Ogwo, Grace N.; Alakoya, Timilehin O.; Mewomo, Oluwatosin T. Inertial iterative method with self-adaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces. (English) Zbl 07546990 Demonstr. Math. 55, 193-216 (2022). MSC: 47H06 47H09 46N10 PDF BibTeX XML Cite \textit{G. N. Ogwo} et al., Demonstr. Math. 55, 193--216 (2022; Zbl 07546990) Full Text: DOI OpenURL
Ofem, Austine Efut; Igbokwe, Donatus Ikechi Iterative construction of common fixed points of a pair of uniformly \(L\)-Lipschitzian asymptotically generalized \(\Phi\)-hemicontractive mappings in the intermediate sense. (English) Zbl 07546784 Palest. J. Math. 11, No. 1, 664-683 (2022). MSC: 20M99 13F10 13A15 13M05 PDF BibTeX XML Cite \textit{A. E. Ofem} and \textit{D. I. Igbokwe}, Palest. J. Math. 11, No. 1, 664--683 (2022; Zbl 07546784) Full Text: Link OpenURL
Sun, Wenlong; Lu, Gang; Jin, Yuanfeng; Park, Choonkil A unified framework for solving generalized variational inequalities. (English) Zbl 07531409 J. Math. Inequal. 16, No. 1, 189-210 (2022). MSC: 47H06 47H09 49J05 47J25 PDF BibTeX XML Cite \textit{W. Sun} et al., J. Math. Inequal. 16, No. 1, 189--210 (2022; Zbl 07531409) Full Text: DOI OpenURL
Fan, Jingjing; Qin, Xiaolong; Tan, Bing Tseng’s extragradient algorithm for pseudomonotone variational inequalities on Hadamard manifolds. (English) Zbl 07518236 Appl. Anal. 101, No. 6, 2372-2385 (2022). MSC: 47H05 47H09 PDF BibTeX XML Cite \textit{J. Fan} et al., Appl. Anal. 101, No. 6, 2372--2385 (2022; Zbl 07518236) Full Text: DOI OpenURL
Chebel, Zoheir; Boureghda, Abdellatif Common fixed point of the commutative F-contraction self-mappings. (English) Zbl 07489947 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 168, 10 p. (2021). MSC: 47H09 47H10 54H25 PDF BibTeX XML Cite \textit{Z. Chebel} and \textit{A. Boureghda}, Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 168, 10 p. (2021; Zbl 07489947) Full Text: DOI OpenURL
Abkar, Ali; Shahrosvand, Elahe Hybrid steepest descent method for solving the split fixed point problem in Banach spaces. (English) Zbl 07489174 Thai J. Math. 19, No. 4, 1499-1518 (2021). MSC: 47H09 47H10 58C30 PDF BibTeX XML Cite \textit{A. Abkar} and \textit{E. Shahrosvand}, Thai J. Math. 19, No. 4, 1499--1518 (2021; Zbl 07489174) Full Text: Link OpenURL
Bashir, Shahid; Malik, Muhammad Aslam; Husnine, Syed Muhammad On certain reversed mean Lipschitzian mappings in Banach spaces. (English) Zbl 07483528 Numer. Funct. Anal. Optim. 42, No. 13, Part 1, 1539-1554 (2021). MSC: 47-XX 46-XX 90-XX PDF BibTeX XML Cite \textit{S. Bashir} et al., Numer. Funct. Anal. Optim. 42, No. 13, Part 1, 1539--1554 (2021; Zbl 07483528) Full Text: DOI OpenURL
Taiwo, Adeolu; Jolaoso, Lateef Olakunle; Mewomo, Oluwatosin Temitope Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces. (English) Zbl 1482.47130 J. Ind. Manag. Optim. 17, No. 5, 2733-2759 (2021). MSC: 47J25 47H09 47N60 PDF BibTeX XML Cite \textit{A. Taiwo} et al., J. Ind. Manag. Optim. 17, No. 5, 2733--2759 (2021; Zbl 1482.47130) Full Text: DOI OpenURL
Bartl, David; Fabian, Marián Every compact convex subset of matrices is the Clarke Jacobian of some Lipschitzian mapping. (English) Zbl 07393144 Proc. Am. Math. Soc. 149, No. 11, 4771-4779 (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 47J07 47L07 52A10 15A04 PDF BibTeX XML Cite \textit{D. Bartl} and \textit{M. Fabian}, Proc. Am. Math. Soc. 149, No. 11, 4771--4779 (2021; Zbl 07393144) Full Text: DOI OpenURL
Dashputre, Samir; Padmavati; Sakure, Kavita Convergence results for proximal point algorithm in complete \(\mathrm{CAT}(0)\) space for multivalued mappings. (English) Zbl 07383388 J. Indones. Math. Soc. 27, No. 1, 29-47 (2021). MSC: 47H09 47H10 47J25 65K10 PDF BibTeX XML Cite \textit{S. Dashputre} et al., J. Indones. Math. Soc. 27, No. 1, 29--47 (2021; Zbl 07383388) Full Text: DOI OpenURL
Najibufahmi, Muhamad; Zulijanto, Atok Fixed point theorems for asymptotically regular semigroups equipped with generalized Lipschitzian conditions in metric spaces. (English) Zbl 07356813 J. Fixed Point Theory Appl. 23, No. 2, Paper No. 23, 22 p. (2021). MSC: 47H10 47H09 47H20 PDF BibTeX XML Cite \textit{M. Najibufahmi} and \textit{A. Zulijanto}, J. Fixed Point Theory Appl. 23, No. 2, Paper No. 23, 22 p. (2021; Zbl 07356813) Full Text: DOI OpenURL
Rostamian Delavar, M.; Dragomir, S. S.; De La Sen, M. Sharp estimation type inequalities for Lipschitzian mappings in Euclidean sense on a disk. (English) Zbl 1467.26010 J. Funct. Spaces 2021, Article ID 6615626, 10 p. (2021). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{M. Rostamian Delavar} et al., J. Funct. Spaces 2021, Article ID 6615626, 10 p. (2021; Zbl 1467.26010) Full Text: DOI OpenURL
