Dridi, Amal; Trabelsi, Nihed Blow up solutions for a 4-dimensional Emden-Fowler system of Liouville type. (English) Zbl 07531951 J. Elliptic Parabol. Equ. 8, No. 1, 331-366 (2022). MSC: 35B53 35B25 35B44 35J08 35J58 35J61 PDF BibTeX XML Cite \textit{A. Dridi} and \textit{N. Trabelsi}, J. Elliptic Parabol. Equ. 8, No. 1, 331--366 (2022; Zbl 07531951) Full Text: DOI OpenURL
Cheng, Xiyou; Li, Kui; Zhang, Zhitao Liouville-type theorems for generalized Hénon-Lane-Emden Schrödinger systems in \(\mathbb{R}^2\) and \(\mathbb{R}^3\). (English) Zbl 07522895 Topol. Methods Nonlinear Anal. 59, No. 1, 331-357 (2022). MSC: 35J47 35J61 35B33 35B53 PDF BibTeX XML Cite \textit{X. Cheng} et al., Topol. Methods Nonlinear Anal. 59, No. 1, 331--357 (2022; Zbl 07522895) Full Text: DOI OpenURL
Chen, Xiaomei; Yu, Xiaohui Liouville type theorem for Hartree-Fock equation on half space. (English) Zbl 07517696 Commun. Pure Appl. Anal. 21, No. 6, 2079-2100 (2022). MSC: 35J61 35J66 35B53 PDF BibTeX XML Cite \textit{X. Chen} and \textit{X. Yu}, Commun. Pure Appl. Anal. 21, No. 6, 2079--2100 (2022; Zbl 07517696) Full Text: DOI OpenURL
He, Yan; Sheng, Haoyang; Xiang, Ni; Zhang, Jiannan A Pogorelov estimate and a Liouville-type theorem to parabolic \(k\)-Hessian equations. (English) Zbl 07517064 Commun. Contemp. Math. 24, No. 4, Article ID 2150001, 21 p. (2022). MSC: 35B53 35B45 35K55 PDF BibTeX XML Cite \textit{Y. He} et al., Commun. Contemp. Math. 24, No. 4, Article ID 2150001, 21 p. (2022; Zbl 07517064) Full Text: DOI OpenURL
Chang, Caihong; Hu, Bei; Zhang, Zhengce Liouville-type theorems and existence of solutions for quasilinear elliptic equations with nonlinear gradient terms. (English) Zbl 07515362 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 220, Article ID 112873, 29 p. (2022). MSC: 35J92 35B53 35J25 PDF BibTeX XML Cite \textit{C. Chang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 220, Article ID 112873, 29 p. (2022; Zbl 07515362) Full Text: DOI OpenURL
Fuentes, Rodrigo; Quaas, Alexander A note on one-dimensional symmetry for Hamilton-Jacobi equations with extremal Pucci operators and application to Bernstein type estimate. (English) Zbl 07514288 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 3, Paper No. 29, 22 p. (2022). MSC: 35B06 35B45 35B53 35D40 35F21 PDF BibTeX XML Cite \textit{R. Fuentes} and \textit{A. Quaas}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 3, Paper No. 29, 22 p. (2022; Zbl 07514288) Full Text: DOI OpenURL
Guo, Yuxia; Liu, Ting Liouville-type theorem for high order degenerate Lane-Emden system. (English) Zbl 07513965 Discrete Contin. Dyn. Syst. 42, No. 5, 2073-2100 (2022). MSC: 35J48 35J70 35B53 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{T. Liu}, Discrete Contin. Dyn. Syst. 42, No. 5, 2073--2100 (2022; Zbl 07513965) Full Text: DOI OpenURL
Dupaigne, Louis; Farina, Alberto Classification and Liouville-type theorems for semilinear elliptic equations in unbounded domains. (English) Zbl 07511981 Anal. PDE 15, No. 2, 551-566 (2022). Reviewer: Marius Ghergu (Dublin) MSC: 35J15 35J61 35B53 PDF BibTeX XML Cite \textit{L. Dupaigne} and \textit{A. Farina}, Anal. PDE 15, No. 2, 551--566 (2022; Zbl 07511981) Full Text: DOI OpenURL
Duong, Anh Tuan; Nguyen, Van Hoang A Liouville-type theorem for fractional elliptic equation with exponential nonlinearity. (English) Zbl 1485.35090 Mediterr. J. Math. 19, No. 2, Paper No. 91, 16 p. (2022). MSC: 35B53 35B35 35J61 35R11 PDF BibTeX XML Cite \textit{A. T. Duong} and \textit{V. H. Nguyen}, Mediterr. J. Math. 19, No. 2, Paper No. 91, 16 p. (2022; Zbl 1485.35090) Full Text: DOI arXiv OpenURL
Chae, Dongho; Kim, Junha; Wolf, Jörg On Liouville-type theorems for the stationary MHD and the Hall-MHD systems in \(\mathbb{R}^3\). (English) Zbl 1485.35321 Z. Angew. Math. Phys. 73, No. 2, Paper No. 66, 15 p. (2022). Reviewer: Piotr Biler (Wrocław) MSC: 35Q35 76W05 35B53 76D05 81V70 PDF BibTeX XML Cite \textit{D. Chae} et al., Z. Angew. Math. Phys. 73, No. 2, Paper No. 66, 15 p. (2022; Zbl 1485.35321) Full Text: DOI arXiv OpenURL
Zhao, Caidi; Wang, Jintao; Caraballo, Tomás Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. (English) Zbl 1484.35101 J. Differ. Equations 317, 474-494 (2022). MSC: 35B53 34D35 35B41 35Q30 35R60 76F20 PDF BibTeX XML Cite \textit{C. Zhao} et al., J. Differ. Equations 317, 474--494 (2022; Zbl 1484.35101) Full Text: DOI OpenURL
Ciraolo, Giulio; Corso, Rosario Symmetry for positive critical points of Caffarelli-Kohn-Nirenberg inequalities. (English) Zbl 1481.35237 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112683, 23 p. (2022). MSC: 35J92 35B53 35B09 53C21 PDF BibTeX XML Cite \textit{G. Ciraolo} and \textit{R. Corso}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112683, 23 p. (2022; Zbl 1481.35237) Full Text: DOI arXiv OpenURL
