Jafari, Mehdi; Darvazebanzade, Razie Approximate symmetry group analysis and similarity reductions of the perturbed mKdV-KS equation. (English) Zbl 07665302 Comput. Methods Differ. Equ. 11, No. 1, 175-182 (2023). MSC: 70G65 76M60 35B20 PDF BibTeX XML Cite \textit{M. Jafari} and \textit{R. Darvazebanzade}, Comput. Methods Differ. Equ. 11, No. 1, 175--182 (2023; Zbl 07665302) Full Text: DOI OpenURL
Li, Jungang; Lu, Guozhen; Wang, Jianxiong Potential characterizations of geodesic balls on hyperbolic spaces: a moving plane approach. (English) Zbl 07659694 J. Geom. Anal. 33, No. 4, Paper No. 134, 27 p. (2023). MSC: 35N25 43A80 42B37 22E46 33C90 PDF BibTeX XML Cite \textit{J. Li} et al., J. Geom. Anal. 33, No. 4, Paper No. 134, 27 p. (2023; Zbl 07659694) Full Text: DOI OpenURL
Shakhmurov, V. B. Navier-Stokes problems with small parameters in half-space and application. (English. Russian original) Zbl 07658750 Sib. Math. J. 64, No. 1, 181-201 (2023); translation from Sib. Mat. Zh. 64, No. 1, 213-234 (2023). MSC: 35Q30 76D05 76D07 76M60 35B25 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{V. B. Shakhmurov}, Sib. Math. J. 64, No. 1, 181--201 (2023; Zbl 07658750); translation from Sib. Mat. Zh. 64, No. 1, 213--234 (2023) Full Text: DOI OpenURL
Dorodnitsyn, V. A.; Kaptsov, E. I.; Meleshko, S. V. Lie group symmetry analysis and invariant difference schemes of the two-dimensional shallow water equations in Lagrangian coordinates. (English) Zbl 07656616 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107119, 18 p. (2023). Reviewer: Jean-Claude Ndogmo (Thohoyandou) MSC: 76M60 76M20 76B10 PDF BibTeX XML Cite \textit{V. A. Dorodnitsyn} et al., Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107119, 18 p. (2023; Zbl 07656616) Full Text: DOI arXiv OpenURL
Sáez, S. On the modified generalized multidimensional KP equation in plasma physics and fluid dynamics in \((3+1)\) dimensions. (English) Zbl 07643853 J. Math. Chem. 61, No. 1, 125-143 (2023). MSC: 35Q35 35Q51 35C08 76X05 76M60 PDF BibTeX XML Cite \textit{S. Sáez}, J. Math. Chem. 61, No. 1, 125--143 (2023; Zbl 07643853) Full Text: DOI OpenURL
Hu, Yuru; Zhang, Feng; Xin, Xiangpeng Lie symmetry analysis, optimal system and exact solutions of variable-coefficients Sakovich equation. (English) Zbl 07636945 J. Geom. Phys. 184, Article ID 104712, 12 p. (2023). MSC: 35B06 35C08 35G20 PDF BibTeX XML Cite \textit{Y. Hu} et al., J. Geom. Phys. 184, Article ID 104712, 12 p. (2023; Zbl 07636945) Full Text: DOI OpenURL
Zhang, Han; Wang, Zenggui Optimal system, invariant solutions and conservation laws of the hyperbolic geometry flow with time-dependent dissipation. (English) Zbl 07626004 J. Geom. Phys. 183, Article ID 104702, 14 p. (2023). MSC: 35B06 35L71 22E46 53E20 53C35 57S20 70G65 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{Z. Wang}, J. Geom. Phys. 183, Article ID 104702, 14 p. (2023; Zbl 07626004) Full Text: DOI OpenURL
Chen, Xin; Cruzeiro, Ana Bela; Ratiu, Tudor S. Stochastic variational principles for dissipative equations with advected quantities. (English) Zbl 07615133 J. Nonlinear Sci. 33, No. 1, Paper No. 5, 62 p. (2023). MSC: 76M60 76W05 76E25 76M35 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Nonlinear Sci. 33, No. 1, Paper No. 5, 62 p. (2023; Zbl 07615133) Full Text: DOI arXiv OpenURL
Yan, Xinying; Liu, Jinzhou; Yang, Jiajia; Xin, Xiangpeng Lie symmetry analysis, optimal system and exact solutions for variable-coefficients \((2 + 1)\)-dimensional dissipative long-wave system. (English) Zbl 1498.35450 J. Math. Anal. Appl. 518, No. 1, Article ID 126671, 18 p. (2023). MSC: 35Q35 76B15 76B25 76M60 35C07 35A24 PDF BibTeX XML Cite \textit{X. Yan} et al., J. Math. Anal. Appl. 518, No. 1, Article ID 126671, 18 p. (2023; Zbl 1498.35450) Full Text: DOI OpenURL
Aryanejad, Yadollah Exact solutions of diffusion equation on sphere. (English) Zbl 07665256 Comput. Methods Differ. Equ. 10, No. 3, 789-798 (2022). MSC: 35L05 76M60 PDF BibTeX XML Cite \textit{Y. Aryanejad}, Comput. Methods Differ. Equ. 10, No. 3, 789--798 (2022; Zbl 07665256) Full Text: DOI OpenURL
Alizadeh, Farzaneh; Hashemi, Mir Sajjad; Haji, Badali Ali Lie symmetries, exact solutions, and conservation laws of the nonlinear time-fractional Benjamin-Ono equation. (English) Zbl 07665243 Comput. Methods Differ. Equ. 10, No. 3, 608-616 (2022). MSC: 76M60 35R11 PDF BibTeX XML Cite \textit{F. Alizadeh} et al., Comput. Methods Differ. Equ. 10, No. 3, 608--616 (2022; Zbl 07665243) Full Text: DOI OpenURL
Zhang, Han; Wang, Zenggui Optimal system and invariant solutions of the hyperbolic geometric flow. (English) Zbl 07663358 J. Math. Study 55, No. 3, 271-280 (2022). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{H. Zhang} and \textit{Z. Wang}, J. Math. Study 55, No. 3, 271--280 (2022; Zbl 07663358) Full Text: DOI OpenURL
Morozov, O. I. Higher symmetries of the cotangent covering for the modified Veronese web equation. (English) Zbl 07659187 Lobachevskii J. Math. 43, No. 10, 2797-2801 (2022). MSC: 37Kxx 35-XX 58-XX PDF BibTeX XML Cite \textit{O. I. Morozov}, Lobachevskii J. Math. 43, No. 10, 2797--2801 (2022; Zbl 07659187) Full Text: DOI OpenURL