Mordukhovich, Boris S. Bilevel optimization and variational analysis. (English) Zbl 1484.90115 Dempe, Stephan (ed.) et al., Bilevel optimization. Advances and next challenges. Cham: Springer. Springer Optim. Appl. 161, 197-226 (2020). Reviewer: Alfred Göpfert (Leipzig) MSC: 90C30 PDF BibTeX XML Cite \textit{B. S. Mordukhovich}, Springer Optim. Appl. 161, 197--226 (2020; Zbl 1484.90115) Full Text: DOI arXiv OpenURL
Jung, Jong Soo Convergence under some conditions of a general iterative algorithm for continuous pseudocontractive mappings. (English) Zbl 07413418 Linear Nonlinear Anal. 6, No. 3, 371-383 (2020). MSC: 47H09 47H05 47H10 47J25 49M05 47J05 PDF BibTeX XML Cite \textit{J. S. Jung}, Linear Nonlinear Anal. 6, No. 3, 371--383 (2020; Zbl 07413418) Full Text: Link OpenURL
Joshua, Olilima O.; Adesanmi, Mogbademu A.; Adefemi, Adeniran T. Strong convergence theorem for uniformly \(L\)-Lipschitzian mapping of Gregus type in Banach spaces. (English) Zbl 1483.47113 Facta Univ., Ser. Math. Inf. 35, No. 5, 1259-1271 (2020). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{O. O. Joshua} et al., Facta Univ., Ser. Math. Inf. 35, No. 5, 1259--1271 (2020; Zbl 1483.47113) Full Text: DOI OpenURL
Wen, Meng; Hu, Changsong; Tang, Yuchao; Peng, Jigen Convergence of implicit and explicit schemes for a finite family of asymptotically nonexpansive mappings in Banach spaces. (English) Zbl 07346424 J. Nonlinear Convex Anal. 21, No. 9, 2083-2093 (2020). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{M. Wen} et al., J. Nonlinear Convex Anal. 21, No. 9, 2083--2093 (2020; Zbl 07346424) Full Text: Link OpenURL
Gallagher, Torrey M.; Japón, Maria; Lennard, Chris The nonexpansive and mean nonexpansive fixed point properties are equivalent for affine mappings. (English) Zbl 07328284 J. Fixed Point Theory Appl. 22, No. 4, Paper No. 93, 16 p. (2020). Reviewer: Barry Turett (Rochester) MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{T. M. Gallagher} et al., J. Fixed Point Theory Appl. 22, No. 4, Paper No. 93, 16 p. (2020; Zbl 07328284) Full Text: DOI OpenURL
Japón, Maria; Lennard, Chris; Popescu, Roxana A fixed-point characterization of weakly compact sets in \(L_1(\mu)\) spaces. (English) Zbl 1451.46020 J. Math. Anal. Appl. 491, No. 1, Article ID 124228, 9 p. (2020). Reviewer: Barry Turett (Rochester) MSC: 46B25 46A50 47H10 PDF BibTeX XML Cite \textit{M. Japón} et al., J. Math. Anal. Appl. 491, No. 1, Article ID 124228, 9 p. (2020; Zbl 1451.46020) Full Text: DOI OpenURL
Delavar, M. Rostamian; Dragomir, S. S. Hermite-Hadamard’s mid-point type inequalities for generalized fractional integrals. (English) Zbl 1434.26009 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 73, 14 p. (2020). MSC: 26A33 26A51 26D10 26D15 PDF BibTeX XML Cite \textit{M. R. Delavar} and \textit{S. S. Dragomir}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 73, 14 p. (2020; Zbl 1434.26009) Full Text: DOI arXiv OpenURL
Golberg, Anatoly; Salimov, Ruslan Nonlinear Beltrami equation. (English) Zbl 1427.30037 Complex Var. Elliptic Equ. 65, No. 1, 6-21 (2020). MSC: 30C62 35J60 35B65 PDF BibTeX XML Cite \textit{A. Golberg} and \textit{R. Salimov}, Complex Var. Elliptic Equ. 65, No. 1, 6--21 (2020; Zbl 1427.30037) Full Text: DOI OpenURL
Cheng, Qingqing Parallel hybrid viscosity method for fixed point problems, variational inequality problems and split generalized equilibrium problems. (English) Zbl 07459197 J. Inequal. Appl. 2019, Paper No. 169, 25 p. (2019). MSC: 47Hxx 47Jxx 90Cxx PDF BibTeX XML Cite \textit{Q. Cheng}, J. Inequal. Appl. 2019, Paper No. 169, 25 p. (2019; Zbl 07459197) Full Text: DOI OpenURL
Wongyai, Kritsadaphiwat; Thianwan, Tanakit Projection type Ishikawa iteration with perturbations for common fixed points of two nonself generalized asymptotically quasi-nonexpansive mappings. (English) Zbl 1482.47140 Thai J. Math. 17, No. 3, 843-859 (2019). MSC: 47J26 47H09 46B20 PDF BibTeX XML Cite \textit{K. Wongyai} and \textit{T. Thianwan}, Thai J. Math. 17, No. 3, 843--859 (2019; Zbl 1482.47140) Full Text: Link OpenURL
Najibufahmi, Muhamad; Zulijanto, Atok A fixed point theorem for generalized Lipschitzian semigroups in Hilbert spaces. (English) Zbl 1480.47077 Thai J. Math. 17, No. 3, 639-648 (2019). MSC: 47H20 47H09 PDF BibTeX XML Cite \textit{M. Najibufahmi} and \textit{A. Zulijanto}, Thai J. Math. 17, No. 3, 639--648 (2019; Zbl 1480.47077) Full Text: Link OpenURL
Acosta-Portilla, Juan Rafael; De la Cruz-Reyes, Chayan Adelki; Hernández-Linares, Carlos Alberto; Pérez-García, Víctor Lipschitzian mappings under renormings. (English) Zbl 1473.46018 J. Nonlinear Convex Anal. 20, No. 10, 2239-2257 (2019). MSC: 46B20 47H09 PDF BibTeX XML Cite \textit{J. R. Acosta-Portilla} et al., J. Nonlinear Convex Anal. 20, No. 10, 2239--2257 (2019; Zbl 1473.46018) Full Text: Link OpenURL