Zhuo, Ran; Li, Congming Classification of anti-symmetric solutions to nonlinear fractional Laplace equations. (English) Zbl 1480.35402 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 17, 23 p. (2022). MSC: 35R11 35A01 35B09 35B50 35B53 35J61 35S05 PDF BibTeX XML Cite \textit{R. Zhuo} and \textit{C. Li}, Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 17, 23 p. (2022; Zbl 1480.35402) Full Text: DOI OpenURL
Chen, Xiaomeng; Li, Shuai; Wang, Wendong Remarks on Liouville-type theorems for the steady MHD and Hall-MHD equations. (English) Zbl 1481.35306 J. Nonlinear Sci. 32, No. 1, Paper No. 12, 20 p. (2022). MSC: 35Q30 76D03 76D07 76D05 76W05 81V70 35B33 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Nonlinear Sci. 32, No. 1, Paper No. 12, 20 p. (2022; Zbl 1481.35306) Full Text: DOI arXiv OpenURL
Dai, Wei; Peng, Shaolong Liouville theorems for nonnegative solutions to Hardy-Hénon type system on a half space. (English) Zbl 1480.35078 Ann. Funct. Anal. 13, No. 1, Paper No. 12, 21 p. (2022). MSC: 35B53 35J57 35J61 35J91 PDF BibTeX XML Cite \textit{W. Dai} and \textit{S. Peng}, Ann. Funct. Anal. 13, No. 1, Paper No. 12, 21 p. (2022; Zbl 1480.35078) Full Text: DOI OpenURL
Nguyen Thac Dung; Nguyen Ngoc Khanh Gradient estimates for a class of semilinear parabolic equations and their applications. (English) Zbl 1481.35094 Vietnam J. Math. 50, No. 1, 249-259 (2022). MSC: 35B45 35B53 35K58 35R01 PDF BibTeX XML Cite \textit{Nguyen Thac Dung} and \textit{Nguyen Ngoc Khanh}, Vietnam J. Math. 50, No. 1, 249--259 (2022; Zbl 1481.35094) Full Text: DOI OpenURL
Kozono, Hideo; Terasawa, Yutaka; Wakasugi, Yuta Asymptotic properties of steady solutions to the 3D axisymmetric Navier-Stokes equations with no swirl. (English) Zbl 1479.35620 J. Funct. Anal. 282, No. 2, Article ID 109289, 21 p. (2022). MSC: 35Q30 35B53 35B40 35B45 76D05 PDF BibTeX XML Cite \textit{H. Kozono} et al., J. Funct. Anal. 282, No. 2, Article ID 109289, 21 p. (2022; Zbl 1479.35620) Full Text: DOI arXiv OpenURL
Wei, Yunfeng; Yang, Hongwei; Yu, Hongwang On stable solutions of the weighted Lane-Emden equation involving Grushin operator. (English) Zbl 07543233 AIMS Math. 6, No. 3, 2623-2635 (2021). MSC: 35J25 35H20 35B35 35B53 PDF BibTeX XML Cite \textit{Y. Wei} et al., AIMS Math. 6, No. 3, 2623--2635 (2021; Zbl 07543233) Full Text: DOI OpenURL
Gwynne, Ewain; Miller, Jason Percolation on uniform quadrangulations and \(SLE_6\) on \(\sqrt{8/3} \)-Liouville quantum gravity. (English) Zbl 07533301 Astérisque 429. Paris: Société Mathématique de France (SMF) (ISBN 978-2-85629-947-0/pbk). viii, 242 p. (2021). MSC: 60-02 60K35 60F17 60J67 60G57 PDF BibTeX XML Cite \textit{E. Gwynne} and \textit{J. Miller}, Percolation on uniform quadrangulations and \(SLE_6\) on \(\sqrt{8/3} \)-Liouville quantum gravity. Paris: Société Mathématique de France (SMF) (2021; Zbl 07533301) Full Text: DOI OpenURL
Popivanov, Petar; Slavova, Angela Construction of radial and non-radial solutions for local and non-local equations of Liouville type. (English) Zbl 07503615 C. R. Acad. Bulg. Sci. 74, No. 10, 1442-1452 (2021). Reviewer: Ivan Landjev (Sofia) MSC: 35J05 35J65 35B05 35B40 53A10 PDF BibTeX XML Cite \textit{P. Popivanov} and \textit{A. Slavova}, C. R. Acad. Bulg. Sci. 74, No. 10, 1442--1452 (2021; Zbl 07503615) Full Text: DOI OpenURL
Wei, Yunfeng; Yang, Hongwei; Yu, Hongwang Stable weak solutions to weighted Kirchhoff equations of Lane-Emden type. (English) Zbl 1485.35196 Adv. Difference Equ. 2021, Paper No. 27, 14 p. (2021). MSC: 35J60 35J15 35H20 35B53 PDF BibTeX XML Cite \textit{Y. Wei} et al., Adv. Difference Equ. 2021, Paper No. 27, 14 p. (2021; Zbl 1485.35196) Full Text: DOI OpenURL
Chen, Qinghua; Li, Yayun; Ma, Mengfan A Liouville theorem of an integral equation of the Chern-Simons-Higgs type. (English) Zbl 07477353 J. Korean Math. Soc. 58, No. 6, 1327-1345 (2021). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q56 45G05 45E10 35B53 PDF BibTeX XML Cite \textit{Q. Chen} et al., J. Korean Math. Soc. 58, No. 6, 1327--1345 (2021; Zbl 07477353) Full Text: DOI OpenURL
Li, Dongyan; Dong, Yan Non-existence results for a degenerate semilinear elliptic equation. (English) Zbl 1481.35198 Complex Var. Elliptic Equ. 66, No. 12, 2141-2152 (2021). MSC: 35J61 35B53 35A02 PDF BibTeX XML Cite \textit{D. Li} and \textit{Y. Dong}, Complex Var. Elliptic Equ. 66, No. 12, 2141--2152 (2021; Zbl 1481.35198) Full Text: DOI OpenURL
Le, Phuong; Duong, Anh Tuan; Nguyen, Nhu Thang Liouville-type theorems for sub-elliptic systems involving \(\Delta_{\lambda}\)-Laplacian. (English) Zbl 1481.35098 Complex Var. Elliptic Equ. 66, No. 12, 2131-2140 (2021). MSC: 35B53 35B35 35H20 35J61 35J70 35R45 PDF BibTeX XML Cite \textit{P. Le} et al., Complex Var. Elliptic Equ. 66, No. 12, 2131--2140 (2021; Zbl 1481.35098) Full Text: DOI OpenURL