Shagolshem, Sumanta; Bira, B.; Sil, Subhankar Conservation laws and some new exact solutions for traffic flow model via symmetry analysis. (English) Zbl 07646274 Chaos Solitons Fractals 165, Part 1, Article ID 112779, 11 p. (2022). MSC: 35L60 35L67 35D99 76M60 PDF BibTeX XML Cite \textit{S. Shagolshem} et al., Chaos Solitons Fractals 165, Part 1, Article ID 112779, 11 p. (2022; Zbl 07646274) Full Text: DOI OpenURL
Ghosh, Nibedita; Mahato, Hari Shankar Diffusion-reaction-dissolution-precipitation model in a heterogeneous porous medium with nonidentical diffusion coefficients: analysis and homogenization. (English) Zbl 1503.35162 Asymptotic Anal. 130, No. 3, 553-587 (2022). MSC: 35Q35 35Q74 76S05 76V05 76M60 74F10 74L10 74A60 74A65 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{N. Ghosh} and \textit{H. S. Mahato}, Asymptotic Anal. 130, No. 3, 553--587 (2022; Zbl 1503.35162) Full Text: DOI OpenURL
Sharma, Ankita; Arora, Rajan Similarity solutions for imploding strong shock waves in a van der Waals gas. (English) Zbl 1503.35146 SN Partial Differ. Equ. Appl. 3, No. 6, Paper No. 72, 22 p. (2022). MSC: 35Q31 76L05 76N15 76M60 35C06 35B06 35A24 15A18 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{R. Arora}, SN Partial Differ. Equ. Appl. 3, No. 6, Paper No. 72, 22 p. (2022; Zbl 1503.35146) Full Text: DOI OpenURL
Zhang, Zhi-Yong; Zhu, Hui-Min; Zheng, Jia Lie symmetry analysis, power series solutions and conservation laws of the time-fractional breaking soliton equation. (English) Zbl 07613914 Waves Random Complex Media 32, No. 6, 3032-3052 (2022). MSC: 76M60 76B25 PDF BibTeX XML Cite \textit{Z.-Y. Zhang} et al., Waves Random Complex Media 32, No. 6, 3032--3052 (2022; Zbl 07613914) Full Text: DOI OpenURL
Zhang, Hong-Yi; Zhang, Yu-Feng On the time-fractional coupled burger equation: Lie symmetry reductions, approximate solutions and conservation laws. (English) Zbl 07613877 Waves Random Complex Media 32, No. 5, 2297-2312 (2022). MSC: 76M60 76Dxx PDF BibTeX XML Cite \textit{H.-Y. Zhang} and \textit{Y.-F. Zhang}, Waves Random Complex Media 32, No. 5, 2297--2312 (2022; Zbl 07613877) Full Text: DOI OpenURL
Ruiz, A.; Basquerotto, C. H. C. C.; Trentin, J. F. S.; da Silva, S. On a qualitative and Lie symmetry analysis for a pendulum with two reaction wheels. (English) Zbl 07611807 Q. J. Mech. Appl. Math. 75, No. 3, 235-256 (2022). Reviewer: Yarema Prykarpatskyy (Kraków) MSC: 70K42 70K05 70H33 70G65 70-08 PDF BibTeX XML Cite \textit{A. Ruiz} et al., Q. J. Mech. Appl. Math. 75, No. 3, 235--256 (2022; Zbl 07611807) Full Text: DOI OpenURL
Flandoli, Franco; Pappalettera, Umberto; Viviani, Milo On the infinite dimension limit of invariant measures and solutions of Zeitlin’s 2D Euler equations. (English) Zbl 07604927 J. Stat. Phys. 189, No. 3, Paper No. 43, 25 p. (2022). MSC: 35Q31 76A02 76Y05 76M60 86A05 PDF BibTeX XML Cite \textit{F. Flandoli} et al., J. Stat. Phys. 189, No. 3, Paper No. 43, 25 p. (2022; Zbl 07604927) Full Text: DOI arXiv OpenURL
Holm, Darryl D.; Hu, Ruiao Nonlinear dispersion in wave-current interactions. (English) Zbl 07604343 J. Geom. Mech. 14, No. 4, 597-633 (2022). MSC: 76M30 76M60 76N30 PDF BibTeX XML Cite \textit{D. D. Holm} and \textit{R. Hu}, J. Geom. Mech. 14, No. 4, 597--633 (2022; Zbl 07604343) Full Text: DOI arXiv OpenURL
Duque, Óscar M. Londoño; Acevedo, Yeisson A.; Loaiza, Gabriel I. Lie group symmetries’ complete classification for a generalized Chazy equation and its equivalence group. (English) Zbl 07603778 Rev. Mat. Teor. Apl. 29, No. 1, 1-17 (2022). MSC: 76M60 70G65 34C14 PDF BibTeX XML Cite \textit{Ó. M. L. Duque} et al., Rev. Mat. Teor. Apl. 29, No. 1, 1--17 (2022; Zbl 07603778) Full Text: DOI OpenURL
Vinita; Saha Ray, S. Invariant analysis, optimal system, power series solutions and conservation laws of Kersten-Krasil’shchik coupled KdV-mKdV equations. (English) Zbl 1500.35011 J. Geom. Phys. 182, Article ID 104677, 11 p. (2022). MSC: 35B06 35C10 35G20 35Q53 35L65 70H33 PDF BibTeX XML Cite \textit{Vinita} and \textit{S. Saha Ray}, J. Geom. Phys. 182, Article ID 104677, 11 p. (2022; Zbl 1500.35011) Full Text: DOI OpenURL
Liu, Hanze; Bai, Cheng-Lin; Xin, Xiangpeng Integrable property, Lie symmetry analysis and explicit solutions to the generalized \(\phi^4\) model. (English) Zbl 07590664 Appl. Math. Lett. 134, Article ID 108316, 7 p. (2022). MSC: 37K06 37K10 35Q51 35B06 70G65 PDF BibTeX XML Cite \textit{H. Liu} et al., Appl. Math. Lett. 134, Article ID 108316, 7 p. (2022; Zbl 07590664) Full Text: DOI OpenURL
Mandal, Bidyut Lie-symmetry analysis of couple stress-fluid flow and heat transfer past in a bidirectional moving sheet. (English) Zbl 1497.76065 J. Appl. Nonlinear Dyn. 11, No. 3, 767-775 (2022). MSC: 76M60 76A05 80A19 PDF BibTeX XML Cite \textit{B. Mandal}, J. Appl. Nonlinear Dyn. 11, No. 3, 767--775 (2022; Zbl 1497.76065) Full Text: DOI OpenURL
Sanjalee; Sharma, Y. D.; Yadav, O. P. Entropy generation in magnetohydrodynamics flow of hybrid Casson nanofluid in porous channel: Lie group analysis. (English) Zbl 1497.76130 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 247, 27 p. (2022). MSC: 76W05 76T20 76A05 76S05 76M60 76M22 80A19 PDF BibTeX XML Cite \textit{Sanjalee} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 247, 27 p. (2022; Zbl 1497.76130) Full Text: DOI OpenURL