Premjitpraphan, Sirawit; Kangtunyakarn, Atid The theory of the feasibility problems and fixed point problems of nonlinear mappings. (English) Zbl 07333654 Thai J. Math. 17, No. 2, 389-412 (2019). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{S. Premjitpraphan} and \textit{A. Kangtunyakarn}, Thai J. Math. 17, No. 2, 389--412 (2019; Zbl 07333654) Full Text: Link OpenURL
Suwannaut, Sarawut On solving the equilibrium problem and fixed point problem for nonspreading mappings and Lipschitzian mappings in Hilbert spaces. (English) Zbl 1463.47158 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2018, 103-127 (2019). MSC: 47H09 47J25 90C33 PDF BibTeX XML Cite \textit{S. Suwannaut}, Thai J. Math., 103--127 (2019; Zbl 1463.47158) Full Text: Link OpenURL
Okeke, Godwin Amechi; Olaleru, Johnson O. Fixed points of demicontinuous \(\phi \)-nearly Lipschitzian mappings in Banach spaces. (English) Zbl 1446.47015 Thai J. Math. 17, No. 1, 141-154 (2019). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{G. A. Okeke} and \textit{J. O. Olaleru}, Thai J. Math. 17, No. 1, 141--154 (2019; Zbl 1446.47015) Full Text: Link OpenURL
Olatinwo, Memudu Olaposi Some coupled fixed point theorems in convex metric spaces. (English) Zbl 1449.54087 Jñānābha 49, No. 1, 40-49 (2019). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{M. O. Olatinwo}, Jñānābha 49, No. 1, 40--49 (2019; Zbl 1449.54087) Full Text: Link OpenURL
Jung, Jong Soo Strong convergence of general iterative algorithms for pseudocontractive mappings in spaces. (English) Zbl 07121632 Nonlinear Funct. Anal. Appl. 24, No. 2, 389-406 (2019). MSC: 47H06 47H09 47H10 47J25 49M05 47J05 PDF BibTeX XML Cite \textit{J. S. Jung}, Nonlinear Funct. Anal. Appl. 24, No. 2, 389--406 (2019; Zbl 07121632) OpenURL
Ceng, Lu-Chuan; Wen, Ching-Feng Systems of variational inequalities with hierarchical variational inequality constraints for asymptotically nonexpansive and pseudocontractive mappings. (English) Zbl 1420.49010 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2431-2447 (2019). MSC: 49J40 47H09 47J20 PDF BibTeX XML Cite \textit{L.-C. Ceng} and \textit{C.-F. Wen}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 3, 2431--2447 (2019; Zbl 1420.49010) Full Text: DOI OpenURL
Jim, Uko Sunday Hybrid iteration method for fixed points of asymptotically \(\phi\)-demicontractive maps in real Hilbert spaces. (English) Zbl 1483.65084 Palest. J. Math. 8, No. 2, 182-190 (2019). MSC: 65J15 47J25 47H09 47H10 PDF BibTeX XML Cite \textit{U. S. Jim}, Palest. J. Math. 8, No. 2, 182--190 (2019; Zbl 1483.65084) Full Text: Link OpenURL
Bachar, M.; Kozlowski, W. M.; Bounkhel, M. Common fixed points of monotone Lipschitzian semigroups in hyperbolic metric spaces. (English) Zbl 1451.54009 J. Nonlinear Convex Anal. 19, No. 6, 987-994 (2018). MSC: 54H25 54E40 47H20 PDF BibTeX XML Cite \textit{M. Bachar} et al., J. Nonlinear Convex Anal. 19, No. 6, 987--994 (2018; Zbl 1451.54009) Full Text: Link OpenURL
Mogbademu, Adesanmi Alao Fixed points of nearly weak uniformly \(L\)-Lipschitzian mappings in real Banach spaces. (English) Zbl 1463.47212 Creat. Math. Inform. 27, No. 1, 63-70 (2018). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{A. A. Mogbademu}, Creat. Math. Inform. 27, No. 1, 63--70 (2018; Zbl 1463.47212) OpenURL
Bachar, M.; Khamsi, Mohamed A.; Kozlowski, W. M.; Bounkhel, M. Common fixed points of monotone Lipschitzian semigroups in Banach spaces. (English) Zbl 1438.47095 J. Nonlinear Sci. Appl. 11, No. 1, 73-79 (2018). MSC: 47H20 47H10 47H09 47H05 PDF BibTeX XML Cite \textit{M. Bachar} et al., J. Nonlinear Sci. Appl. 11, No. 1, 73--79 (2018; Zbl 1438.47095) Full Text: DOI OpenURL
Domínguez Benavides, Tomás; Japón, Maria A. Komlós’ theorem and the fixed point property for affine mappings. (English) Zbl 06963440 Proc. Am. Math. Soc. 146, No. 12, 5311-5322 (2018). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{T. Domínguez Benavides} and \textit{M. A. Japón}, Proc. Am. Math. Soc. 146, No. 12, 5311--5322 (2018; Zbl 06963440) Full Text: DOI arXiv OpenURL
Najibufahmi, Muhamad; Zulijanto, Atok Common fixed points of asymptotically regular semigroups equipped with generalized Lipschitzian conditions. (English) Zbl 1462.47039 Fixed Point Theory 19, No. 2, 681-706 (2018). MSC: 47H20 47H10 47H09 PDF BibTeX XML Cite \textit{M. Najibufahmi} and \textit{A. Zulijanto}, Fixed Point Theory 19, No. 2, 681--706 (2018; Zbl 1462.47039) Full Text: DOI Link OpenURL
Shukri, Sami Atif; Berinde, Vasile; Khan, Abdul Rahim Fixed points of discontinuous mappings in uniformly convex metric spaces. (English) Zbl 1401.54035 Fixed Point Theory 19, No. 1, 397-406 (2018). Reviewer: Bhavana Deshpande (Ratlam) MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. A. Shukri} et al., Fixed Point Theory 19, No. 1, 397--406 (2018; Zbl 1401.54035) Full Text: DOI OpenURL