Fan, Huiying; Wang, Meng The Liouville type theorem for the stationary magnetohydrodynamic equations in weighted mixed-norm Lebesgue spaces. (English) Zbl 1481.35326 Dyn. Partial Differ. Equ. 18, No. 4, 327-340 (2021). MSC: 35Q35 76W05 35B53 35B65 PDF BibTeX XML Cite \textit{H. Fan} and \textit{M. Wang}, Dyn. Partial Differ. Equ. 18, No. 4, 327--340 (2021; Zbl 1481.35326) Full Text: DOI OpenURL
Shi, Jincheng; Xiao, Shengzhong Phragmén-Lindelöf alternative results for a class of thermoelastic plates. (Chinese. English summary) Zbl 07448464 J. Jilin Univ., Sci. 59, No. 4, 846-854 (2021). MSC: 74G50 74F05 74K20 35B53 35M30 PDF BibTeX XML Cite \textit{J. Shi} and \textit{S. Xiao}, J. Jilin Univ., Sci. 59, No. 4, 846--854 (2021; Zbl 07448464) Full Text: DOI OpenURL
Akhadkulov, Habibulla; Alsharari, Fahad; Ying, Teh Yuan Applications of Krasnoselskii-Dhage type fixed-point theorems to fractional hybrid differential equations. (English) Zbl 07444100 Tamkang J. Math. 52, No. 2, 281-292 (2021). MSC: 47-XX 47H09 47H10 26A33 PDF BibTeX XML Cite \textit{H. Akhadkulov} et al., Tamkang J. Math. 52, No. 2, 281--292 (2021; Zbl 07444100) Full Text: DOI OpenURL
Duong, Anh Tuan; Nguyen, Van Hoang; Nguyen, Thi Quynh Uniform lower bound and Liouville type theorem for fractional Lichnerowicz equations. (English) Zbl 1479.35918 Bull. Aust. Math. Soc. 104, No. 3, 484-492 (2021). MSC: 35R11 35B53 35B35 35J61 PDF BibTeX XML Cite \textit{A. T. Duong} et al., Bull. Aust. Math. Soc. 104, No. 3, 484--492 (2021; Zbl 1479.35918) Full Text: DOI OpenURL
Li, Kui; Zhang, Zhitao Liouville-type theorem for higher-order Hardy-Hénon system. (English) Zbl 1480.35173 Commun. Pure Appl. Anal. 20, No. 11, 3851-3869 (2021). MSC: 35J48 35B65 35B53 PDF BibTeX XML Cite \textit{K. Li} and \textit{Z. Zhang}, Commun. Pure Appl. Anal. 20, No. 11, 3851--3869 (2021; Zbl 1480.35173) Full Text: DOI OpenURL
Guan, Xiaohong Non-existence of positive solutions of weighted Lane-Emden system. (English) Zbl 1480.35160 J. Nonlinear Convex Anal. 22, No. 4, 819-837 (2021). MSC: 35J47 35J61 35B53 PDF BibTeX XML Cite \textit{X. Guan}, J. Nonlinear Convex Anal. 22, No. 4, 819--837 (2021; Zbl 1480.35160) Full Text: Link OpenURL
Duong, Anh Tuan; Pham, Duc Hiep Liouville-type theorem for fractional Kirchhoff equations with weights. (English) Zbl 1477.35050 Bull. Iran. Math. Soc. 47, No. 5, 1585-1597 (2021). MSC: 35B53 35J62 35B35 35R09 35R11 PDF BibTeX XML Cite \textit{A. T. Duong} and \textit{D. H. Pham}, Bull. Iran. Math. Soc. 47, No. 5, 1585--1597 (2021; Zbl 1477.35050) Full Text: DOI OpenURL
Chen, Wenxiong; Wu, Leyun Liouville theorems for fractional parabolic equations. (English) Zbl 1476.35072 Adv. Nonlinear Stud. 21, No. 4, 939-958 (2021). MSC: 35B53 35B08 35B50 35R11 35K58 PDF BibTeX XML Cite \textit{W. Chen} and \textit{L. Wu}, Adv. Nonlinear Stud. 21, No. 4, 939--958 (2021; Zbl 1476.35072) Full Text: DOI arXiv OpenURL
Yuan, Li; Li, Ping Symmetry and monotonicity of a nonlinear Schrödinger equation involving the fractional Laplacian. (English) Zbl 1479.35279 Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4109-4125 (2021). MSC: 35J10 35Q55 35R11 35B53 PDF BibTeX XML Cite \textit{L. Yuan} and \textit{P. Li}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4109--4125 (2021; Zbl 1479.35279) Full Text: DOI OpenURL
Chae, Dongho; Kim, Junha; Wolf, Jörg On Liouville type theorems in the stationary non-Newtonian fluids. (English) Zbl 1479.35652 J. Differ. Equations 302, 710-727 (2021). MSC: 35Q35 35Q30 76A05 76D05 76D03 35B53 35D30 PDF BibTeX XML Cite \textit{D. Chae} et al., J. Differ. Equations 302, 710--727 (2021; Zbl 1479.35652) Full Text: DOI arXiv OpenURL
Li, Hongqiao Liouville type theorem for Hartree equations in half spaces. (Chinese. English summary) Zbl 07403534 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 2, 388-401 (2021). MSC: 35B53 35B09 35Q40 PDF BibTeX XML Cite \textit{H. Li}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 2, 388--401 (2021; Zbl 07403534) OpenURL
Ivasyshen, S. D.; Pasichnyk, H. S. Representation of solutions of Kolmogorov type equations with increasing coefficients and degenerations on the initial hyperplane. (Ukrainian. English summary) Zbl 07402528 Bukovyn. Mat. Zh. 9, No. 1, 189-199 (2021). MSC: 35K70 35B53 PDF BibTeX XML Cite \textit{S. D. Ivasyshen} and \textit{H. S. Pasichnyk}, Bukovyn. Mat. Zh. 9, No. 1, 189--199 (2021; Zbl 07402528) Full Text: DOI OpenURL
Dai, Wei; Qin, Guolin Liouville type theorem for critical order Hénon-Lane-Emden type equations on a half space and its applications. (English) Zbl 1473.35082 J. Funct. Anal. 281, No. 10, Article ID 109227, 37 p. (2021). MSC: 35B53 35B45 35J40 35J91 PDF BibTeX XML Cite \textit{W. Dai} and \textit{G. Qin}, J. Funct. Anal. 281, No. 10, Article ID 109227, 37 p. (2021; Zbl 1473.35082) Full Text: DOI arXiv OpenURL