Kumar, Raj; Kumar, Avneesh More solutions of coupled equal width wave equations arising in plasma and fluid dynamics. (English) Zbl 07582604 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 186, 13 p. (2022). MSC: 35B06 22E60 PDF BibTeX XML Cite \textit{R. Kumar} and \textit{A. Kumar}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 186, 13 p. (2022; Zbl 07582604) Full Text: DOI OpenURL
Singh, Deepika; Yadav, Shalini; Arora, Rajan A (2+1)-dimensional modified dispersive water-wave (MDWW) system: Lie symmetry analysis, optimal system and invariant solutions. (English) Zbl 07582483 Commun. Nonlinear Sci. Numer. Simul. 115, Article ID 106786, 22 p. (2022). MSC: 35Q35 76B15 76U60 76M60 35A24 PDF BibTeX XML Cite \textit{D. Singh} et al., Commun. Nonlinear Sci. Numer. Simul. 115, Article ID 106786, 22 p. (2022; Zbl 07582483) Full Text: DOI OpenURL
Manjeet; Gupta, Rajesh Kumar On nonclassical symmetries, Painlevé analysis and singular, periodic and solitary wave solutions of generalized Hirota-Satsuma coupled KdV system. (English) Zbl 1496.35029 Commun. Nonlinear Sci. Numer. Simul. 115, Article ID 106710, 12 p. (2022). MSC: 35B06 35Q53 76M60 PDF BibTeX XML Cite \textit{Manjeet} and \textit{R. K. Gupta}, Commun. Nonlinear Sci. Numer. Simul. 115, Article ID 106710, 12 p. (2022; Zbl 1496.35029) Full Text: DOI OpenURL
Cheng, Xiaoyu; Wang, Lizhen; Shen, Shoufeng On analytical solutions of the conformable time-fractional Navier-Stokes equation. (English) Zbl 07566281 Rep. Math. Phys. 89, No. 3, 335-358 (2022). MSC: 35Q51 PDF BibTeX XML Cite \textit{X. Cheng} et al., Rep. Math. Phys. 89, No. 3, 335--358 (2022; Zbl 07566281) Full Text: DOI OpenURL
Kumar, Vikas; Wazwaz, Abdul-Majid Lie symmetry analysis and soliton solutions for complex short pulse equation. (English) Zbl 1502.78031 Waves Random Complex Media 32, No. 2, 968-979 (2022). MSC: 78A60 78A10 35C08 37K40 34A34 17B81 PDF BibTeX XML Cite \textit{V. Kumar} and \textit{A.-M. Wazwaz}, Waves Random Complex Media 32, No. 2, 968--979 (2022; Zbl 1502.78031) Full Text: DOI OpenURL
Rashed, Ahmed S.; Mabrouk, Samah M.; Wazwaz, Abdul-Majid Forward scattering for non-linear wave propagation in \((3 + 1)\)-dimensional Jimbo-Miwa equation using singular manifold and group transformation methods. (English) Zbl 07563735 Waves Random Complex Media 32, No. 2, 663-675 (2022). MSC: 76X05 76M60 37N10 37N20 35P25 PDF BibTeX XML Cite \textit{A. S. Rashed} et al., Waves Random Complex Media 32, No. 2, 663--675 (2022; Zbl 07563735) Full Text: DOI OpenURL
Yourdkhany, Maryam; Nadjafikhah, Mehdi Symmetry classification and invariance of the Reynolds equation. (English) Zbl 07563320 J. Math. Ext. 16, No. 8, Paper No. 5, 11 p. (2022). MSC: 35-XX 35B06 53A55 76M60 58J70 PDF BibTeX XML Cite \textit{M. Yourdkhany} and \textit{M. Nadjafikhah}, J. Math. Ext. 16, No. 8, Paper No. 5, 11 p. (2022; Zbl 07563320) Full Text: DOI OpenURL
Chitou, Kabirou Lawale; Amoussou, Amour Gbaguidi; Ogouyandjou, Carlos; Moussa, Freedath Djibril Otto’s metric on location-scale models and warped Riemannian metric. (English) Zbl 1498.53013 Appl. Sci. 24, 43-61 (2022). MSC: 53B12 76M60 PDF BibTeX XML Cite \textit{K. L. Chitou} et al., Appl. Sci. 24, 43--61 (2022; Zbl 1498.53013) Full Text: Link OpenURL
Emmanuele, Daniela; Salvai, Marcos; Vittone, Francisco Möbius fluid dynamics on the unitary groups. (English) Zbl 07554445 Regul. Chaotic Dyn. 27, No. 3, 333-351 (2022). MSC: 76M60 76B99 53Z05 PDF BibTeX XML Cite \textit{D. Emmanuele} et al., Regul. Chaotic Dyn. 27, No. 3, 333--351 (2022; Zbl 07554445) Full Text: DOI arXiv OpenURL
Abu Arqub, Omar; Hayat, Tasawar; Alhodaly, Mohammed Analysis of Lie symmetry, explicit series solutions, and conservation laws for the nonlinear time-fractional Phi-four equation in two-dimensional space. (English) Zbl 1492.35404 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 145, 17 p. (2022). MSC: 35R11 35B06 35C10 PDF BibTeX XML Cite \textit{O. Abu Arqub} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 145, 17 p. (2022; Zbl 1492.35404) Full Text: DOI OpenURL
Kawano, Taigen; Sasakura, Naoki Emergence of Lie group symmetric classical spacetimes in the canonical tensor model. (English) Zbl 1497.81087 PTEP, Prog. Theor. Exper. Phys. 2022, No. 4, Article ID 043A01, 27 p. (2022). MSC: 81T32 22E70 39A12 22E55 81R40 PDF BibTeX XML Cite \textit{T. Kawano} and \textit{N. Sasakura}, PTEP, Prog. Theor. Exper. Phys. 2022, No. 4, Article ID 043A01, 27 p. (2022; Zbl 1497.81087) Full Text: DOI arXiv OpenURL
Bakhshandeh-Chamazkoti, Rohollah; Alipour, Mohsen Lie symmetries reduction and spectral methods on the fractional two-dimensional heat equation. (English) Zbl 07538479 Math. Comput. Simul. 200, 97-107 (2022). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{R. Bakhshandeh-Chamazkoti} and \textit{M. Alipour}, Math. Comput. Simul. 200, 97--107 (2022; Zbl 07538479) Full Text: DOI arXiv OpenURL
