Uhlmann, Gunther; Zhai, Jian Inverse problems for nonlinear hyperbolic equations. (English) Zbl 07314172 Discrete Contin. Dyn. Syst. 41, No. 1, 455-469 (2021). MSC: 35R30 35A27 35L70 PDF BibTeX XML Cite \textit{G. Uhlmann} and \textit{J. Zhai}, Discrete Contin. Dyn. Syst. 41, No. 1, 455--469 (2021; Zbl 07314172) Full Text: DOI
Özgür, Cihan On isoparametric linear Weingarten hypersurfaces in Riemannian and Lorentzian space forms. (English) Zbl 07315989 Van der Veken, Joeri (ed.) et al., Geometry of submanifolds. AMS special session in honor of Bang-Yen Chen’s 75th birthday, University of Michigan, Ann Arbor, Michigan, October 20–21, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5092-2/pbk; 978-1-4704-5666-5/ebook). Contemporary Mathematics 756, 207-218 (2020). MSC: 53C42 53B25 53B30 53C30 PDF BibTeX XML Cite \textit{C. Özgür}, Contemp. Math. 756, 207--218 (2020; Zbl 07315989) Full Text: DOI
Yildirim, Abdullah Slant curve in Lorentzian BCV spaces. (English) Zbl 07309228 J. Geom. Symmetry Phys. 56, 67-85 (2020). MSC: 53D15 53A55 53C25 53B30 PDF BibTeX XML Cite \textit{A. Yildirim}, J. Geom. Symmetry Phys. 56, 67--85 (2020; Zbl 07309228) Full Text: DOI Euclid
Lee, Ji-Eun On slant curves in Sasakian Lorentzian 3-manifolds. (English) Zbl 07304407 Int. Electron. J. Geom. 13, No. 2, 108-115 (2020). MSC: 53C25 PDF BibTeX XML Cite \textit{J.-E. Lee}, Int. Electron. J. Geom. 13, No. 2, 108--115 (2020; Zbl 07304407) Full Text: DOI
Boucetta, Mohamed; Tibssirte, Oumaima On Einstein Lorentzian nilpotent Lie groups. (English) Zbl 07299912 J. Pure Appl. Algebra 224, No. 12, Article ID 106443, 21 p. (2020). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 22E25 53C25 53C50 PDF BibTeX XML Cite \textit{M. Boucetta} and \textit{O. Tibssirte}, J. Pure Appl. Algebra 224, No. 12, Article ID 106443, 21 p. (2020; Zbl 07299912) Full Text: DOI
Chaubey, Sudhakar K.; Suh, Young Jin; De, Uday Chand Characterizations of the Lorentzian manifolds admitting a type of semi-symmetric metric connection. (English) Zbl 1453.53024 Anal. Math. Phys. 10, No. 4, Paper No. 61, 14 p. (2020). Reviewer: Anthony D. Osborne (Keele) MSC: 53B30 53B50 53C15 PDF BibTeX XML Cite \textit{S. K. Chaubey} et al., Anal. Math. Phys. 10, No. 4, Paper No. 61, 14 p. (2020; Zbl 1453.53024) Full Text: DOI
Castrillón López, Marco; Gadea, P. M.; Rosado María, María Eugenia Lorentzian symmetric spaces which are Einstein-Yang-Mills with respect to invariant metric connections. (English) Zbl 07271436 Result. Math. 75, No. 4, Paper No. 143, 27 p. (2020). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C35 53C30 53C50 70S15 PDF BibTeX XML Cite \textit{M. Castrillón López} et al., Result. Math. 75, No. 4, Paper No. 143, 27 p. (2020; Zbl 07271436) Full Text: DOI