Alfuraidan, M. R.; Khamsi, M. A.; Manav, N. A fixed point theorem for uniformly Lipschitzian mappings in modular vector spaces. (English) Zbl 1482.47095 Filomat 31, No. 17, 5435-5444 (2017). MSC: 47H10 47H09 PDF BibTeX XML Cite \textit{M. R. Alfuraidan} et al., Filomat 31, No. 17, 5435--5444 (2017; Zbl 1482.47095) Full Text: DOI OpenURL
Japón, Maria A. Fixed-point characterizations of weak compactness for closed convex subsets of \(c\). (English) Zbl 1470.46028 J. Nonlinear Convex Anal. 18, No. 2, 241-249 (2017). MSC: 46B20 47H09 PDF BibTeX XML Cite \textit{M. A. Japón}, J. Nonlinear Convex Anal. 18, No. 2, 241--249 (2017; Zbl 1470.46028) Full Text: Link OpenURL
Casini, Emanuele; Piasecki, Łukasz The minimal displacement and optimal retraction problems in some Banach spaces. (English) Zbl 1470.46022 J. Nonlinear Convex Anal. 18, No. 1, 61-71 (2017). MSC: 46B20 47H09 PDF BibTeX XML Cite \textit{E. Casini} and \textit{Ł. Piasecki}, J. Nonlinear Convex Anal. 18, No. 1, 61--71 (2017; Zbl 1470.46022) Full Text: Link OpenURL
Alfuraidan, M. R.; Bachar, M.; Khamsi, M. A. Fixed points of monotone asymptotically nonexpansive mappings in modular function spaces. (English) Zbl 1474.47100 J. Nonlinear Convex Anal. 18, No. 4, 565-573 (2017). MSC: 47H10 47H09 47J26 46A80 PDF BibTeX XML Cite \textit{M. R. Alfuraidan} et al., J. Nonlinear Convex Anal. 18, No. 4, 565--573 (2017; Zbl 1474.47100) Full Text: Link OpenURL
Uderzo, Amos On a set-covering property of multivalued mappings. (English) Zbl 1474.49040 Pure Appl. Funct. Anal. 2, No. 1, 129-151 (2017). MSC: 49J53 47H04 49K27 90C48 PDF BibTeX XML Cite \textit{A. Uderzo}, Pure Appl. Funct. Anal. 2, No. 1, 129--151 (2017; Zbl 1474.49040) Full Text: arXiv Link OpenURL
Jung, Jong Soo Strong convergence of some iterative algorithms for a general system of variational inequalities. (English) Zbl 1412.47206 J. Nonlinear Sci. Appl. 10, No. 7, 3887-3902 (2017). MSC: 47J25 47H05 47H09 47J20 PDF BibTeX XML Cite \textit{J. S. Jung}, J. Nonlinear Sci. Appl. 10, No. 7, 3887--3902 (2017; Zbl 1412.47206) Full Text: DOI OpenURL
Jung, Jong Soo Modified hybrid iterative methods for generalized mixed equilibrium, variational inequality and fixed point problems. (English) Zbl 1412.49022 J. Nonlinear Sci. Appl. 10, No. 7, 3732-3754 (2017). MSC: 49J30 49J40 47H09 47H10 47J20 47J25 47J05 49M05 PDF BibTeX XML Cite \textit{J. S. Jung}, J. Nonlinear Sci. Appl. 10, No. 7, 3732--3754 (2017; Zbl 1412.49022) Full Text: DOI OpenURL
Sarikaya, M. Z.; Budak, H.; Erden, S.; Qayyum, A. A generalized and refined perturbed version of Ostrowski type inequalities. (English) Zbl 1378.26019 Int. J. Anal. Appl. 13, No. 1, 70-81 (2017). MSC: 26D15 26D07 26D10 PDF BibTeX XML Cite \textit{M. Z. Sarikaya} et al., Int. J. Anal. Appl. 13, No. 1, 70--81 (2017; Zbl 1378.26019) Full Text: Link OpenURL
Gopinath, S.; Gnanaraj, J.; Lalithambigai, S. Strong convergence for hybrid implicit \(S\)-iteration scheme of nonexpansive and asymptotically demicontractive mappings. (English) Zbl 06808224 Int. J. Funct. Anal. Oper. Theory Appl. 9, No. 1, 1-15 (2017). MSC: 47H09 47H10 47H17 PDF BibTeX XML Cite \textit{S. Gopinath} et al., Int. J. Funct. Anal. Oper. Theory Appl. 9, No. 1, 1--15 (2017; Zbl 06808224) Full Text: DOI OpenURL
Alfuraidan, M. R.; Khamsi, M. A. Fibonacci-Mann iteration for monotone asymptotically nonexpansive mappings. (English) Zbl 06792047 Bull. Aust. Math. Soc. 96, No. 2, 307-316 (2017). MSC: 47H09 46B20 47H10 PDF BibTeX XML Cite \textit{M. R. Alfuraidan} and \textit{M. A. Khamsi}, Bull. Aust. Math. Soc. 96, No. 2, 307--316 (2017; Zbl 06792047) Full Text: DOI OpenURL
Adamo, Alessandro; Grossi, Giuliano; Lanzarotti, Raffaella; Lin, Jianyi Sparse decomposition by iterating Lipschitzian-type mappings. (English) Zbl 1361.65013 Theor. Comput. Sci. 664, 12-28 (2017). MSC: 65F10 65F50 90C27 PDF BibTeX XML Cite \textit{A. Adamo} et al., Theor. Comput. Sci. 664, 12--28 (2017; Zbl 1361.65013) Full Text: DOI OpenURL
Lawan, M. S.; Ali, Bashir; Harbau, M. H.; Ugwunnadi, G. U. Approximation of common fixed points for finite families of Bregman quasi-total asymptotically nonexpansive mappings. (English) Zbl 1479.47087 J. Niger. Math. Soc. 35, No. 2, 282-302 (2016). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{M. S. Lawan} et al., J. Niger. Math. Soc. 35, No. 2, 282--302 (2016; Zbl 1479.47087) Full Text: Link OpenURL
Mogbademu, Adesanmi Alao Strong convergence results for nonlinear mappings in real Banach spaces. (English) Zbl 1389.47162 Creat. Math. Inform. 25, No. 1, 85-92 (2016). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{A. A. Mogbademu}, Creat. Math. Inform. 25, No. 1, 85--92 (2016; Zbl 1389.47162) OpenURL
Haddadi, M. R. Asymptotic center by a sequence of mappings. (English) Zbl 1370.47051 Bull. TICMI 20, No. 2, 37-43 (2016). Reviewer: Jarosław Górnicki (Rzeszów) MSC: 47H10 46B20 47H09 PDF BibTeX XML Cite \textit{M. R. Haddadi}, Bull. TICMI 20, No. 2, 37--43 (2016; Zbl 1370.47051) OpenURL