Kumari, Pinki; Gupta, R. K.; Kumar, Sachin The time fractional \(D(m, n)\) system: invariant analysis, explicit solution, conservation laws and optical soliton. (English) Zbl 1501.35440 Waves Random Complex Media 32, No. 3, 1322-1337 (2022). Reviewer: Jean-Claude Ndogmo (Thohoyandou) MSC: 35R11 35C08 26A33 76B15 76M60 35B06 PDF BibTeX XML Cite \textit{P. Kumari} et al., Waves Random Complex Media 32, No. 3, 1322--1337 (2022; Zbl 1501.35440) Full Text: DOI OpenURL
Nakahama, Ryosuke Computation of weighted Bergman inner products on bounded symmetric domains and restriction to subgroups. (English) Zbl 07537215 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 033, 105 p. (2022). MSC: 22E45 43A85 17C30 33C67 PDF BibTeX XML Cite \textit{R. Nakahama}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 033, 105 p. (2022; Zbl 07537215) Full Text: DOI arXiv OpenURL
Fedorov, V. E.; Panov, A. V.; Fedorov, E. V. Study by methods of group analysis of the system of equations for dynamics of non-isothermal mixture of two gases. (English) Zbl 1495.76092 Lobachevskii J. Math. 43, No. 1, 207-218 (2022). MSC: 76N15 76M60 PDF BibTeX XML Cite \textit{V. E. Fedorov} et al., Lobachevskii J. Math. 43, No. 1, 207--218 (2022; Zbl 1495.76092) Full Text: DOI OpenURL
Wilkinson, Mark A Lie algebra-theoretic approach to characterisation of collision invariants of the Boltzmann equation for general convex particles. (English) Zbl 1490.76189 Kinet. Relat. Models 15, No. 2, 283-315 (2022). MSC: 76P05 76M60 82B40 PDF BibTeX XML Cite \textit{M. Wilkinson}, Kinet. Relat. Models 15, No. 2, 283--315 (2022; Zbl 1490.76189) Full Text: DOI arXiv OpenURL
Jafari, M.; Alipour, Fakhri Y.; Khadivar, M. Densities and fluxes of the conservation laws for the Kuramoto-Sivashinsky equation. (English) Zbl 1499.76083 J. Linear Topol. Algebra 11, No. 1, 47-54 (2022). MSC: 76M60 70S10 PDF BibTeX XML Cite \textit{M. Jafari} et al., J. Linear Topol. Algebra 11, No. 1, 47--54 (2022; Zbl 1499.76083) Full Text: DOI OpenURL
Viviani, Milo An algebraic approach to the spontaneous formation of spherical jets. (English) Zbl 1490.76031 J. Comput. Dyn. 9, No. 2, 279-298 (2022). MSC: 76B10 76B47 76M22 76M60 65T99 PDF BibTeX XML Cite \textit{M. Viviani}, J. Comput. Dyn. 9, No. 2, 279--298 (2022; Zbl 1490.76031) Full Text: DOI arXiv OpenURL
Abarzhi, Snezhana I.; Hill, Desmond L.; Williams, Kurt C.; Wright, Cameron E. Buoyancy and drag in Rayleigh-Taylor and Richtmyer-Meshkov linear, nonlinear and mixing dynamics. (English) Zbl 1502.76038 Appl. Math. Lett. 131, Article ID 108036, 6 p. (2022). MSC: 76E17 76R99 76M60 PDF BibTeX XML Cite \textit{S. I. Abarzhi} et al., Appl. Math. Lett. 131, Article ID 108036, 6 p. (2022; Zbl 1502.76038) Full Text: DOI OpenURL
Galdi, Giovanni P.; Neustupa, Jiří Nonlinear spectral instability of steady-state flow of a viscous liquid past a rotating obstacle. (English) Zbl 1487.35290 Math. Ann. 382, No. 1-2, 357-382 (2022). MSC: 35Q30 35B35 47D60 76D05 76M60 PDF BibTeX XML Cite \textit{G. P. Galdi} and \textit{J. Neustupa}, Math. Ann. 382, No. 1--2, 357--382 (2022; Zbl 1487.35290) Full Text: DOI arXiv OpenURL
Zhang, Qing Hua; Zhu, Yue Ping Rapid time-decay phenomenon of the incompressible Navier-Stokes flow in exterior domains. (English) Zbl 1487.35308 Acta Math. Sin., Engl. Ser. 38, No. 4, 745-760 (2022). MSC: 35Q30 76D05 76M60 35D35 PDF BibTeX XML Cite \textit{Q. H. Zhang} and \textit{Y. P. Zhu}, Acta Math. Sin., Engl. Ser. 38, No. 4, 745--760 (2022; Zbl 1487.35308) Full Text: DOI OpenURL
García-Azpeitia, Carlos; García-Naranjo, Luis C. Platonic solids and symmetric solutions of the \(N\)-vortex problem on the sphere. (English) Zbl 07512313 J. Nonlinear Sci. 32, No. 3, Paper No. 39, 56 p. (2022). MSC: 70K42 70K75 76M60 PDF BibTeX XML Cite \textit{C. García-Azpeitia} and \textit{L. C. García-Naranjo}, J. Nonlinear Sci. 32, No. 3, Paper No. 39, 56 p. (2022; Zbl 07512313) Full Text: DOI arXiv OpenURL
Blackmore, Denis; Prykarpatsky, Yarema; Prytula, Mykola M.; Dutykh, Denys; Prykarpatski, Anatolij K. On the integrability of a new generalized Gurevich-Zybin dynamical system, its Hunter-Saxton type reduction and related mysterious symmetries. (English) Zbl 07506378 Anal. Math. Phys. 12, No. 2, Paper No. 66, 26 p. (2022). MSC: 17B68 17B80 35Q53 35G25 35N10 37K35 58J70 58J72 34A34 37K05 37K10 PDF BibTeX XML Cite \textit{D. Blackmore} et al., Anal. Math. Phys. 12, No. 2, Paper No. 66, 26 p. (2022; Zbl 07506378) Full Text: DOI OpenURL
Bertsch, Michiel; Hulshof, Josephus; Prostokishin, V. M. Saturation of turbulent flow by suspended particles: a mathematical model. (English) Zbl 1490.76109 Pure Appl. Funct. Anal. 7, No. 1, 53-80 (2022). MSC: 76F05 76F10 76F25 76M60 PDF BibTeX XML Cite \textit{M. Bertsch} et al., Pure Appl. Funct. Anal. 7, No. 1, 53--80 (2022; Zbl 1490.76109) Full Text: Link OpenURL
Magnani, Valentino Rotational symmetries and spherical measure in homogeneous groups. (English) Zbl 1498.43006 J. Geom. Anal. 32, No. 4, Paper No. 119, 31 p. (2022). MSC: 43A80 28A75 58C35 22E25 PDF BibTeX XML Cite \textit{V. Magnani}, J. Geom. Anal. 32, No. 4, Paper No. 119, 31 p. (2022; Zbl 1498.43006) Full Text: DOI OpenURL