Rahal, Belgacem; Zaidi, Cherif On finite Morse index solutions of higher order fractional elliptic equations. (English) Zbl 1473.35634 Evol. Equ. Control Theory 10, No. 3, 575-597 (2021). MSC: 35R11 35B33 35B35 35B45 35B53 35J61 PDF BibTeX XML Cite \textit{B. Rahal} and \textit{C. Zaidi}, Evol. Equ. Control Theory 10, No. 3, 575--597 (2021; Zbl 1473.35634) Full Text: DOI OpenURL
Wei, Yunfeng; Yang, Hongwei; Yu, Hongwang; Hu, Rui Stable solutions to quasilinear Schrödinger equations of Lane-Emden type with a parameter. (English) Zbl 1473.35271 Math. Methods Appl. Sci. 44, No. 13, 9987-9997 (2021). MSC: 35J62 35Q55 35B53 PDF BibTeX XML Cite \textit{Y. Wei} et al., Math. Methods Appl. Sci. 44, No. 13, 9987--9997 (2021; Zbl 1473.35271) Full Text: DOI OpenURL
Fino, Ahmad Z.; Jleli, Mohamed; Samet, Bessem Liouville-type theorems for sign-changing solutions to nonlocal elliptic inequalities and systems with variable-exponent nonlinearities. (English) Zbl 1471.35071 Mediterr. J. Math. 18, No. 4, Paper No. 144, 17 p. (2021). MSC: 35B53 35B33 35D30 35R11 35R45 PDF BibTeX XML Cite \textit{A. Z. Fino} et al., Mediterr. J. Math. 18, No. 4, Paper No. 144, 17 p. (2021; Zbl 1471.35071) Full Text: DOI arXiv OpenURL
Le, Phuong Stable and finite Morse index solutions of a nonlinear Schrödinger system. (English) Zbl 1473.35200 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 4, Paper No. 39, 16 p. (2021). MSC: 35J47 35Q55 35B53 PDF BibTeX XML Cite \textit{P. Le}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 4, Paper No. 39, 16 p. (2021; Zbl 1473.35200) Full Text: DOI OpenURL
Set, E.; Choi, J.; Gözpinar, A. Hermite-Hadamard type inequalities involving nonlocal conformable fractional integrals. (English) Zbl 1471.26014 Malays. J. Math. Sci. 15, No. 1, 33-43 (2021). MSC: 26D15 26A24 26A33 PDF BibTeX XML Cite \textit{E. Set} et al., Malays. J. Math. Sci. 15, No. 1, 33--43 (2021; Zbl 1471.26014) Full Text: Link OpenURL
Duong, Anh Tuan; Giang, Trung Hieu; Le, Phuong; Vu, Thi Hien Anh Classification results for a sub-elliptic system involving the \(\Delta_{\lambda}\)-Laplacian. (English) Zbl 1470.35086 Math. Methods Appl. Sci. 44, No. 5, 3615-3629 (2021). MSC: 35B53 35H20 35J60 35B35 35J70 PDF BibTeX XML Cite \textit{A. T. Duong} et al., Math. Methods Appl. Sci. 44, No. 5, 3615--3629 (2021; Zbl 1470.35086) Full Text: DOI OpenURL
Gwynne, Ewain; Holden, Nina; Sun, Xin Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense. (English) Zbl 1479.60170 Electron. J. Probab. 26, Paper No. 94, 58 p. (2021). MSC: 60J67 60D05 60K35 60F17 PDF BibTeX XML Cite \textit{E. Gwynne} et al., Electron. J. Probab. 26, Paper No. 94, 58 p. (2021; Zbl 1479.60170) Full Text: DOI arXiv OpenURL
Ghergu, Marius; Miyamoto, Yasuhito; Moroz, Vitaly Polyharmonic inequalities with nonlocal terms. (English) Zbl 1468.35054 J. Differ. Equations 296, 799-821 (2021). MSC: 35J30 35A23 35B53 35G50 PDF BibTeX XML Cite \textit{M. Ghergu} et al., J. Differ. Equations 296, 799--821 (2021; Zbl 1468.35054) Full Text: DOI arXiv OpenURL
Appell, Jürgen; Dutkiewicz, Aldona; López, Belén; Reinwand, Simon; Sadarangani, Kishin Hölder-type spaces, singular operators, and fixed point theorems. (English) Zbl 07370660 Fixed Point Theory 22, No. 1, 31-58 (2021). Reviewer: Jürgen Appell (Würzburg) MSC: 47-XX 26A33 47H10 47J05 26A15 26A16 34B16 45D05 45E05 45G05 47H30 PDF BibTeX XML Cite \textit{J. Appell} et al., Fixed Point Theory 22, No. 1, 31--58 (2021; Zbl 07370660) Full Text: Link OpenURL
Birindelli, Isabeau; Demengel, Françoise; Leoni, Fabiana Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. (English) Zbl 1479.35446 Discrete Contin. Dyn. Syst. 41, No. 7, 3021-3029 (2021). Reviewer: Shengbing Deng (Chongqing) MSC: 35J70 35J75 35B53 35D40 PDF BibTeX XML Cite \textit{I. Birindelli} et al., Discrete Contin. Dyn. Syst. 41, No. 7, 3021--3029 (2021; Zbl 1479.35446) Full Text: DOI OpenURL
Palacios, José Manuel Orbital and asymptotic stability of a train of peakons for the Novikov equation. (English) Zbl 1471.35240 Discrete Contin. Dyn. Syst. 41, No. 5, 2475-2518 (2021). MSC: 35Q35 35Q51 35C08 35B35 37K40 PDF BibTeX XML Cite \textit{J. M. Palacios}, Discrete Contin. Dyn. Syst. 41, No. 5, 2475--2518 (2021; Zbl 1471.35240) Full Text: DOI arXiv OpenURL
Cao, Daomin; Qin, Guolin Liouville type theorems for fractional and higher-order fractional systems. (English) Zbl 1466.35118 Discrete Contin. Dyn. Syst. 41, No. 5, 2269-2283 (2021). MSC: 35J30 35R11 35B53 PDF BibTeX XML Cite \textit{D. Cao} and \textit{G. Qin}, Discrete Contin. Dyn. Syst. 41, No. 5, 2269--2283 (2021; Zbl 1466.35118) Full Text: DOI arXiv OpenURL
He, Guoqing; Li, Jing; Zhao, Peibiao Liouville-type theorems for \(CC\)-\(F\)-harmonic maps into a Carnot group. (English) Zbl 1466.53042 J. Geom. Anal. 31, No. 4, 4024-4050 (2021). MSC: 53C17 58E20 35B53 PDF BibTeX XML Cite \textit{G. He} et al., J. Geom. Anal. 31, No. 4, 4024--4050 (2021; Zbl 1466.53042) Full Text: DOI OpenURL
