×

Boundaries of weak peak points in noncommutative algebras of Lipschitz functions. (English) Zbl 1252.46042

Let \(\mathbb{F}\) be one of the fields \(\mathbb{R}\) of real numbers, \(\mathbb{C}\) of complex numbers or the non-commutative division ring \(\mathbb{H}\) of quaternions, \(X\) a compact Hausdorff space, \(C(X,\mathbb{F})\) the space of all continuous \(\mathbb{F}\)-valued functions on \(X\), \(M(f)=\{x\in X:|f(x)|=\|f\|_\infty\}\), \(\mathcal{A}\subset C(X,\mathbb{F})\) a subalgebra, \(E\subset X\) an \(m\)-set (that is a nonempty set such that \(E=\bigcap_{f\in S}M(f)\)) for some family of functions \(S\subset \mathcal{A}\)), \(\varepsilon^\circ \) the collection of all minimal \(m\)-sets of \(\mathcal{A}\) and \(\delta\mathcal{A}=\bigcup _{E\in \varepsilon^\circ}E\). If all the minimal \(m\)-sets of \(\mathcal{A}\) are singletons, then \(\delta\mathcal{A}\) is a boundary for \(\mathcal{A}\) consisting exactly of weak peak points. It is shown that, if every \(m\)-set of \(\mathcal{A}\subset C(X,\mathbb{F})\) is a singleton, then \(\delta\mathcal{A}\) is contained in every closed boundary of \(\mathcal{A}\) and the intersection of all closed boundaries is a closed boundary. Moreover, sufficient conditions for a point-separating algebra \(\mathcal{A}\subset C(X,\mathbb{F})\) are given that a minimal \(m\)-set is a singleton and a characterization of a class of algebras over \(\mathbb{R}\) of \(\mathbb{F}\)-valued Lipschitz functions is given for which there exists a minimal closed boundary. In addition, a new proof for the statement that an associative, unital normed algebra \(\mathcal{A}\) over \(\mathbb{R}\) is topologically isomorphic to \(\mathbb{R}\) or \(\mathbb{C}\) or \(\mathbb{H}\) if \(\|fg\|=\|f\| \|g\|\) for all \(f,g\in \mathcal{A}\).
Reviewer: Mati Abel (Tartu)

MSC:

46J10 Banach algebras of continuous functions, function algebras
46J20 Ideals, maximal ideals, boundaries
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abel M., Jarosz K., Noncommutative uniform algebras, Studia Math., 2004, 162(3), 213-218 http://dx.doi.org/10.4064/sm162-3-2; · Zbl 1054.46031
[2] Albiac F., Briem E., Representations of real Banach algebras, J. Aust. Math. Soc., 2010, 88(3), 289-300 http://dx.doi.org/10.1017/S144678871000011X; · Zbl 1207.46042
[3] Albiac F., Briem E., Real Banach algebras as C(K) algebras, Q. J. Math. (in press), DOI: 10.1093/qmath/har005; · Zbl 1254.46058
[4] Bear, H.S., The Silov boundary for a linear space of continuous functions, Amer. Math. Monthly, 1961, 68(5), 483-485 http://dx.doi.org/10.2307/2311109; · Zbl 0100.11002
[5] Browder A., Introduction to Function Algebras, Math. Lecture Note Ser., W.A. Benjamin, New York—Amsterdam, 1969; · Zbl 0199.46103
[6] Frobenius F.G., Über lineare Substitutionen und bilineare Formen, J. Reine Angew. Math., 1878, 84, 1-63 http://dx.doi.org/10.1515/crll.1878.84.1; · JFM 09.0085.02
[7] Gamelin T.W., Uniform Algebras, 2nd ed., Chelsea, New York, 1984; · Zbl 0213.40401
[8] Hurwitz A., Über die Composition der quadratischen Formen von beliebig vielen Variablen, Nachrichten von der Kgl. Gesellschaft der Wissenschaften zu Göttingen, 1898, 309-316; · JFM 29.0177.01
[9] Jarosz K., Function representation of a noncommutative uniform algebra, Proc. Amer. Math. Soc., 2008, 136(2), 605-611 http://dx.doi.org/10.1090/S0002-9939-07-09033-8; · Zbl 1136.46035
[10] Jiménez-Vargas A., Luttman A., Villegas-Vallecillos M., Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, Rocky Mountain J. Math., 2010, 40(6), 1903-1922 http://dx.doi.org/10.1216/RMJ-2010-40-6-1903; · Zbl 1220.46033
[11] Kaniuth E., A Course in Commutative Banach Algebras, Grad. Texts in Math., 246, Springer, New York, 2009 http://dx.doi.org/10.1007/978-0-387-72476-8; · Zbl 1190.46001
[12] Kulkarni S.H., Limaye B.V., Real Function Algebras, Monogr. Textbooks Pure Appl. Math., 168, Marcel Dekker, New York, 1992; · Zbl 0781.46036
[13] Lambert S., Luttman A., Generalized strong boundary points and boundaries of families of continuous functions, Mediterr. J. Math. (in press), DOI: 10.1007/s00009-010-0105-5; · Zbl 1269.46033
[14] Rickart C.E., General Theory of Banach Algebras, The University Series in Higher Mathematics, Van Nostrand, Princeton, 1960;
[15] Šilov G., On the extension of maximal ideals, Dokl. Akad. Nauk SSSR, 1940, 29, 83-84 (in Russian); · Zbl 0024.32001
[16] Weaver N., Lipschitz Algebras, World Scientific, River Edge, 1999;
[17] Yates R.B.J., Norm-Preserving Criteria for Uniform Algebra Isomorphisms, PhD thesis, University of Montana, 2009;
[18] Żelazko W., Banach Algebras, Elsevier, Amsterdam-London-New York, 1973; · Zbl 0248.46037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.