Kumar, Raj; Kumar, Avneesh Optimal subalgebra of GKP by using Killing form, conservation law and some more solutions. (English) Zbl 1499.76084 Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 11, 22 p. (2022). MSC: 76M60 35B06 22E60 PDF BibTeX XML Cite \textit{R. Kumar} and \textit{A. Kumar}, Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 11, 22 p. (2022; Zbl 1499.76084) Full Text: DOI OpenURL
Ali, Mohamed R.; Ma, Wen-Xiu; Sadat, R. Lie symmetry analysis and wave propagation in variable-coefficient nonlinear physical phenomena. (English) Zbl 1484.76061 East Asian J. Appl. Math. 12, No. 1, 201-212 (2022). MSC: 76M60 76B25 35Q51 22E70 PDF BibTeX XML Cite \textit{M. R. Ali} et al., East Asian J. Appl. Math. 12, No. 1, 201--212 (2022; Zbl 1484.76061) Full Text: DOI OpenURL
Jiang, Yi; Mao, Meiliang; Deng, Xiaogang; Liu, Huayong Multiderivative combined dissipative compact scheme satisfying geometric conservation law. III: Characteristic-wise hybrid method. (English) Zbl 1499.76059 Adv. Appl. Math. Mech. 14, No. 2, 415-441 (2022). MSC: 76Fxx 76Gxx 76M60 PDF BibTeX XML Cite \textit{Y. Jiang} et al., Adv. Appl. Math. Mech. 14, No. 2, 415--441 (2022; Zbl 1499.76059) Full Text: DOI OpenURL
Fan, Lili; Gao, Hongjun; Li, Haochen On the geophysical Green-Naghdi system. (English) Zbl 1487.35316 J. Nonlinear Sci. 32, No. 2, Paper No. 21, 30 p. (2022). Reviewer: Patrícia Nunes da Silva (Rio de Janeiro) MSC: 35Q35 35Q86 76U05 86A05 35B30 35C07 35A01 35A02 76M60 PDF BibTeX XML Cite \textit{L. Fan} et al., J. Nonlinear Sci. 32, No. 2, Paper No. 21, 30 p. (2022; Zbl 1487.35316) Full Text: DOI OpenURL
Najafi, R.; Bahrami, F.; Shahmorad, S. Fractional differential equations, compatibility, and exact solutions. (English) Zbl 1499.35673 Comput. Appl. Math. 41, No. 1, Paper No. 23, 15 p. (2022). MSC: 35R11 76M60 PDF BibTeX XML Cite \textit{R. Najafi} et al., Comput. Appl. Math. 41, No. 1, Paper No. 23, 15 p. (2022; Zbl 1499.35673) Full Text: DOI OpenURL
Wang, Gangwei; Kara, Abdul H.; Biswas, Anjan; Guggilla, Padmaja; Alzahrani, Abdullah Khamis; Belic, Milivoj R. Highly dispersive optical solitons in polarization-preserving fibers with Kerr law nonlinearity by Lie symmetry. (English) Zbl 1479.78023 Phys. Lett., A 421, Article ID 127768, 10 p. (2022). MSC: 78A60 35Q55 35Q41 35B06 35C08 37L50 22E70 PDF BibTeX XML Cite \textit{G. Wang} et al., Phys. Lett., A 421, Article ID 127768, 10 p. (2022; Zbl 1479.78023) Full Text: DOI OpenURL
Jafari, H.; Kadkhoda, N.; Baleanu, Dumitru Lie group theory for nonlinear fractional \(K(m, n)\) type equation with variable coefficients. (English) Zbl 1479.35736 Singh, Jagdev (ed.) et al., Methods of mathematical modelling and computation for complex systems. Cham: Springer. Stud. Syst. Decis. Control 373, 207-227 (2022). MSC: 35Q53 17B81 44A10 31B10 35R03 26A33 35R11 PDF BibTeX XML Cite \textit{H. Jafari} et al., Stud. Syst. Decis. Control 373, 207--227 (2022; Zbl 1479.35736) Full Text: DOI arXiv OpenURL
De Vecchi, F. C.; Morando, P.; Ugolini, S. Reduction and reconstruction of SDEs via Girsanov and quasi Doob symmetries. (English) Zbl 07649168 J. Phys. A, Math. Theor. 54, No. 18, Article ID 185203, 33 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{F. C. De Vecchi} et al., J. Phys. A, Math. Theor. 54, No. 18, Article ID 185203, 33 p. (2021; Zbl 07649168) Full Text: DOI arXiv OpenURL
Holm, Darryl D.; Luesink, Erwin Stochastic geometric mechanics with diffeomorphisms. (English) Zbl 1499.70018 Ugolini, Stefania (ed.) et al., Geometry and invariance in stochastic dynamics. Selected papers based on the presentations at the the conference on random transformations and invariance in stochastic dynamics, Verona, Italy, March 25–29, 2019. Cham: Springer. Springer Proc. Math. Stat. 378, 169-185 (2021). MSC: 70L10 60H10 37K35 PDF BibTeX XML Cite \textit{D. D. Holm} and \textit{E. Luesink}, Springer Proc. Math. Stat. 378, 169--185 (2021; Zbl 1499.70018) Full Text: DOI arXiv OpenURL
Albeverio, Sergio; De Vecchi, Francesco C. Some recent developments on Lie symmetry analysis of stochastic differential equations. (English) Zbl 1499.60176 Ugolini, Stefania (ed.) et al., Geometry and invariance in stochastic dynamics. Selected papers based on the presentations at the the conference on random transformations and invariance in stochastic dynamics, Verona, Italy, March 25–29, 2019. Cham: Springer. Springer Proc. Math. Stat. 378, 1-24 (2021). MSC: 60H10 58D19 60J76 60H15 60H35 60-02 PDF BibTeX XML Cite \textit{S. Albeverio} and \textit{F. C. De Vecchi}, Springer Proc. Math. Stat. 378, 1--24 (2021; Zbl 1499.60176) Full Text: DOI OpenURL
Duyunova, Anna; Lychagin, Valentin V.; Tychkov, Sergey Differential invariants for flows of fluids and gases. (English) Zbl 1503.35129 Ulan, Maria (ed.) et al., Differential geometry, differential equations, and mathematical physics. Proceedings of the Wisła 19 summer school, Wisła, Poland, August 19–29, 2019. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 187-231 (2021). MSC: 35Q30 35Q31 35Q35 76N15 76D05 76M60 80A10 53A55 76-02 PDF BibTeX XML Cite \textit{A. Duyunova} et al., in: Differential geometry, differential equations, and mathematical physics. Proceedings of the Wisła 19 summer school, Wisła, Poland, August 19--29, 2019. Cham: Birkhäuser. 187--231 (2021; Zbl 1503.35129) Full Text: DOI arXiv OpenURL