Sahu, D. R.; Ansari, Q. H.; Yao, J. C. Convergence of inexact Mann iterations generated by nearly nonexpansive sequences and applications. (English) Zbl 1367.47071 Numer. Funct. Anal. Optim. 37, No. 10, 1312-1338 (2016). MSC: 47J25 47H09 47H06 PDF BibTeX XML Cite \textit{D. R. Sahu} et al., Numer. Funct. Anal. Optim. 37, No. 10, 1312--1338 (2016; Zbl 1367.47071) Full Text: DOI OpenURL
Górnicki, Jarosław Fixed point theorems for multi-valued uniformly Lipschitzian mappings in Banach and metric spaces. (English) Zbl 1439.47037 J. Nonlinear Convex Anal. 17, No. 12, 2455-2467 (2016). MSC: 47H10 47H04 47H09 54H25 54C60 54E40 PDF BibTeX XML Cite \textit{J. Górnicki}, J. Nonlinear Convex Anal. 17, No. 12, 2455--2467 (2016; Zbl 1439.47037) Full Text: Link OpenURL
Fukhar-ud-din, Hafiz; Nieto, Juan J.; Khan, Abdul Rahim Common fixed point iterations of non-Lipschitzian mappings in a convex metric space. (English) Zbl 1351.47047 Mediterr. J. Math. 13, No. 4, 2061-2071 (2016). MSC: 47J25 47H09 54H25 54E40 PDF BibTeX XML Cite \textit{H. Fukhar-ud-din} et al., Mediterr. J. Math. 13, No. 4, 2061--2071 (2016; Zbl 1351.47047) Full Text: DOI OpenURL
Atsathi, Thikamporn; Cholamjiak, Prasit; Kesornprom, Suparat; Prasong, Autchara S-iteration process for asymptotic pointwise nonexpansive mappings in complete hyperbolic metric spaces. (English) Zbl 1350.47041 Commun. Korean Math. Soc. 31, No. 3, 575-583 (2016). MSC: 47J25 54H25 54E40 54E50 47H09 PDF BibTeX XML Cite \textit{T. Atsathi} et al., Commun. Korean Math. Soc. 31, No. 3, 575--583 (2016; Zbl 1350.47041) Full Text: DOI Link OpenURL
Jung, Jong Soo Iterative algorithms based on the hybrid steepest descent method for the split feasibility problem. (English) Zbl 1350.47047 J. Nonlinear Sci. Appl. 9, No. 6, 4214-4225 (2016). MSC: 47J25 47J20 47J05 47H09 47H10 47H05 PDF BibTeX XML Cite \textit{J. S. Jung}, J. Nonlinear Sci. Appl. 9, No. 6, 4214--4225 (2016; Zbl 1350.47047) Full Text: DOI Link OpenURL
Domínguez-Benavides, T.; Japón, M. Compactness and the fixed point property in \(\ell_{1}\). (English) Zbl 1348.54049 J. Math. Anal. Appl. 444, No. 1, 69-79 (2016). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{T. Domínguez-Benavides} and \textit{M. Japón}, J. Math. Anal. Appl. 444, No. 1, 69--79 (2016; Zbl 1348.54049) Full Text: DOI OpenURL
Wiśnicki, Andrzej; Wośko, Jacek Uniformly Lipschitzian group actions on hyperconvex spaces. (English) Zbl 1347.47034 Proc. Am. Math. Soc. 144, No. 9, 3813-3824 (2016). MSC: 47H20 54H25 37C25 47H09 PDF BibTeX XML Cite \textit{A. Wiśnicki} and \textit{J. Wośko}, Proc. Am. Math. Soc. 144, No. 9, 3813--3824 (2016; Zbl 1347.47034) Full Text: DOI arXiv OpenURL
Pérez García, Víctor; Piasecki, Łukasz From mean Lipschitzian mappings to a generalized moving averages in Banach spaces. (English) Zbl 1349.47083 J. Nonlinear Convex Anal. 17, No. 3, 589-597 (2016). MSC: 47H09 40A05 54E40 PDF BibTeX XML Cite \textit{V. Pérez García} and \textit{Ł. Piasecki}, J. Nonlinear Convex Anal. 17, No. 3, 589--597 (2016; Zbl 1349.47083) Full Text: Link OpenURL
Khemeratchatakumthorn, Tammatada; Termwuttipong, Imchit Fixed points of continuous rotative mappings on the real line. (English) Zbl 1380.47042 J. Nonlinear Convex Anal. 17, No. 3, 473-482 (2016). Reviewer: Hüseyin Çakallı (Istanbul) MSC: 47H10 47H09 26A16 PDF BibTeX XML Cite \textit{T. Khemeratchatakumthorn} and \textit{I. Termwuttipong}, J. Nonlinear Convex Anal. 17, No. 3, 473--482 (2016; Zbl 1380.47042) Full Text: Link OpenURL
Dragomir, Sever S. Integral inequalities for Lipschitzian mappings between two Banach spaces and applications. (English) Zbl 1354.46018 Kodai Math. J. 39, No. 1, 227-251 (2016). MSC: 46B20 26D15 47H99 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Kodai Math. J. 39, No. 1, 227--251 (2016; Zbl 1354.46018) Full Text: DOI Euclid OpenURL
Pupka, Krzysztof Rotative firmly Lipschitzian mappings in Banach spaces. (English) Zbl 1341.47068 Fixed Point Theory 17, No. 1, 123-140 (2016). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{K. Pupka}, Fixed Point Theory 17, No. 1, 123--140 (2016; Zbl 1341.47068) Full Text: Link OpenURL
Jeong, Jae Ug Convergence theorems of common elements for pseudocontractive mappings and monotone mappings. (English) Zbl 1439.47048 Abstr. Appl. Anal. 2015, Article ID 383579, 9 p. (2015). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{J. U. Jeong}, Abstr. Appl. Anal. 2015, Article ID 383579, 9 p. (2015; Zbl 1439.47048) Full Text: DOI OpenURL
Thakur, Balwant Singh; Dewangan, Rajshree; Khan, Mohammad Saeed Strong convergence of two finite families of asymptotically pseudocontractive mappings. (English) Zbl 1389.47167 Ann. Univ. Buchar., Math. Ser. 6(64), No. 2, 263-281 (2015). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{B. S. Thakur} et al., Ann. Univ. Buchar., Math. Ser. 6(64), No. 2, 263--281 (2015; Zbl 1389.47167) OpenURL