McCann, Robert J. Displacement convexity of Boltzmann’s entropy characterizes the strong energy condition from general relativity. (English) Zbl 07270298 Camb. J. Math. 8, No. 3, 609-681 (2020). Reviewer: Anthony D. Osborne (Keele) MSC: 53C50 49J52 58Z05 82C35 83C99 PDF BibTeX XML Cite \textit{R. J. McCann}, Camb. J. Math. 8, No. 3, 609--681 (2020; Zbl 07270298) Full Text: DOI
Murcia, Ángel; Shahbazi, C. S. Contact metric three manifolds and Lorentzian geometry with torsion in six-dimensional supergravity. (English) Zbl 1451.53094 J. Geom. Phys. 158, Article ID 103868, 37 p. (2020). Reviewer: Andreas Arvanitoyeorgos (Patras) MSC: 53C50 53C25 53D10 83E50 53C15 PDF BibTeX XML Cite \textit{Á. Murcia} and \textit{C. S. Shahbazi}, J. Geom. Phys. 158, Article ID 103868, 37 p. (2020; Zbl 1451.53094) Full Text: DOI
Barletta, Elisabetta; Dragomir, Sorin Robinson-Sparling construction of CR structures associated to shearfree null geodesic congruences. (English) Zbl 1453.32043 Riv. Mat. Univ. Parma (N.S.) 11, No. 1, 9-68 (2020). MSC: 32V20 32V30 53C50 53D10 53Z05 PDF BibTeX XML Cite \textit{E. Barletta} and \textit{S. Dragomir}, Riv. Mat. Univ. Parma (N.S.) 11, No. 1, 9--68 (2020; Zbl 1453.32043) Full Text: Link
Barman, Ajit On Lorentzian \(\alpha \)-Sasakian manifolds admitting a type of semi-symmetric non-metric connection. (English) Zbl 07261015 Palest. J. Math. 9, No. 2, 848-857 (2020). MSC: 53B30 53C15 53C25 PDF BibTeX XML Cite \textit{A. Barman}, Palest. J. Math. 9, No. 2, 848--857 (2020; Zbl 07261015) Full Text: Link
Mondal, Ashis Some curves on three dimensional Lorentzian trans-Sasakian manifolds. (English) Zbl 1451.53058 Palest. J. Math. 9, No. 2, 841-847 (2020). MSC: 53C25 53C22 PDF BibTeX XML Cite \textit{A. Mondal}, Palest. J. Math. 9, No. 2, 841--847 (2020; Zbl 1451.53058) Full Text: Link
Karmanova, M. B. The area of graphs on arbitrary Carnot groups with sub-Lorentzian structure. (English. Russian original) Zbl 1451.53048 Sib. Math. J. 61, No. 4, 648-670 (2020); translation from Sib. Mat. Zh. 61, No. 4, 823-848 (2020). Reviewer: Scott Zimmerman (Marion) MSC: 53C17 53C50 53C30 PDF BibTeX XML Cite \textit{M. B. Karmanova}, Sib. Math. J. 61, No. 4, 648--670 (2020; Zbl 1451.53048); translation from Sib. Mat. Zh. 61, No. 4, 823--848 (2020) Full Text: DOI
Sarkar, Avijit; Ghosh, Sujoy Submanifolds of generalized Lorentzian Sasakian space forms. (English) Zbl 1447.53053 J. Adv. Math. Stud. 13, No. 1, 42-50 (2020). MSC: 53C40 53C50 53C25 53D15 PDF BibTeX XML Cite \textit{A. Sarkar} and \textit{S. Ghosh}, J. Adv. Math. Stud. 13, No. 1, 42--50 (2020; Zbl 1447.53053)
Ai, Wanjun; Zhu, Miaomiao Regularity for Dirac-harmonic maps into certain pseudo-Riemannian manifolds. (English) Zbl 1450.58005 J. Funct. Anal. 279, No. 7, Article ID 108633, 27 p. (2020). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 53C27 53C50 35J60 35B65 PDF BibTeX XML Cite \textit{W. Ai} and \textit{M. Zhu}, J. Funct. Anal. 279, No. 7, Article ID 108633, 27 p. (2020; Zbl 1450.58005) Full Text: DOI
