×

The convergence analysis of inexact Gauss-Newton methods for nonlinear problems. (English) Zbl 1192.90200

Summary: Inexact Gauss-Newton methods for nonlinear least squares problems are studied. Under the hypothesis that the derivative satisfies some kind of weak Lipschitz condition, the local convergence properties of inexact Gauss-Newton and inexact Gauss-Newton like methods for nonlinear problems are established with a modified relative residual control. The obtained results can provide an estimate of ball of convergence for inexact Gauss-Newton methods.

MSC:

90C30 Nonlinear programming
90C53 Methods of quasi-Newton type

Software:

KELLEY
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, J., Li, W.: Convergence of Gauss–Newton’s method and uniqueness of the solution. Appl. Math. Comput. 170, 686–705 (2005) · Zbl 1084.65058 · doi:10.1016/j.amc.2004.12.055
[2] Chen, J., Li, W.: Convergence behaviour of inexact Newton methods under weak Lipschitz condition. J. Comput. Appl. Math. 191, 143–164 (2006) · Zbl 1092.65043 · doi:10.1016/j.cam.2005.03.076
[3] Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982) · Zbl 0478.65030 · doi:10.1137/0719025
[4] Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983) · Zbl 0579.65058
[5] Deuflhard, P., Heindl, G.: Affine invariant convergence theorem for Newton methods and extension to related methods. SIAM J. Numer. Anal. 16, 1–10 (1979) · Zbl 0395.65028 · doi:10.1137/0716001
[6] Jackson, K.R.: The numerical solution of large systems of stiff IVPs for ODEs. Appl. Numer. Math. 20, 5–20 (1996) · Zbl 0852.65057 · doi:10.1016/0168-9274(95)00114-X
[7] Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon, Oxford (1982) · Zbl 0484.46003
[8] Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics, vol. 16. SIAM, Philadelphia (1995) · Zbl 0832.65046
[9] Li, C., Zhang, W.H., Jin, X.Q.: Convergence and uniqueness properties of Gauss–Newton’s method. Comput. Math. Appl. 47, 1057–1067 (2004) · Zbl 1076.65053 · doi:10.1016/S0898-1221(04)90086-7
[10] Martinez, J.M., Qi, L.: Inexact Newton methods for solving nonsmooth equations. J. Comput. Appl. Math. 60, 127–145 (1995) · Zbl 0833.65045 · doi:10.1016/0377-0427(94)00088-I
[11] Morini, B.: Convergence behaviour of inexact Newton methods. Math. Comput. 68, 1605–1613 (1999) · Zbl 0933.65050 · doi:10.1090/S0025-5718-99-01135-7
[12] Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) · Zbl 0241.65046
[13] Stewart, G.W.: On the continuity of the generalized inverse. SIAM J. Appl. Math. 17, 33–45 (1960) · Zbl 0172.03801 · doi:10.1137/0117004
[14] Wang, X.: The convergence on Newton’s method. Kexue Tongbao (A Special Issue of Mathematics, Physics & Chemistry) 25, 36–37 (1980)
[15] Wang, X.: Convergence of Newton’s method and inverse function in Banach space. Math. Comput. 68, 169–186 (1999) · Zbl 0923.65028 · doi:10.1090/S0025-5718-99-00999-0
[16] Wang, X.: Convergence of Newton’s method and uniqueness of the solution of equations in Banach space. IMA J. Numer. Anal. 20, 123–134 (2000) · Zbl 0942.65057 · doi:10.1093/imanum/20.1.123
[17] Wang, X., Li, C.: Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces II. Acta Math. Sinica Eng. Ser. 18, 405–412 (2003) · Zbl 1027.65078 · doi:10.1007/s10114-002-0238-y
[18] Wedin, P.A.: Perturbation theory for pseudo-inverse. BIT 13, 217–232 (1973) · Zbl 0263.65047 · doi:10.1007/BF01933494
[19] Yamamoto, T.: Historical developments in convergence analysis for Newton’s and Newton-like methods. J. Comput. Appl. Math. 124, 1–23 (2000) · Zbl 0965.65079 · doi:10.1016/S0377-0427(00)00417-9
[20] Ypma, T.J.: Affine invariant convergence for Newton’s methods. BIT 22, 108–118 (1982) · Zbl 0481.65027 · doi:10.1007/BF01934400
[21] Ypma, T.J.: Local convergence of difference Newton-like methods. Math. Comput. 41, 527–536 (1983) · Zbl 0533.65027 · doi:10.1090/S0025-5718-1983-0717700-4
[22] Ypma, T.J.: Local convergence of inexact Newton methods. SIAM J. Numer. Anal. 21, 583–590 (1984) · Zbl 0566.65037 · doi:10.1137/0721040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.