Angulo Pava, Jaime; Plaza, Ramón G. Instability of static solutions of the sine-Gordon equation on a \(\mathcal{Y}\)-junction graph with \(\delta\)-interaction. (English) Zbl 1462.35326 J. Nonlinear Sci. 31, No. 3, Paper No. 50, 32 p. (2021). MSC: 35Q51 35J61 35B35 47E05 35C08 35B65 35B53 35R02 PDF BibTeX XML Cite \textit{J. Angulo Pava} and \textit{R. G. Plaza}, J. Nonlinear Sci. 31, No. 3, Paper No. 50, 32 p. (2021; Zbl 1462.35326) Full Text: DOI arXiv OpenURL
Aghajani, A.; Cowan, C. A note on the nonexistence of positive supersolutions to elliptic equations with gradient terms. (English) Zbl 1465.35220 Ann. Mat. Pura Appl. (4) 200, No. 1, 125-135 (2021). MSC: 35J61 35B53 PDF BibTeX XML Cite \textit{A. Aghajani} and \textit{C. Cowan}, Ann. Mat. Pura Appl. (4) 200, No. 1, 125--135 (2021; Zbl 1465.35220) Full Text: DOI arXiv OpenURL
Sire, Yannick; Terracini, Susanna; Vita, Stefano Liouville type theorems and regularity of solutions to degenerate or singular problems. I: Even solutions. (English) Zbl 1471.35152 Commun. Partial Differ. Equations 46, No. 2, 310-361 (2021). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J70 35J75 35R11 35B40 35B44 35B53 PDF BibTeX XML Cite \textit{Y. Sire} et al., Commun. Partial Differ. Equations 46, No. 2, 310--361 (2021; Zbl 1471.35152) Full Text: DOI arXiv OpenURL
Le, Phuong Classification of nonnegative solutions to an equation involving the Laplacian of arbitrary order. (English) Zbl 1459.35380 Discrete Contin. Dyn. Syst. 41, No. 4, 1605-1626 (2021). MSC: 35R11 35J30 35J61 35J75 35B06 35B53 35A02 PDF BibTeX XML Cite \textit{P. Le}, Discrete Contin. Dyn. Syst. 41, No. 4, 1605--1626 (2021; Zbl 1459.35380) Full Text: DOI OpenURL
Deng, Bin; Sire, Yannick; Wei, Juncheng; Wu, Ke Classification of blow-ups and monotonicity formula for half-Laplacian nonlinear heat equation. (English) Zbl 1458.35071 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 52, 35 p. (2021). MSC: 35B44 35K58 35B33 35B40 35R11 35B53 PDF BibTeX XML Cite \textit{B. Deng} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 52, 35 p. (2021; Zbl 1458.35071) Full Text: DOI arXiv OpenURL
Chae, Dongho Relative decay conditions on Liouville type theorem for the steady Navier-Stokes system. (English) Zbl 1460.35251 J. Math. Fluid Mech. 23, No. 1, Paper No. 21, 6 p. (2021). MSC: 35Q30 76D05 76D03 35B53 PDF BibTeX XML Cite \textit{D. Chae}, J. Math. Fluid Mech. 23, No. 1, Paper No. 21, 6 p. (2021; Zbl 1460.35251) Full Text: DOI arXiv OpenURL
Freidin, Brian; Zhang, Yingying A Liouville-type theorem and Bochner formula for harmonic maps into metric spaces. (English) Zbl 1458.58011 Commun. Anal. Geom. 28, No. 8, 1847-1862 (2021). MSC: 58E20 53C43 35B53 PDF BibTeX XML Cite \textit{B. Freidin} and \textit{Y. Zhang}, Commun. Anal. Geom. 28, No. 8, 1847--1862 (2021; Zbl 1458.58011) Full Text: DOI arXiv OpenURL
Zhang, Ran; Yang, Chuan-Fu; Bondarenko, Natalia Pavlovna Inverse spectral problems for the Dirac operator with complex-valued weight and discontinuity. (English) Zbl 1462.34042 J. Differ. Equations 278, 100-110 (2021). Reviewer: Vjacheslav Yurko (Saratov) MSC: 34A55 34B24 47E05 PDF BibTeX XML Cite \textit{R. Zhang} et al., J. Differ. Equations 278, 100--110 (2021; Zbl 1462.34042) Full Text: DOI OpenURL
Ciraolo, Giulio; Corso, Rosario; Roncoroni, Alberto Classification and non-existence results for weak solutions to quasilinear elliptic equations with Neumann or Robin boundary conditions. (English) Zbl 1454.35196 J. Funct. Anal. 280, No. 1, Article ID 108787, 27 p. (2021). Reviewer: Marius Ghergu (Dublin) MSC: 35J92 35B53 35B09 35B33 PDF BibTeX XML Cite \textit{G. Ciraolo} et al., J. Funct. Anal. 280, No. 1, Article ID 108787, 27 p. (2021; Zbl 1454.35196) Full Text: DOI arXiv OpenURL
Wei, Yunfeng; Chen, Caisheng; Yang, Hongwei Liouville-type theorem for Kirchhoff equations involving Grushin operators. (English) Zbl 07509661 Bound. Value Probl. 2020, Paper No. 13, 18 p. (2020). MSC: 35J62 35B53 35A01 PDF BibTeX XML Cite \textit{Y. Wei} et al., Bound. Value Probl. 2020, Paper No. 13, 18 p. (2020; Zbl 07509661) Full Text: DOI OpenURL
Duong, Anh Tuan; Luong, Vu Trong; Nguyen, Thi Quynh Classification of stable solutions to a fractional singular elliptic equation with weight. (English) Zbl 1462.35111 Acta Appl. Math. 170, 579-591 (2020). MSC: 35B53 35J61 35J75 35B35 35R11 PDF BibTeX XML Cite \textit{A. T. Duong} et al., Acta Appl. Math. 170, 579--591 (2020; Zbl 1462.35111) Full Text: DOI OpenURL
Selmi, Abdelbaki; Harrabi, Abdellaziz; Zaidi, Cherif Stable solutions of \(-\Delta u+\lambda u=|u|^{p-1}u\) in strips. (English) Zbl 1465.35250 Acta Appl. Math. 170, 373-385 (2020). MSC: 35J91 35J25 35A01 PDF BibTeX XML Cite \textit{A. Selmi} et al., Acta Appl. Math. 170, 373--385 (2020; Zbl 1465.35250) Full Text: DOI OpenURL