Kozlov, Roman Symmetries of Kolmogorov backward equation. (English) Zbl 1497.35529 J. Nonlinear Math. Phys. 28, No. 2, 182-193 (2021). MSC: 35R60 35B06 60H15 70G65 PDF BibTeX XML Cite \textit{R. Kozlov}, J. Nonlinear Math. Phys. 28, No. 2, 182--193 (2021; Zbl 1497.35529) Full Text: DOI arXiv OpenURL
Sadat, R.; Agarwal, Praveen; Saleh, R.; Ali, Mohamed R. Lie symmetry analysis and invariant solutions of 3D Euler equations for axisymmetric, incompressible, and inviscid flow in the cylindrical coordinates. (English) Zbl 1494.76062 Adv. Difference Equ. 2021, Paper No. 486, 16 p. (2021). MSC: 76M60 35B06 35Q31 76N10 PDF BibTeX XML Cite \textit{R. Sadat} et al., Adv. Difference Equ. 2021, Paper No. 486, 16 p. (2021; Zbl 1494.76062) Full Text: DOI OpenURL
Reza Hejazi, S.; Rashidi, Saeede Symmetries, conservation laws and exact solutions of the time-fractional diffusivity equation via Riemann-Liouville and Caputo derivatives. (English) Zbl 1496.76106 Waves Random Complex Media 31, No. 4, 690-711 (2021). MSC: 76M60 76R50 76M55 26A33 PDF BibTeX XML Cite \textit{S. Reza Hejazi} and \textit{S. Rashidi}, Waves Random Complex Media 31, No. 4, 690--711 (2021; Zbl 1496.76106) Full Text: DOI OpenURL
García Hernández, Danilo A.; Duque, O. M. L.; Acevedo, Y.; Loaiza, G. Optimal system, invariant solutions and complete classification of Lie group symmetries for a generalized Kummer-Schwarz equation and its Lie algebra representation. (English) Zbl 1494.35012 Rev. Integr. 39, No. 2, 257-274 (2021). MSC: 35B06 35A30 58J70 76M60 PDF BibTeX XML Cite \textit{D. A. García Hernández} et al., Rev. Integr. 39, No. 2, 257--274 (2021; Zbl 1494.35012) Full Text: DOI OpenURL
Feng, Yuqiang; Yu, Jicheng Lie symmetry analysis of fractional ordinary differential equation with neutral delay. (English) Zbl 07543288 AIMS Math. 6, No. 4, 3592-3605 (2021). MSC: 34A08 35B06 47E99 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{J. Yu}, AIMS Math. 6, No. 4, 3592--3605 (2021; Zbl 07543288) Full Text: DOI OpenURL
Suszek, Rafał R. Higher supergeometry for the super-\(\sigma\)-model. (English) Zbl 07523902 Rev. Roum. Math. Pures Appl. 66, No. 2, 347-417 (2021). MSC: 17B56 55R65 58C50 81T30 PDF BibTeX XML Cite \textit{R. R. Suszek}, Rev. Roum. Math. Pures Appl. 66, No. 2, 347--417 (2021; Zbl 07523902) OpenURL
Yang, Huizhang; Liu, Wei; Zhao, Yunmei Lie symmetry reductions and exact solutions to a generalized two-component Hunter-Saxton system. (English) Zbl 1484.37086 AIMS Math. 6, No. 2, 1087-1100 (2021). MSC: 37L20 35C05 35Q53 PDF BibTeX XML Cite \textit{H. Yang} et al., AIMS Math. 6, No. 2, 1087--1100 (2021; Zbl 1484.37086) Full Text: DOI OpenURL
Kumar, Sachin; Kumar, Dharmendra; Kumar, Amit Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation. (English) Zbl 1496.35152 Chaos Solitons Fractals 142, Article ID 110507, 22 p. (2021). MSC: 35C08 PDF BibTeX XML Cite \textit{S. Kumar} et al., Chaos Solitons Fractals 142, Article ID 110507, 22 p. (2021; Zbl 1496.35152) Full Text: DOI OpenURL
Yulmukhametova, Yuliya Valer’evna Solution of a rank 2 hydrodynamic submodel with a linear velocity field. (Russian. English summary) Zbl 07503915 Chelyabinskiĭ Fiz.-Mat. Zh. 6, No. 3, 321-330 (2021). MSC: 76N15 76M60 35Q35 PDF BibTeX XML Cite \textit{Y. V. Yulmukhametova}, Chelyabinskiĭ Fiz.-Mat. Zh. 6, No. 3, 321--330 (2021; Zbl 07503915) Full Text: DOI MNR OpenURL
Khabirov, S. V. Plane steady vortex submodel of ideal gas. (English. Russian original) Zbl 07502479 J. Appl. Mech. Tech. Phys. 62, No. 4, 600-615 (2021); translation from Prikl. Mekh. Tekh. Fiz. 62, No. 5, 88-104 (2021). MSC: 76N15 76M60 PDF BibTeX XML Cite \textit{S. V. Khabirov}, J. Appl. Mech. Tech. Phys. 62, No. 4, 600--615 (2021; Zbl 07502479); translation from Prikl. Mekh. Tekh. Fiz. 62, No. 5, 88--104 (2021) Full Text: DOI OpenURL
Terze, Zdravko; Pandža, Viktor; Andrić, Marijan; Zlatar, Dario Flapping wing coupled dynamics in Lie group setting. (English) Zbl 1485.76016 Nielsen, Frank (ed.) et al., Geometric science of information. 5th international conference, GSI 2021, Paris, France, July 21–23, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12829, 360-367 (2021). MSC: 76B10 76B47 76M60 22E70 PDF BibTeX XML Cite \textit{Z. Terze} et al., Lect. Notes Comput. Sci. 12829, 360--367 (2021; Zbl 1485.76016) Full Text: DOI OpenURL
Nobary, Elham; Hosseini, S. Mohammad A geometric numerical integration of Lie-Poisson system for ideal compressible isentropic fluid. (English) Zbl 1482.76093 Iran. J. Math. Sci. Inform. 16, No. 2, 197-208 (2021). MSC: 76M60 65D30 76N15 PDF BibTeX XML Cite \textit{E. Nobary} and \textit{S. M. Hosseini}, Iran. J. Math. Sci. Inform. 16, No. 2, 197--208 (2021; Zbl 1482.76093) Full Text: Link OpenURL
Nath, G.; Devi, Arti Exact and numerical solution using Lie group analysis for the cylindrical shock waves in a self-gravitating ideal gas with axial magnetic field. (English) Zbl 1490.76129 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 61, 20 p. (2021). MSC: 76L05 76W05 76M60 76M55 PDF BibTeX XML Cite \textit{G. Nath} and \textit{A. Devi}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 61, 20 p. (2021; Zbl 1490.76129) Full Text: DOI OpenURL