Mogbademu, Adesanmi Alao A convergence theorem of multi-step iterative scheme for nonlinear maps. (English) Zbl 1466.47055 Publ. Inst. Math., Nouv. Sér. 98(112), 281-285 (2015). MSC: 47J26 47H05 47H09 PDF BibTeX XML Cite \textit{A. A. Mogbademu}, Publ. Inst. Math., Nouv. Sér. 98(112), 281--285 (2015; Zbl 1466.47055) Full Text: DOI EMIS OpenURL
Chistyakov, Vyacheslav V. Modular Lipschitzian and contractive maps. (English) Zbl 06735167 Migdalas, Athanasios (ed.) et al., Optimization, control, and applications in the information age. In honor of Panos M. Pardalos’s 60th birthday. Selected papers based on the presentations at the conference, Chalkidiki, Greece, June 15–20, 2014. Cham: Springer. Springer Proc. Math. Stat. 130, 1-15 (2015). MSC: 47H09 46A80 47H10 PDF BibTeX XML Cite \textit{V. V. Chistyakov}, Springer Proc. Math. Stat. 130, 1--15 (2015; Zbl 06735167) Full Text: DOI OpenURL
Aghajani, Asadollah; Tehrani, Alireza Mosleh Some results on uniformly Lipschitzian mappings in metric spaces and applications. (English) Zbl 1348.54038 TWMS J. Pure Appl. Math. 6, No. 2, 194-201 (2015). MSC: 54H25 54E40 45B05 PDF BibTeX XML Cite \textit{A. Aghajani} and \textit{A. M. Tehrani}, TWMS J. Pure Appl. Math. 6, No. 2, 194--201 (2015; Zbl 1348.54038) Full Text: Link OpenURL
Panyanak, Bancha On an open problem of Kyung Soo Kim. (English) Zbl 1477.47073 Fixed Point Theory Appl. 2015, Paper No. 186, 12 p. (2015). MSC: 47J25 47H09 54H25 49J53 PDF BibTeX XML Cite \textit{B. Panyanak}, Fixed Point Theory Appl. 2015, Paper No. 186, 12 p. (2015; Zbl 1477.47073) Full Text: DOI OpenURL
Udo-utun, Xavier A.; Siddiqui, Zakawat U.; Balla, Mohammed Y. An extension of the contraction mapping principle to Lipschitzian mappings. (English) Zbl 1477.47045 Fixed Point Theory Appl. 2015, Paper No. 162, 7 p. (2015). MSC: 47H09 47H10 54H25 54E40 PDF BibTeX XML Cite \textit{X. A. Udo-utun} et al., Fixed Point Theory Appl. 2015, Paper No. 162, 7 p. (2015; Zbl 1477.47045) Full Text: DOI OpenURL
Alfuraidan, Monther Rashed On monotone pointwise contractions in Banach spaces with a graph. (English) Zbl 1482.47091 Fixed Point Theory Appl. 2015, Paper No. 139, 10 p. (2015). MSC: 47H07 47H10 54H25 54E40 PDF BibTeX XML Cite \textit{M. R. Alfuraidan}, Fixed Point Theory Appl. 2015, Paper No. 139, 10 p. (2015; Zbl 1482.47091) Full Text: DOI OpenURL
Bin Dehaish, Buthinah A.; Khamsi, Mohamed A.; Kozlowski, Wojciech M. On the convergence of iteration processes for semigroups of nonlinear mappings in modular function spaces. (English) Zbl 1346.47024 Fixed Point Theory Appl. 2015, Paper No. 3, 18 p. (2015). MSC: 47H20 47H09 47H10 PDF BibTeX XML Cite \textit{B. A. Bin Dehaish} et al., Fixed Point Theory Appl. 2015, Paper No. 3, 18 p. (2015; Zbl 1346.47024) Full Text: DOI OpenURL
Mogbademu, Adesanmi Alao Convergence of multi-step iterative sequence for nonlinear uniformly \(L\)-Lipschitzian mappings. (English) Zbl 1338.47103 Konuralp J. Math. 3, No. 2, 89-99 (2015). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{A. A. Mogbademu}, Konuralp J. Math. 3, No. 2, 89--99 (2015; Zbl 1338.47103) Full Text: Link OpenURL
Jung, Jong Soo Iterative methods for generalized mixed equilibrium problems, fixed point problems and minimization problems. (English) Zbl 1329.47069 J. Nonlinear Convex Anal. 16, No. 9, 1881-1898 (2015). MSC: 47J25 47H05 47H06 47H09 47H10 47J05 49M05 PDF BibTeX XML Cite \textit{J. S. Jung}, J. Nonlinear Convex Anal. 16, No. 9, 1881--1898 (2015; Zbl 1329.47069) Full Text: Link OpenURL
Kirk, W. A.; Shahzad, Naseer Uniformly Lipschitzian mappings in \(\mathbb{R}\)-trees. (English) Zbl 1329.05067 J. Nonlinear Convex Anal. 16, No. 8, 1699-1705 (2015). MSC: 05C05 54H25 05C85 PDF BibTeX XML Cite \textit{W. A. Kirk} and \textit{N. Shahzad}, J. Nonlinear Convex Anal. 16, No. 8, 1699--1705 (2015; Zbl 1329.05067) Full Text: Link OpenURL
Jachymski, Jacek Remetrization theorems for finite families of mappings and hyperbolic iterated function systems. (English) Zbl 1352.54019 Reich, Simeon (ed.) et al., Infinite products of operators and their applications. A research workshop of the Israel Science Foundation, Haifa, Israel, May 21–24, 2012. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-1480-1/pbk; 978-1-4704-2275-2/ebook). Contemporary Mathematics 636. Israel Mathematical Conference Proceedings, 131-139 (2015). Reviewer: Andrzej Sołtysiak (Poznań) MSC: 54E40 47A35 46A32 54E50 47H09 PDF BibTeX XML Cite \textit{J. Jachymski}, Contemp. Math. 636, 131--139 (2015; Zbl 1352.54019) OpenURL
Bin Dehaish, Buthinah A.; Khamsi, Mohamed A. Approximating common fixed points of semigroups in metric spaces. (English) Zbl 1310.47090 Fixed Point Theory Appl. 2015, Paper No. 51, 12 p. (2015). MSC: 47J25 47J20 47H09 54H25 PDF BibTeX XML Cite \textit{B. A. Bin Dehaish} and \textit{M. A. Khamsi}, Fixed Point Theory Appl. 2015, Paper No. 51, 12 p. (2015; Zbl 1310.47090) Full Text: DOI OpenURL