Chakraborty, Subenoy Gravitational waves: the mathematical background. (English) Zbl 1453.83006 Roy, Priti Kumar (ed.) et al., Mathematical analysis and applications in modeling. Selected papers presented at the international conference, ICMAAM 2018, Kolkata, India, January 9–12, 2018. Singapore: Springer. Springer Proc. Math. Stat. 302, 449-457 (2020). MSC: 83C35 83C05 83C30 83-10 53C50 35Q76 PDF BibTeX XML Cite \textit{S. Chakraborty}, Springer Proc. Math. Stat. 302, 449--457 (2020; Zbl 1453.83006) Full Text: DOI
Akamine, Shintaro; Honda, Atsufumi; Umehara, Masaaki; Yamada, Kotaro Null hypersurfaces in Lorentzian manifolds with the null energy condition. (English) Zbl 1443.53034 J. Geom. Phys. 155, Article ID 103751, 5 p. (2020). MSC: 53C40 53B30 53C50 PDF BibTeX XML Cite \textit{S. Akamine} et al., J. Geom. Phys. 155, Article ID 103751, 5 p. (2020; Zbl 1443.53034) Full Text: DOI
Frances, Charles Lorentz dynamics on closed 3-manifolds. (Dynamique lorentzienne sur LES variétés compactes de dimension 3.) (English. French summary) Zbl 1450.53064 Ann. Henri Lebesgue 3, 407-471 (2020). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C50 53C23 PDF BibTeX XML Cite \textit{C. Frances}, Ann. Henri Lebesgue 3, 407--471 (2020; Zbl 1450.53064) Full Text: DOI
Capoferri, Matteo; Dappiaggi, Claudio; Drago, Nicolò Global wave parametrices on globally hyperbolic spacetimes. (English) Zbl 1443.83005 J. Math. Anal. Appl. 490, No. 2, Article ID 124316, 25 p. (2020). MSC: 83C05 83C47 35L05 58J40 58Z05 53Z05 81T20 PDF BibTeX XML Cite \textit{M. Capoferri} et al., J. Math. Anal. Appl. 490, No. 2, Article ID 124316, 25 p. (2020; Zbl 1443.83005) Full Text: DOI
Lassas, Matti; Oksanen, Lauri; Stefanov, Plamen; Uhlmann, Gunther The light ray transform on Lorentzian manifolds. (English) Zbl 1452.44006 Commun. Math. Phys. 377, No. 2, 1349-1379 (2020). MSC: 44A15 58J40 53C50 PDF BibTeX XML Cite \textit{M. Lassas} et al., Commun. Math. Phys. 377, No. 2, 1349--1379 (2020; Zbl 1452.44006) Full Text: DOI
Merker, Joël; Nurowski, Paweł New explicit Lorentzian Einstein-Weyl structures in 3-dimensions. (English) Zbl 1442.83009 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 056, 16 p. (2020). MSC: 83C15 53C25 83C80 53C10 53A55 34A26 34C14 58A15 PDF BibTeX XML Cite \textit{J. Merker} and \textit{P. Nurowski}, SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 056, 16 p. (2020; Zbl 1442.83009) Full Text: DOI
Nagase, Masayoshi; Ohyama, Toki Canonical Lorentzian spin structure and twistor spinors on the Fefferman space of a contact Riemannian manifold. (English) Zbl 1441.53057 Differ. Geom. Appl. 71, Article ID 101634, 14 p. (2020). MSC: 53C50 53C27 53C28 PDF BibTeX XML Cite \textit{M. Nagase} and \textit{T. Ohyama}, Differ. Geom. Appl. 71, Article ID 101634, 14 p. (2020; Zbl 1441.53057) Full Text: DOI
