci. Sin., Math. 48, No. 10, 1371--1386 (2018; Zbl 1499.22019) Full Text: DOI OpenURL
Gupta, R. K.; Singla, K. Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations. (English. Russian original) Zbl 1430.35010 Theor. Math. Phys. 197, No. 3, 1737-1754 (2018); translation from Teor. Mat. Fiz. 197, No. 3, 397-416 (2018). MSC: 35B06 35G35 35Q53 35R11 34K37 PDF BibTeX XML Cite \textit{R. K. Gupta} and \textit{K. Singla}, Theor. Math. Phys. 197, No. 3, 1737--1754 (2018; Zbl 1430.35010); translation from Teor. Mat. Fiz. 197, No. 3, 397--416 (2018) Full Text: DOI OpenURL
Benibrir, Fatiha; Hakem, Ali Nonexistence results for a semi-linear equation with fractional derivatives on the Heisenberg group. (English) Zbl 1415.35274 J. Adv. Math. Stud. 11, No. 3, 587-596 (2018). MSC: 35R11 35A01 35R03 PDF BibTeX XML Cite \textit{F. Benibrir} and \textit{A. Hakem}, J. Adv. Math. Stud. 11, No. 3, 587--596 (2018; Zbl 1415.35274) OpenURL
Kaur, Bikramjeet; Gupta, R. K. Invariance properties, conservation laws, and soliton solutions of the time-fractional \((2+1)\)-dimensional new coupled ZK system in magnetized dusty plasmas. (English) Zbl 1424.35347 Comput. Appl. Math. 37, No. 5, 5981-6004 (2018). MSC: 35R11 35C08 70S10 82D10 26A33 PDF BibTeX XML Cite \textit{B. Kaur} and \textit{R. K. Gupta}, Comput. Appl. Math. 37, No. 5, 5981--6004 (2018; Zbl 1424.35347) Full Text: DOI OpenURL
Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa Space-time fractional Rosenou-Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws. (English) Zbl 1445.35298 Adv. Difference Equ. 2018, Paper No. 46, 14 p. (2018). MSC: 35R11 26A33 35Q53 35C08 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Adv. Difference Equ. 2018, Paper No. 46, 14 p. (2018; Zbl 1445.35298) Full Text: DOI OpenURL
Yener, Abdullah General weighted Hardy-type inequalities related to Greiner operators. (English) Zbl 1406.22010 Rocky Mt. J. Math. 48, No. 7, 2405-2430 (2018). Reviewer: Dian K. Palagachev (Bari) MSC: 22E30 26D10 43A80 PDF BibTeX XML Cite \textit{A. Yener}, Rocky Mt. J. Math. 48, No. 7, 2405--2430 (2018; Zbl 1406.22010) Full Text: DOI Euclid OpenURL
Canarutto, Daniel Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields. (English) Zbl 1463.53025 Arch. Math., Brno 54, No. 4, 205-226 (2018). MSC: 53B05 58A32 83C60 PDF BibTeX XML Cite \textit{D. Canarutto}, Arch. Math., Brno 54, No. 4, 205--226 (2018; Zbl 1463.53025) Full Text: DOI arXiv OpenURL
Nguyen, Van Hoang Sharp Caffarelli-Kohn-Nirenberg inequalities on stratified Lie groups. (English) Zbl 1423.26031 Ann. Acad. Sci. Fenn., Math. 43, No. 2, 1073-1083 (2018). Reviewer: Jiří Rákosník (Praha) MSC: 26D10 22E30 43A80 43A85 PDF BibTeX XML Cite \textit{V. H. Nguyen}, Ann. Acad. Sci. Fenn., Math. 43, No. 2, 1073--1083 (2018; Zbl 1423.26031) Full Text: Link OpenURL
Jannelli, Alessandra; Ruggieri, Marianna; Speciale, Maria Paola Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the Lie symmetries. (English) Zbl 1398.34019 Nonlinear Dyn. 92, No. 2, 543-555 (2018). MSC: 34A08 34C14 65L12 PDF BibTeX XML Cite \textit{A. Jannelli} et al., Nonlinear Dyn. 92, No. 2, 543--555 (2018; Zbl 1398.34019) Full Text: DOI OpenURL
Ahmetolan, Semra; Kombe, Ismail Improved Hardy and Rellich type inequalities with two weight functions. (English) Zbl 1400.22010 Math. Inequal. Appl. 21, No. 3, 885-896 (2018). Reviewer: Dian K. Palagachev (Bari) MSC: 22E30 26D10 43A80 53C21 58J05 PDF BibTeX XML Cite \textit{S. Ahmetolan} and \textit{I. Kombe}, Math. Inequal. Appl. 21, No. 3, 885--896 (2018; Zbl 1400.22010) Full Text: DOI OpenURL
Sabitbek, Bolys; Suragan, Durvudkhan Horizontal weighted Hardy-Rellich type inequalities on stratified Lie groups. (English) Zbl 1430.22012 Complex Anal. Oper. Theory 12, No. 6, 1469-1480 (2018). MSC: 22E30 35A23 35R03 43A80 PDF BibTeX XML Cite \textit{B. Sabitbek} and \textit{D. Suragan}, Complex Anal. Oper. Theory 12, No. 6, 1469--1480 (2018; Zbl 1430.22012) Full Text: DOI OpenURL
Romano, Giovanni; Barretta, Raffaele; Diaco, Marina A geometric rationale for invariance, covariance and constitutive relations. (English) Zbl 1392.74007 Contin. Mech. Thermodyn. 30, No. 1, 175-194 (2018). MSC: 74A20 53Z05 PDF BibTeX XML Cite \textit{G. Romano} et al., Contin. Mech. Thermodyn. 30, No. 1, 175--194 (2018; Zbl 1392.74007) Full Text: DOI OpenURL
Iglesias Ponte, David; Jiménez, Víctor M. Automorphisms for connections on Lie algebroids. (English) Zbl 1394.53032 Mediterr. J. Math. 15, No. 3, Paper No. 104, 16 p. (2018). MSC: 53C05 17B66 22A22 PDF BibTeX XML Cite \textit{D. Iglesias Ponte} and \textit{V. M. Jiménez}, Mediterr. J. Math. 15, No. 3, Paper No. 104, 16 p. (2018; Zbl 1394.53032) Full Text: DOI OpenURL
Gauckler, Ludwig On a splitting method for the Zakharov system. (English) Zbl 1397.65166 Numer. Math. 139, No. 2, 349-379 (2018). Reviewer: Charis Harley (Johannesburg) MSC: 65M15 65P10 65M20 35Q53 65N35 35B65 PDF BibTeX XML Cite \textit{L. Gauckler}, Numer. Math. 139, No. 2, 349--379 (2018; Zbl 1397.65166) Full Text: DOI arXiv OpenURL