Girardin, Léo; Griette, Quentin A Liouville-type result for non-cooperative Fisher-KPP systems and nonlocal equations in cylinders. (English) Zbl 1462.35112 Acta Appl. Math. 170, 123-139 (2020). MSC: 35B53 35C07 35K40 35K57 92D25 PDF BibTeX XML Cite \textit{L. Girardin} and \textit{Q. Griette}, Acta Appl. Math. 170, 123--139 (2020; Zbl 1462.35112) Full Text: DOI arXiv OpenURL
Li, Yuanfei; Xiao, Shengzhong; Guo, Lianhong; Zeng, Peng Phragmén-Lindelöf type alternative results for a class of second order quasilinear transient equations. (Chinese. English summary) Zbl 1474.35158 J. Jilin Univ., Sci. 58, No. 5, 1047-1054 (2020). MSC: 35B53 35J62 35K59 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Jilin Univ., Sci. 58, No. 5, 1047--1054 (2020; Zbl 1474.35158) Full Text: DOI OpenURL
Li, Yuanfei; Li, Zhiqing Phragmén-Lindelöf type results for transient heat conduction equation with nonlinear boundary conditions. (Chinese. English summary) Zbl 1474.35157 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 5, 1248-1258 (2020). MSC: 35B53 35K05 35K55 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Z. Li}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 5, 1248--1258 (2020; Zbl 1474.35157) OpenURL
Chiang, Yuan-Jen Exponentially harmonic maps, Morse index and Liouville type theorems. (English) Zbl 1473.58013 Eur. J. Math. 6, No. 4, 1388-1402 (2020). Reviewer: Vladimir Balan (Bucureşti) MSC: 58E20 58J35 35J20 PDF BibTeX XML Cite \textit{Y.-J. Chiang}, Eur. J. Math. 6, No. 4, 1388--1402 (2020; Zbl 1473.58013) Full Text: DOI OpenURL
Ivasyshen, S. D.; Ivasyuk, H. P.; Korenyuk, N. I.; Fratavchan, T. M. Liouville-type theorems for solutions to the homogeneous model \(\vec{2b}\)-parabolic boundary-value problem. (Ukrainian. English summary) Zbl 1474.35372 Bukovyn. Mat. Zh. 8, No. 1, 102-109 (2020). MSC: 35K52 35B53 PDF BibTeX XML Cite \textit{S. D. Ivasyshen} et al., Bukovyn. Mat. Zh. 8, No. 1, 102--109 (2020; Zbl 1474.35372) Full Text: DOI OpenURL
Wang, Xinjing Liouville type theorem for fractional Laplacian system. (English) Zbl 1460.35059 Commun. Pure Appl. Anal. 19, No. 11, 5253-5268 (2020). MSC: 35B53 35R11 35J47 35J61 PDF BibTeX XML Cite \textit{X. Wang}, Commun. Pure Appl. Anal. 19, No. 11, 5253--5268 (2020; Zbl 1460.35059) Full Text: DOI OpenURL
Li, Zhouyu; Liu, Pan; Niu, Pengcheng Remarks on Liouville type theorems for the 3D stationary MHD equations. (English) Zbl 1456.35164 Bull. Korean Math. Soc. 57, No. 5, 1151-1164 (2020). MSC: 35Q35 35B65 35B53 76W05 76D05 PDF BibTeX XML Cite \textit{Z. Li} et al., Bull. Korean Math. Soc. 57, No. 5, 1151--1164 (2020; Zbl 1456.35164) Full Text: DOI OpenURL
Rahal, Belgacem Some Liouville theorems for Hénon type equations in half-space with nonlinear boundary value conditions and finite Morse indices. (English) Zbl 1454.35189 Anal. Math. Phys. 10, No. 4, Paper No. 53, 19 p. (2020). MSC: 35J91 35J57 35J66 35B65 PDF BibTeX XML Cite \textit{B. Rahal}, Anal. Math. Phys. 10, No. 4, Paper No. 53, 19 p. (2020; Zbl 1454.35189) Full Text: DOI OpenURL
Zaidi, Cherif Liouville results for fractional elliptic equations with Hardy potential. (English) Zbl 1454.35177 J. Dyn. Differ. Equations 32, No. 4, 1983-1995 (2020). MSC: 35J62 35R11 35J20 PDF BibTeX XML Cite \textit{C. Zaidi}, J. Dyn. Differ. Equations 32, No. 4, 1983--1995 (2020; Zbl 1454.35177) Full Text: DOI OpenURL
Yuan, Baoquan; Xiao, Yamin Liouville-type theorems for the 3D stationary Navier-Stokes, MHD and Hall-MHD equations. (English) Zbl 1450.35091 J. Math. Anal. Appl. 491, No. 2, Article ID 124343, 9 p. (2020). MSC: 35B53 35Q30 35Q35 76W05 PDF BibTeX XML Cite \textit{B. Yuan} and \textit{Y. Xiao}, J. Math. Anal. Appl. 491, No. 2, Article ID 124343, 9 p. (2020; Zbl 1450.35091) Full Text: DOI OpenURL
Duong, Anh Tuan; Phan, Quoc Hung Optimal Liouville-type theorems for a system of parabolic inequalities. (English) Zbl 1445.35097 Commun. Contemp. Math. 22, No. 6, Article ID 1950043, 22 p. (2020). MSC: 35B53 35R45 35K55 35B33 PDF BibTeX XML Cite \textit{A. T. Duong} and \textit{Q. H. Phan}, Commun. Contemp. Math. 22, No. 6, Article ID 1950043, 22 p. (2020; Zbl 1445.35097) Full Text: DOI OpenURL
Wei, Yunfeng; Chen, Caisheng; Chen, Qiang; Yang, Hongwei Liouville-type theorem for nonlinear elliptic equations involving \(Pp\)-Laplace-type Grushin operators. (English) Zbl 1445.35161 Math. Methods Appl. Sci. 43, No. 1, 320-333 (2020). MSC: 35J60 35J70 35B35 35B53 PDF BibTeX XML Cite \textit{Y. Wei} et al., Math. Methods Appl. Sci. 43, No. 1, 320--333 (2020; Zbl 1445.35161) Full Text: DOI OpenURL
Farina, Alberto; Sciunzi, Berardino; Soave, Nicola Monotonicity and rigidity of solutions to some elliptic systems with uniform limits. (English) Zbl 1448.35163 Commun. Contemp. Math. 22, No. 5, Article ID 1950044, 24 p. (2020). Reviewer: Giovanni Anello (Messina) MSC: 35J47 35B08 35B06 35B53 PDF BibTeX XML Cite \textit{A. Farina} et al., Commun. Contemp. Math. 22, No. 5, Article ID 1950044, 24 p. (2020; Zbl 1448.35163) Full Text: DOI arXiv OpenURL