Bavard, Christophe; Mounoud, Pierre Maximal extensions and classification of Lorentzian tori with a Killing field. (Extensions maximales et classification des tores Lorentziens munis d’un champ de Killing.) (French. English summary) Zbl 1445.53051 Ann. Inst. Fourier 70, No. 1, 67-168 (2020). Reviewer: Zdeněk Dušek (České Budějovice) MSC: 53C50 PDF BibTeX XML Cite \textit{C. Bavard} and \textit{P. Mounoud}, Ann. Inst. Fourier 70, No. 1, 67--168 (2020; Zbl 1445.53051) Full Text: DOI
Karmanova, Maria B. Two-step sub-Lorentzian structures and graph surfaces. (English. Russian original) Zbl 1440.53038 Izv. Math. 84, No. 1, 52-94 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 1, 60-104 (2020). MSC: 53C17 53C50 PDF BibTeX XML Cite \textit{M. B. Karmanova}, Izv. Math. 84, No. 1, 52--94 (2020; Zbl 1440.53038); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 1, 60--104 (2020) Full Text: DOI
Aquino, Cícero P.; Baltazar, Halyson I.; de Lima, Henrique F. New Calabi-Bernstein type results in Lorentzian product spaces with density. (English) Zbl 1440.53069 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111855, 9 p. (2020). MSC: 53C42 53A07 35P15 53C50 PDF BibTeX XML Cite \textit{C. P. Aquino} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111855, 9 p. (2020; Zbl 1440.53069) Full Text: DOI
Hassani, M.; Ahmadi, P. Cohomogeneity one actions on the three-dimensional Einstein universe. (English) Zbl 1446.57028 Geom. Dedicata 206, 105-150 (2020). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 57S25 37C85 57M60 22E70 PDF BibTeX XML Cite \textit{M. Hassani} and \textit{P. Ahmadi}, Geom. Dedicata 206, 105--150 (2020; Zbl 1446.57028) Full Text: DOI
Ishikawa, Goo Recognition problem of frontal singularities. (English) Zbl 1442.57011 J. Singul. 21, 149-166 (2020). Reviewer: Aleksandr G. Aleksandrov (Moskva) MSC: 57R45 58K50 53A07 53D12 53C50 PDF BibTeX XML Cite \textit{G. Ishikawa}, J. Singul. 21, 149--166 (2020; Zbl 1442.57011) Full Text: DOI
Li, Guanghan; Ma, Kuicheng The mean curvature type flow in Lorentzian warped product. (English) Zbl 1439.53081 Math. Phys. Anal. Geom. 23, No. 2, Paper No. 15, 15 p. (2020). MSC: 53E10 53C50 PDF BibTeX XML Cite \textit{G. Li} and \textit{K. Ma}, Math. Phys. Anal. Geom. 23, No. 2, Paper No. 15, 15 p. (2020; Zbl 1439.53081) Full Text: DOI
Belarbi, Lakehal On the symmetries of the \(Sol_3\) Lie group. (English) Zbl 1439.53067 J. Korean Math. Soc. 57, No. 2, 523-537 (2020). MSC: 53C50 53C30 PDF BibTeX XML Cite \textit{L. Belarbi}, J. Korean Math. Soc. 57, No. 2, 523--537 (2020; Zbl 1439.53067) Full Text: DOI
Cunha, Antonio W.; De Lima, Eudes L.; De Lima, Henrique F. \(r\)-almost Newton-Ricci solitons immersed in a Lorentzian manifold: examples, nonexistence and rigidity. (English) Zbl 1437.53033 Kodai Math. J. 43, No. 1, 42-56 (2020). MSC: 53C25 53C50 53C24 PDF BibTeX XML Cite \textit{A. W. Cunha} et al., Kodai Math. J. 43, No. 1, 42--56 (2020; Zbl 1437.53033) Full Text: DOI Euclid