Devi, Preeti; Singh, K. Lie symmetry analysis of the nonlinear Schrödinger equation with time dependent variable coefficients. (English) Zbl 1499.35553 Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 23, 19 p. (2021). MSC: 35Q55 35A30 PDF BibTeX XML Cite \textit{P. Devi} and \textit{K. Singh}, Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 23, 19 p. (2021; Zbl 1499.35553) Full Text: DOI OpenURL
Kumar, Mukesh; Kumar, Raj; Kumar, Anshu Some more invariant solutions of \((2+1)\)-water waves. (English) Zbl 1499.35159 Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 18, 18 p. (2021). MSC: 35C08 76B15 76M60 PDF BibTeX XML Cite \textit{M. Kumar} et al., Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 18, 18 p. (2021; Zbl 1499.35159) Full Text: DOI OpenURL
Bogoyavlenskij, Oleg; Peng, Yuyang Exact solutions to the Beltrami equation with a non-constant \(\alpha(x)\). (English) Zbl 07472280 Regul. Chaotic Dyn. 26, No. 6, 692-699 (2021). MSC: 35Q35 76W05 76M60 76X05 35B07 PDF BibTeX XML Cite \textit{O. Bogoyavlenskij} and \textit{Y. Peng}, Regul. Chaotic Dyn. 26, No. 6, 692--699 (2021; Zbl 07472280) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Kang-Le Variational principles for fractal Whitham-Broer-Kaup equations in shallow water. (English) Zbl 1498.76012 Fractals 29, No. 2, Article ID 2150028, 9 p. (2021). MSC: 76B10 76M30 76M60 28A80 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{K.-L. Wang}, Fractals 29, No. 2, Article ID 2150028, 9 p. (2021; Zbl 1498.76012) Full Text: DOI OpenURL
Kobayashi, Toshiyuki Admissible restrictions of irreducible representations of reductive Lie groups: symplectic geometry and discrete decomposability. (English) Zbl 07463851 Pure Appl. Math. Q. 17, No. 4, 1321-1343 (2021). MSC: 22E46 22E45 43A77 53D50 PDF BibTeX XML Cite \textit{T. Kobayashi}, Pure Appl. Math. Q. 17, No. 4, 1321--1343 (2021; Zbl 07463851) Full Text: DOI OpenURL
Moitsheki, Raseelo J.; Ntsime, Basetsana P. Potential symmetry reduction of a convection-dispersion equation with spatial dependent water velocity. (English) Zbl 1487.76084 Quaest. Math. 44, No. 11, 1493-1511 (2021). MSC: 76R99 76T06 76M60 86A05 PDF BibTeX XML Cite \textit{R. J. Moitsheki} and \textit{B. P. Ntsime}, Quaest. Math. 44, No. 11, 1493--1511 (2021; Zbl 1487.76084) Full Text: DOI OpenURL
Giga, Yoshikazu; Gries, Mathis; Hieber, Matthias; Hussein, Amru; Kashiwabara, Takahito The primitive equations in the scaling-invariant space \(L^{\infty}(L^1)\). (English) Zbl 1481.35329 J. Evol. Equ. 21, No. 4, 4145-4169 (2021). MSC: 35Q35 35Q86 76D03 76M60 86A05 35A01 35A02 35D35 47D06 PDF BibTeX XML Cite \textit{Y. Giga} et al., J. Evol. Equ. 21, No. 4, 4145--4169 (2021; Zbl 1481.35329) Full Text: DOI arXiv OpenURL
Singh, Sumeeta Similarity solutions for magnetogasdynamic cylindrical shock wave in rotating non-ideal gas using Lie group theoretic method. (English) Zbl 07451212 J. Eng. Math. 131, Paper No. 5, 16 p. (2021). MSC: 76M60 76W05 76L05 PDF BibTeX XML Cite \textit{S. Singh}, J. Eng. Math. 131, Paper No. 5, 16 p. (2021; Zbl 07451212) Full Text: DOI OpenURL
Bobylev, Alexander V.; Meleshko, Sergey V. On group symmetries of the hydrodynamic equations for rarefied gas. (English) Zbl 1476.35194 Kinet. Relat. Models 14, No. 3, 469-482 (2021). MSC: 35Q35 76P05 76M60 PDF BibTeX XML Cite \textit{A. V. Bobylev} and \textit{S. V. Meleshko}, Kinet. Relat. Models 14, No. 3, 469--482 (2021; Zbl 1476.35194) Full Text: DOI OpenURL
Gao, Hui Analytic study of solutions for the Cahn-Hilliard equation. (Chinese. English summary) Zbl 1488.35018 Math. Pract. Theory 51, No. 15, 236-239 (2021). MSC: 35B06 35G20 PDF BibTeX XML Cite \textit{H. Gao}, Math. Pract. Theory 51, No. 15, 236--239 (2021; Zbl 1488.35018) OpenURL
Lin, Fubiao; Zhang, Qianhong Symmetries and exact solutions of population balance equation with pure breakage processes. (Chinese. English summary) Zbl 1488.35021 J. Hangzhou Norm. Univ., Nat. Sci. 20, No. 3, 295-303 (2021). MSC: 35B06 35R09 45K05 PDF BibTeX XML Cite \textit{F. Lin} and \textit{Q. Zhang}, J. Hangzhou Norm. Univ., Nat. Sci. 20, No. 3, 295--303 (2021; Zbl 1488.35021) Full Text: DOI OpenURL
Williams, Kurt; Hill, Desmond L.; Abarzhi, Snezhana I. Regular and singular behaviours and new morphologies in the Rayleigh Taylor instability. (English) Zbl 1496.76061 Wood, David R. (ed.) et al., 2019–20 MATRIX annals. Cham: Springer. MATRIX Book Ser. 4, 359-373 (2021). MSC: 76E17 76M60 76M45 PDF BibTeX XML Cite \textit{K. Williams} et al., MATRIX Book Ser. 4, 359--373 (2021; Zbl 1496.76061) Full Text: DOI OpenURL
Zhang, Zhi-Yong; Guo, Lei-Lei An alternative technique for the symmetry reduction of time-fractional partial differential equation. (English) Zbl 1484.35399 Math. Methods Appl. Sci. 44, No. 18, 14957-14962 (2021). MSC: 35R11 26A33 35C05 35C10 76M60 PDF BibTeX XML Cite \textit{Z.-Y. Zhang} and \textit{L.-L. Guo}, Math. Methods Appl. Sci. 44, No. 18, 14957--14962 (2021; Zbl 1484.35399) Full Text: DOI OpenURL