Berinde, Vasile; Khan, Abdul Rahim; Fukhar-ud-din, Hafiz Fixed point iterative methods defined as admissible perturbations of generalized pseudocontractive operators. (English) Zbl 1311.47086 J. Nonlinear Convex Anal. 16, No. 3, 563-572 (2015). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{V. Berinde} et al., J. Nonlinear Convex Anal. 16, No. 3, 563--572 (2015; Zbl 1311.47086) Full Text: Link OpenURL
He, Zhenhua; Du, Wei-Shih On split common solution problems: new nonlinear feasible algorithms, strong convergence results and their applications. (English) Zbl 1467.47031 Fixed Point Theory Appl. 2014, Paper No. 219, 16 p. (2014). MSC: 47J25 47H09 47H06 65K10 PDF BibTeX XML Cite \textit{Z. He} and \textit{W.-S. Du}, Fixed Point Theory Appl. 2014, Paper No. 219, 16 p. (2014; Zbl 1467.47031) Full Text: DOI OpenURL
Kiziltunc, Hukmi; Purtas, Yunus On weak and strong convergence of an explicit iteration process for a total asymptotically quasi-\(I\)-nonexpansive mapping in Banach space. (English) Zbl 1466.47036 Filomat 28, No. 8, 1699-1710 (2014). MSC: 47H09 46B20 47J26 PDF BibTeX XML Cite \textit{H. Kiziltunc} and \textit{Y. Purtas}, Filomat 28, No. 8, 1699--1710 (2014; Zbl 1466.47036) Full Text: DOI OpenURL
Olisama, V. O.; Mogbademu, A. A.; Olaleru, J. O. Convergence of a modified multi-step iterative scheme for \(p\)-nearly uniformly L-Lipschitzian asymptotically pseudocontrative mappings. (English) Zbl 1399.47175 Int. J. Anal. Appl. 4, No. 2, 192-200 (2014). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{V. O. Olisama} et al., Int. J. Anal. Appl. 4, No. 2, 192--200 (2014; Zbl 1399.47175) Full Text: Link OpenURL
Yang, Liping; Peng, Shiguo Convergence and stability of modified Ishikawa iteration sequence with errors. (English) Zbl 1345.47057 Fixed Point Theory Appl. 2014, Paper No. 224, 9 p. (2014). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{L. Yang} and \textit{S. Peng}, Fixed Point Theory Appl. 2014, Paper No. 224, 9 p. (2014; Zbl 1345.47057) Full Text: DOI OpenURL
Jung, Jong Soo A general composite iterative method for strictly pseudocontractive mappings in Hilbert spaces. (English) Zbl 1345.47041 Fixed Point Theory Appl. 2014, Paper No. 173, 21 p. (2014). MSC: 47J25 47H09 47H05 PDF BibTeX XML Cite \textit{J. S. Jung}, Fixed Point Theory Appl. 2014, Paper No. 173, 21 p. (2014; Zbl 1345.47041) Full Text: DOI OpenURL
Udo-utun, Xavier On inclusion of \(F\)-contractions in \((\delta, k)\)-weak contractions. (English) Zbl 1477.47053 Fixed Point Theory Appl. 2014, Paper No. 65, 6 p. (2014). MSC: 47H10 47H09 PDF BibTeX XML Cite \textit{X. Udo-utun}, Fixed Point Theory Appl. 2014, Paper No. 65, 6 p. (2014; Zbl 1477.47053) Full Text: DOI OpenURL
Wen, Meng; Hu, Changsong; Peng, Jigen A general composite iterative algorithm for an infinite family of strictly pseudo-contractive mappings in \(q\)-uniformly smooth and strictly convex Banach spaces. (Chinese. English summary) Zbl 1324.47125 Chin. Ann. Math., Ser. A 35, No. 4, 485-500 (2014). MSC: 47J25 47H09 47H10 PDF BibTeX XML Cite \textit{M. Wen} et al., Chin. Ann. Math., Ser. A 35, No. 4, 485--500 (2014; Zbl 1324.47125) OpenURL
Mogbademu, Adesanmi Alao On the convergence of modified Noor iteration method for nearly Lipschitzian mappings in arbitrary real Banach spaces. (English) Zbl 1312.47084 Transylv. J. Math. Mech. 6, No. 1, 45-51 (2014). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{A. A. Mogbademu}, Transylv. J. Math. Mech. 6, No. 1, 45--51 (2014; Zbl 1312.47084) OpenURL
Piasecki, Łukasz Renormings of \(c_{0}\) and the minimal displacement problem. (English) Zbl 1317.46009 Ann. Univ. Mariae Curie-Skłodowska, Sect. A 68, No. 2, 85-91 (2014). Reviewer: Mihai Turinici (Iaşi) MSC: 46B03 47H09 46B25 PDF BibTeX XML Cite \textit{Ł. Piasecki}, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 68, No. 2, 85--91 (2014; Zbl 1317.46009) Full Text: DOI OpenURL
Kim, Jong Kyu; Sahu, D. R. Convergence theorems of Ishikawa iteration process for a finite family of nearly asymptotically nonexpansive mappings in Banach spaces. (English) Zbl 1322.47065 Panam. Math. J. 24, No. 3, 48-74 (2014). Reviewer: Vasile Berinde (Baia Mare) MSC: 47J25 47H09 47H10 PDF BibTeX XML Cite \textit{J. K. Kim} and \textit{D. R. Sahu}, Panam. Math. J. 24, No. 3, 48--74 (2014; Zbl 1322.47065) OpenURL
Wen, Meng; Hu, Changsong; Peng, Jigen Common fixed points of strict pseudocontractions by iterative algorithms in Hilbert spaces. (English) Zbl 1311.47100 Nonlinear Funct. Anal. Appl. 19, No. 4, 585-599 (2014). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{M. Wen} et al., Nonlinear Funct. Anal. Appl. 19, No. 4, 585--599 (2014; Zbl 1311.47100) OpenURL