Chae, Dongho; Wolf, Jörg On Liouville type theorem for stationary non-Newtonian fluid equations. (English) Zbl 1442.35296 J. Nonlinear Sci. 30, No. 4, 1503-1517 (2020). MSC: 35Q30 76A05 76D05 76D03 35B53 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Wolf}, J. Nonlinear Sci. 30, No. 4, 1503--1517 (2020; Zbl 1442.35296) Full Text: DOI OpenURL
Dai, Wei; Qin, Guolin Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains. (English) Zbl 1441.35083 J. Differ. Equations 269, No. 9, 7231-7252 (2020). MSC: 35B53 35J30 35J91 PDF BibTeX XML Cite \textit{W. Dai} and \textit{G. Qin}, J. Differ. Equations 269, No. 9, 7231--7252 (2020; Zbl 1441.35083) Full Text: DOI arXiv OpenURL
Filippucci, Roberta; Pucci, Patrizia; Souplet, Philippe A Liouville-type theorem for an elliptic equation with superquadratic growth in the gradient. (English) Zbl 1440.35106 Adv. Nonlinear Stud. 20, No. 2, 245-251 (2020). Reviewer: Giovany Malcher Figueiredo (Brasília) MSC: 35J60 35B53 35B08 35J47 PDF BibTeX XML Cite \textit{R. Filippucci} et al., Adv. Nonlinear Stud. 20, No. 2, 245--251 (2020; Zbl 1440.35106) Full Text: DOI arXiv OpenURL
Baraket, Sami; Bazarbacha, Imen; Chetouane, Rima Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type in some general case adding singular sources. I. (English) Zbl 1436.35148 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111799, 51 p. (2020). MSC: 35J57 35B25 46E35 65M55 PDF BibTeX XML Cite \textit{S. Baraket} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111799, 51 p. (2020; Zbl 1436.35148) Full Text: DOI OpenURL
Baraket, Sami; Bazarbacha, Imen; Chetouane, Rima Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type in some general case adding singular sources. II. (English) Zbl 1436.35182 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111677, 95 p. (2020). MSC: 35J65 35B25 46E35 65M55 PDF BibTeX XML Cite \textit{S. Baraket} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111677, 95 p. (2020; Zbl 1436.35182) Full Text: DOI OpenURL
Filippucci, Roberta; Pucci, Patrizia; Souplet, Philippe A Liouville-type theorem in a half-space and its applications to the gradient blow-up behavior for superquadratic diffusive Hamilton-Jacobi equations. (English) Zbl 1436.35010 Commun. Partial Differ. Equations 45, No. 4, 321-349 (2020). MSC: 35A23 35F21 35B53 35B44 PDF BibTeX XML Cite \textit{R. Filippucci} et al., Commun. Partial Differ. Equations 45, No. 4, 321--349 (2020; Zbl 1436.35010) Full Text: DOI arXiv OpenURL
Phan, Quoc Hung Nonexistence results for a semilinear heat equation with bounded potentials. (English) Zbl 1439.35306 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111667, 15 p. (2020). MSC: 35K91 35A01 35B33 35B53 35K55 PDF BibTeX XML Cite \textit{Q. H. Phan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111667, 15 p. (2020; Zbl 1439.35306) Full Text: DOI OpenURL
Wan, Fangshu Bôcher-type results for the fourth and higher order equations on singular manifolds with conical metrics. (English) Zbl 1439.58012 Commun. Pure Appl. Anal. 19, No. 5, 2919-2948 (2020). Reviewer: Said El Manouni (Berlin) MSC: 58J05 35J70 PDF BibTeX XML Cite \textit{F. Wan}, Commun. Pure Appl. Anal. 19, No. 5, 2919--2948 (2020; Zbl 1439.58012) Full Text: DOI OpenURL
Matomäki, Kaisa; Radziwiłł, Maksym; Tao, Terence Fourier uniformity of bounded multiplicative functions in short intervals on average. (English) Zbl 1459.11186 Invent. Math. 220, No. 1, 1-58 (2020); correction 220, No. 1, 59 (2020). Reviewer: Maciej Radziejewski (Poznań) MSC: 11N37 11B30 11P32 11N05 PDF BibTeX XML Cite \textit{K. Matomäki} et al., Invent. Math. 220, No. 1, 1--58 (2020; Zbl 1459.11186) Full Text: DOI arXiv Link OpenURL
Zhao, Guangwen \(V\)-harmonic morphisms between Riemannian manifolds. (English) Zbl 1432.58013 Proc. Am. Math. Soc. 148, No. 3, 1351-1361 (2020). MSC: 58E20 53C43 32Q60 35B53 PDF BibTeX XML Cite \textit{G. Zhao}, Proc. Am. Math. Soc. 148, No. 3, 1351--1361 (2020; Zbl 1432.58013) Full Text: DOI OpenURL
Baraket, Sami; Sâanouni, Soumaya; Trabelsi, Nihed Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type in some general case. (English) Zbl 1433.35071 Discrete Contin. Dyn. Syst. 40, No. 2, 1013-1063 (2020). MSC: 35J57 35B53 PDF BibTeX XML Cite \textit{S. Baraket} et al., Discrete Contin. Dyn. Syst. 40, No. 2, 1013--1063 (2020; Zbl 1433.35071) Full Text: DOI OpenURL
Asaduzzaman, Md.; Ali, Md. Zulfikar Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. (English) Zbl 1484.47100 AIMS Math. 4, No. 3, 880-895 (2019). MSC: 47H10 34A08 34B18 PDF BibTeX XML Cite \textit{Md. Asaduzzaman} and \textit{Md. Z. Ali}, AIMS Math. 4, No. 3, 880--895 (2019; Zbl 1484.47100) Full Text: DOI OpenURL