Gandhi, Hemant; Tomar, Amit; Singh, Dimple Conservation laws and exact series solution of fractional-order Hirota-Satsuma-coupled Korteveg-de Vries system by symmetry analysis. (English) Zbl 1479.35036 Math. Methods Appl. Sci. 44, No. 18, 14356-14370 (2021). MSC: 35B06 35G55 35R11 76M60 PDF BibTeX XML Cite \textit{H. Gandhi} et al., Math. Methods Appl. Sci. 44, No. 18, 14356--14370 (2021; Zbl 1479.35036) Full Text: DOI OpenURL
Platonova, K. S.; Borovskih, A. V. Group analysis of the one-dimensional Boltzmann equation. Invariants and the problem of moment system closure. (English. Russian original) Zbl 1483.35147 Theor. Math. Phys. 208, No. 3, 1165-1181 (2021); translation from Teor. Mat. Fiz. 208, No. 3, 367-386 (2021). MSC: 35Q20 76M60 PDF BibTeX XML Cite \textit{K. S. Platonova} and \textit{A. V. Borovskih}, Theor. Math. Phys. 208, No. 3, 1165--1181 (2021; Zbl 1483.35147); translation from Teor. Mat. Fiz. 208, No. 3, 367--386 (2021) Full Text: DOI OpenURL
Aksenov, A. V.; Druzhkov, K. P. Symmetries and conservation laws of the equations of two-dimensional shallow water over uneven bottom. (English) Zbl 1479.35034 Sadovnichiy, Victor A. (ed.) et al., Contemporary approaches and methods in fundamental mathematics and mechanics. Cham: Springer. Underst. Complex Syst., 113-163 (2021). MSC: 35B06 35Q35 76M60 PDF BibTeX XML Cite \textit{A. V. Aksenov} and \textit{K. P. Druzhkov}, in: Contemporary approaches and methods in fundamental mathematics and mechanics. Cham: Springer. 113--163 (2021; Zbl 1479.35034) Full Text: DOI OpenURL
Terze, Zdravko; Pandža, Viktor; Andrić, Marijan; Zlatar, Dario Lie group dynamics of reduced multibody-fluid systems. (English) Zbl 1493.70029 Math. Mech. Complex Syst. 9, No. 2, 167-177 (2021). MSC: 70E55 74F10 76M60 PDF BibTeX XML Cite \textit{Z. Terze} et al., Math. Mech. Complex Syst. 9, No. 2, 167--177 (2021; Zbl 1493.70029) Full Text: DOI OpenURL
Elgindi, Tarek M.; Jeong, In-Jee The incompressible Euler equations under octahedral symmetry: singularity formation in a fundamental domain. (English) Zbl 1496.35297 Adv. Math. 393, Article ID 108091, 63 p. (2021). MSC: 35Q31 76B03 76M60 35B44 35B45 35B06 35A01 35A02 PDF BibTeX XML Cite \textit{T. M. Elgindi} and \textit{I.-J. Jeong}, Adv. Math. 393, Article ID 108091, 63 p. (2021; Zbl 1496.35297) Full Text: DOI arXiv OpenURL
Mohammadizadeh, Fatemeh; Rashidi, Saeede; Hejazi, S. Reza Space-time fractional Klein-Gordon equation: symmetry analysis, conservation laws and numerical approximations. (English) Zbl 07429013 Math. Comput. Simul. 188, 476-497 (2021). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{F. Mohammadizadeh} et al., Math. Comput. Simul. 188, 476--497 (2021; Zbl 07429013) Full Text: DOI OpenURL
Meleshko, S. V.; Moyo, S.; Webb, G. M. Solutions of generalized simple wave type of magnetic fluid. (English) Zbl 1493.35081 Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 105991, 10 p. (2021). MSC: 35Q35 35C99 76W05 76N15 76M60 35A22 35A24 PDF BibTeX XML Cite \textit{S. V. Meleshko} et al., Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 105991, 10 p. (2021; Zbl 1493.35081) Full Text: DOI OpenURL
Prakash, P. On group analysis, conservation laws and exact solutions of time-fractional Kudryashov-Sinelshchikov equation. (English) Zbl 1476.35315 Comput. Appl. Math. 40, No. 5, Paper No. 162, 42 p. (2021). MSC: 35R11 35Bxx 37K06 35-XX PDF BibTeX XML Cite \textit{P. Prakash}, Comput. Appl. Math. 40, No. 5, Paper No. 162, 42 p. (2021; Zbl 1476.35315) Full Text: DOI OpenURL
Duyunova, Anna; Lychagin, Valentin; Tychkov, Sergey Quotients of Navier-Stokes equation on space curves. (English) Zbl 1477.35120 Anal. Math. Phys. 11, No. 4, Paper No. 175, 10 p. (2021). MSC: 35Q30 35C20 35A24 76M60 22E70 35A01 PDF BibTeX XML Cite \textit{A. Duyunova} et al., Anal. Math. Phys. 11, No. 4, Paper No. 175, 10 p. (2021; Zbl 1477.35120) Full Text: DOI arXiv OpenURL
Devi, Munesh; Yadav, Shalini; Arora, Rajan Optimal system, invariance analysis of fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation using Lie symmetry approach. (English) Zbl 07424127 Appl. Math. Comput. 404, Article ID 126230, 15 p. (2021). MSC: 35Gxx 35Qxx PDF BibTeX XML Cite \textit{M. Devi} et al., Appl. Math. Comput. 404, Article ID 126230, 15 p. (2021; Zbl 07424127) Full Text: DOI OpenURL
Ali, Mohamed R.; Sadat, R.; Ma, Wen-Xiu Investigation of new solutions for an extended (2 + 1)-dimensional Calogero-Bogoyavlenskii-Schif equation. (English) Zbl 1480.76095 Front. Math. China 16, No. 4, 925-936 (2021). MSC: 76M60 76B15 76M99 35Q51 35Q53 PDF BibTeX XML Cite \textit{M. R. Ali} et al., Front. Math. China 16, No. 4, 925--936 (2021; Zbl 1480.76095) Full Text: DOI OpenURL
Michishita, Yoji On first order symmetry operators for the field equations of differential forms. (English) Zbl 1479.83060 Classical Quantum Gravity 38, No. 1, Article ID 015002, 31 p. (2021). MSC: 83C40 58A10 35B06 22E70 PDF BibTeX XML Cite \textit{Y. Michishita}, Classical Quantum Gravity 38, No. 1, Article ID 015002, 31 p. (2021; Zbl 1479.83060) Full Text: DOI arXiv OpenURL