Bolibok, Krzysztof The minimal displacement problem in subspaces of the space of continuous functions of finite codimension. (English) Zbl 1322.47050 Stud. Math. 225, No. 3, 193-201 (2014). Reviewer: T. D. Narang (Amritsar) MSC: 47H09 47H10 46B20 PDF BibTeX XML Cite \textit{K. Bolibok}, Stud. Math. 225, No. 3, 193--201 (2014; Zbl 1322.47050) Full Text: DOI OpenURL
Saddeek, A. M. A strong convergence theorem for a modified Krasnoselskii iteration method and its application to seepage theory in Hilbert spaces. (English) Zbl 1366.47028 J. Egypt. Math. Soc. 22, No. 3, 476-480 (2014). MSC: 47J25 47H06 47N50 76S05 PDF BibTeX XML Cite \textit{A. M. Saddeek}, J. Egypt. Math. Soc. 22, No. 3, 476--480 (2014; Zbl 1366.47028) Full Text: DOI OpenURL
Mogbademu, Adesanmi Alao Convergence theorem of modified Noor iteration for nonlinear maps in Banach spaces. (English) Zbl 1368.47073 J. Adv. Math. Stud. 7, No. 1, 56-64 (2014). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{A. A. Mogbademu}, J. Adv. Math. Stud. 7, No. 1, 56--64 (2014; Zbl 1368.47073) OpenURL
Chaoha, P.; Songsa-Ard, S. Fixed points of functionally Lipschitzian maps. (English) Zbl 1295.47054 J. Nonlinear Convex Anal. 15, No. 4, 665-679 (2014). Reviewer: Gabriela Petruşel (Cluj-Napoca) MSC: 47H09 47H10 47H99 PDF BibTeX XML Cite \textit{P. Chaoha} and \textit{S. Songsa-Ard}, J. Nonlinear Convex Anal. 15, No. 4, 665--679 (2014; Zbl 1295.47054) Full Text: Link OpenURL
Piri, H.; Kumam, P.; Sitthithakerngkiet, K. Approximating fixed points for Lipschitzian semigroup and infinite family of nonexpansive mappings with the Meir-Keeler type contraction in Banach spaces. (English) Zbl 1460.47042 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 2, 201-229 (2014). MSC: 47J26 47H09 47H20 PDF BibTeX XML Cite \textit{H. Piri} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 2, 201--229 (2014; Zbl 1460.47042) Full Text: Link OpenURL
Jachymski, Jacek Remetrization theorems for infinite families of nonlinear mappings, and generalized joint spectral radius. (English) Zbl 1294.47072 J. Nonlinear Convex Anal. 15, No. 2, 399-409 (2014). Reviewer: In-Sook Kim (Suwon) MSC: 47H09 47A35 54E40 46A32 PDF BibTeX XML Cite \textit{J. Jachymski}, J. Nonlinear Convex Anal. 15, No. 2, 399--409 (2014; Zbl 1294.47072) Full Text: Link OpenURL
Mogbademu, Adesanmi Alao On the convergence of modified Noor iteration for nearly Lipschitzian maps in real Banach spaces. (English) Zbl 1447.47056 Casp. J. Math. Sci. 2, No. 2, 95-104 (2013). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{A. A. Mogbademu}, Casp. J. Math. Sci. 2, No. 2, 95--104 (2013; Zbl 1447.47056) Full Text: Link OpenURL
Yildirim, Isa; Khan, Safeer Hussain; Ozdemir, Murat Some fixed point results for uniformly quasi-Lipschitzian mappings in convex metric spaces. (English) Zbl 1398.65114 J. Nonlinear Anal. Optim. 4, No. 2, 143-148 (2013). MSC: 65J15 54H25 54E40 PDF BibTeX XML Cite \textit{I. Yildirim} et al., J. Nonlinear Anal. Optim. 4, No. 2, 143--148 (2013; Zbl 1398.65114) Full Text: Link OpenURL
Sharma, Anupam; Imdad, M.; Thakur, Balwant Singh Convergence of modified Ishikawa’s iteration process for asymptotically pseudocontractive mappings. (English) Zbl 1352.47031 Funct. Anal. Approx. Comput. 5, No. 1, 21-31 (2013). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{A. Sharma} et al., Funct. Anal. Approx. Comput. 5, No. 1, 21--31 (2013; Zbl 1352.47031) Full Text: Link OpenURL
Mogbademu, Adesanmi Alao A note on: “Multi-step approximation schemes for the fixed points of finite family of asymptotically pseudocontractive mappings”. (English) Zbl 1399.47174 Int. J. Anal. Appl. 1, No. 2, 106-112 (2013). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{A. A. Mogbademu}, Int. J. Anal. Appl. 1, No. 2, 106--112 (2013; Zbl 1399.47174) Full Text: Link OpenURL
Sunthrayuth, Pongsakorn; Kumam, Poom Viscosity approximation methods based on generalized contraction mappings for a countable family of strict pseudo-contractions, a general system of variational inequalities and a generalized mixed equilibrium problem in Banach spaces. (English) Zbl 1327.47057 Math. Comput. Modelling 58, No. 11-12, 1814-1828 (2013). MSC: 47J15 49J40 47H09 PDF BibTeX XML Cite \textit{P. Sunthrayuth} and \textit{P. Kumam}, Math. Comput. Modelling 58, No. 11--12, 1814--1828 (2013; Zbl 1327.47057) Full Text: DOI OpenURL
Kumam, Poom; Plubtieng, Somyot; Katchang, Phayap Viscosity approximation to a common solution of variational inequality problems and fixed point problems for Lipschitzian semigroup in Banach spaces. (English) Zbl 1295.47083 Math. Sci., Springer 7, Paper No. 28, 11 p. (2013). MSC: 47J25 47H09 47H20 47J20 PDF BibTeX XML Cite \textit{P. Kumam} et al., Math. Sci., Springer 7, Paper No. 28, 11 p. (2013; Zbl 1295.47083) Full Text: DOI OpenURL