Masjed-Jamei, Mohammad A symmetric sequence of trigonometric orthogonal functions. (English) Zbl 1441.34042 Rep. Math. Phys. 83, No. 3, 393-406 (2019). MSC: 34B24 33C45 42C05 PDF BibTeX XML Cite \textit{M. Masjed-Jamei}, Rep. Math. Phys. 83, No. 3, 393--406 (2019; Zbl 1441.34042) Full Text: DOI OpenURL
Nabil, Tamer; Soliman, Ahmed H. A multidimensional fixed-point theorem and applications to Riemann-Liouville fractional differential equations. (English) Zbl 1443.47053 Math. Probl. Eng. 2019, Article ID 3280163, 8 p. (2019). MSC: 47H10 34A08 34A34 PDF BibTeX XML Cite \textit{T. Nabil} and \textit{A. H. Soliman}, Math. Probl. Eng. 2019, Article ID 3280163, 8 p. (2019; Zbl 1443.47053) Full Text: DOI OpenURL
Li, Kui; Zhang, Zhitao A monotonicity theorem and its applications to weighted elliptic equations. (English) Zbl 1428.35064 Sci. China, Math. 62, No. 10, 1925-1934 (2019). MSC: 35B53 35B09 35J60 35A16 PDF BibTeX XML Cite \textit{K. Li} and \textit{Z. Zhang}, Sci. China, Math. 62, No. 10, 1925--1934 (2019; Zbl 1428.35064) Full Text: DOI OpenURL
Ao, Weiwei; Yang, Wen On the classification of solutions of cosmic strings equation. (English) Zbl 1439.35149 Ann. Mat. Pura Appl. (4) 198, No. 6, 2183-2193 (2019). Reviewer: Rodica Luca (Iaşi) MSC: 35J15 35J91 PDF BibTeX XML Cite \textit{W. Ao} and \textit{W. Yang}, Ann. Mat. Pura Appl. (4) 198, No. 6, 2183--2193 (2019; Zbl 1439.35149) Full Text: DOI OpenURL
Zhao, Guangwen A monotonicity formula and a Liouville type theorem of \(V\)-harmonic maps. (English) Zbl 1428.58016 Bull. Korean Math. Soc. 56, No. 5, 1327-1340 (2019). MSC: 58E20 53C43 35B53 53C55 PDF BibTeX XML Cite \textit{G. Zhao}, Bull. Korean Math. Soc. 56, No. 5, 1327--1340 (2019; Zbl 1428.58016) Full Text: DOI OpenURL
Wang, Wendong; Wang, Yuzhao Liouville-type theorems for the stationary MHD equations in 2D. (English) Zbl 1428.35316 Nonlinearity 32, No. 11, 4483-4505 (2019). MSC: 35Q30 76W05 76D05 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Y. Wang}, Nonlinearity 32, No. 11, 4483--4505 (2019; Zbl 1428.35316) Full Text: DOI arXiv Link OpenURL
Duong, Anh Tuan; Lan, Do; Le, Phuong Quynh; Nguyen, Phuong Thao On the nonexistence of stable solutions of sub-elliptic systems with negative exponents. (English) Zbl 1426.35089 Complex Var. Elliptic Equ. 64, No. 12, 2117-2129 (2019). MSC: 35H20 35B53 35J60 35B35 35J70 PDF BibTeX XML Cite \textit{A. T. Duong} et al., Complex Var. Elliptic Equ. 64, No. 12, 2117--2129 (2019; Zbl 1426.35089) Full Text: DOI OpenURL
Brasseur, Julien; Coville, Jérôme; Hamel, François; Valdinoci, Enrico Liouville type results for a nonlocal obstacle problem. (English) Zbl 1475.45017 Proc. Lond. Math. Soc. (3) 119, No. 2, 291-328 (2019). MSC: 45K05 35K57 35R09 35B09 35B53 PDF BibTeX XML Cite \textit{J. Brasseur} et al., Proc. Lond. Math. Soc. (3) 119, No. 2, 291--328 (2019; Zbl 1475.45017) Full Text: DOI arXiv OpenURL
Manjavidze, Nino; Makatsaria, George; Vekua, Tamaz; Akhalaia, George On the generalized Liouville theorem. (English) Zbl 1426.35055 Lindahl, Karl-Olof (ed.) et al., Analysis, probability, applications, and computation. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 117-127 (2019). MSC: 35B53 35J46 PDF BibTeX XML Cite \textit{N. Manjavidze} et al., in: Analysis, probability, applications, and computation. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 117--127 (2019; Zbl 1426.35055) Full Text: DOI OpenURL
Jiang, Qi; Zhang, Fu’e A Liouville-type theorem for complete Finsler manifolds. (English) Zbl 1438.35083 J. Nat. Sci. Heilongjiang Univ. 36, No. 1, 34-38 (2019). MSC: 35B53 53C21 53C60 PDF BibTeX XML Cite \textit{Q. Jiang} and \textit{F. Zhang}, J. Nat. Sci. Heilongjiang Univ. 36, No. 1, 34--38 (2019; Zbl 1438.35083) Full Text: DOI OpenURL
Duong, Anh Tuan On the classification of positive supersolutions of elliptic systems involving the advection terms. (English) Zbl 1425.35026 J. Math. Anal. Appl. 478, No. 2, 1172-1188 (2019). MSC: 35J15 35J47 35J61 35B53 PDF BibTeX XML Cite \textit{A. T. Duong}, J. Math. Anal. Appl. 478, No. 2, 1172--1188 (2019; Zbl 1425.35026) Full Text: DOI OpenURL
Yang, Jianfu; Yu, Xiaohui Liouville type theorems for Hartree and Hartree-Fock equations. (English) Zbl 1418.35163 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 183, 191-213 (2019). MSC: 35J60 35J57 35J15 PDF BibTeX XML Cite \textit{J. Yang} and \textit{X. Yu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 183, 191--213 (2019; Zbl 1418.35163) Full Text: DOI OpenURL
Wei, Yunfeng; Chen, Caisheng; Song, Hongxue; Yang, Hongwei Liouville-type theorems for stable solutions of Kirchhoff equations with exponential and superlinear nonlinearities. (English) Zbl 1419.35044 Complex Var. Elliptic Equ. 64, No. 8, 1297-1309 (2019). MSC: 35J60 35B53 PDF BibTeX XML Cite \textit{Y. Wei} et al., Complex Var. Elliptic Equ. 64, No. 8, 1297--1309 (2019; Zbl 1419.35044) Full Text: DOI OpenURL