Wang, Qian An intrinsic hyperboloid approach for Einstein Klein-Gordon equations. (English) Zbl 1444.53043 J. Differ. Geom. 115, No. 1, 27-109 (2020). Reviewer: Gabriel Eduard Vilcu (Ploieşti) MSC: 53C50 83C05 PDF BibTeX XML Cite \textit{Q. Wang}, J. Differ. Geom. 115, No. 1, 27--109 (2020; Zbl 1444.53043) Full Text: DOI Euclid
Honda, Atsufumi; Saji, Kentaro; Teramoto, Keisuke Mixed type surfaces with bounded Gaussian curvature in three-dimensional Lorentzian manifolds. (English) Zbl 1435.53014 Adv. Math. 365, Article ID 107036, 46 p. (2020). MSC: 53B25 58K05 53A35 35M10 PDF BibTeX XML Cite \textit{A. Honda} et al., Adv. Math. 365, Article ID 107036, 46 p. (2020; Zbl 1435.53014) Full Text: DOI
Han, Xiaoli; Liu, Lei; Zhao, Liang A global weak solution to the Lorentzian harmonic map flow. (English) Zbl 1434.53068 Sci. China, Math. 63, No. 1, 155-166 (2020). MSC: 53C43 58E20 53C50 PDF BibTeX XML Cite \textit{X. Han} et al., Sci. China, Math. 63, No. 1, 155--166 (2020; Zbl 1434.53068) Full Text: DOI
Aazami, Amir Babak; Maschler, Gideon Canonical Kähler metrics on classes of Lorentzian 4-manifolds. (English) Zbl 1443.53041 Ann. Global Anal. Geom. 57, No. 1, 175-204 (2020). Reviewer: Marcos Origlia (Kortrijk) MSC: 53C55 53C50 32Q20 PDF BibTeX XML Cite \textit{A. B. Aazami} and \textit{G. Maschler}, Ann. Global Anal. Geom. 57, No. 1, 175--204 (2020; Zbl 1443.53041) Full Text: DOI
Cai, Qihui Geodesics in the Engel group with a sub-Lorentzian metric – the space-like case. (English) Zbl 1432.53046 Chin. Ann. Math., Ser. B 41, No. 1, 147-162 (2020). MSC: 53C17 53C50 58E10 PDF BibTeX XML Cite \textit{Q. Cai}, Chin. Ann. Math., Ser. B 41, No. 1, 147--162 (2020; Zbl 1432.53046) Full Text: DOI
An, Zhongshan Elliptic boundary value problems for the stationary vacuum spacetimes. (English) Zbl 1431.58009 Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 31, 40 p. (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 58J32 58J05 83C05 53Z05 PDF BibTeX XML Cite \textit{Z. An}, Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 31, 40 p. (2020; Zbl 1431.58009) Full Text: DOI arXiv
Chaubey, S. K.; De, Uday Chand Lorentzian para-Sasakian manifolds admitting a new type of quarter-symmetric non-metric \(\xi \)-connection. (English) Zbl 07304382 Int. Electron. J. Geom. 12, No. 2, 250-259 (2019). MSC: 53B05 53C15 53B30 53C25 PDF BibTeX XML Cite \textit{S. K. Chaubey} and \textit{U. C. De}, Int. Electron. J. Geom. 12, No. 2, 250--259 (2019; Zbl 07304382) Full Text: DOI
Minguzzi, E. Lorentzian causality theory. (English) Zbl 1442.83021 Living Rev. Relativ. 22, Paper No. 3, 202 p. (2019). MSC: 83C75 53C50 83C57 PDF BibTeX XML Cite \textit{E. Minguzzi}, Living Rev. Relativ. 22, Paper No. 3, 202 p. (2019; Zbl 1442.83021) Full Text: DOI
Han, Hyelim; Kim, Hobum; Shin, An Sook Timelike Killing vector fields on a timelike or lightlike complete Lorentzian manifold. (English) Zbl 1441.53056 Rep. Math. Phys. 84, No. 1, 69-73 (2019). MSC: 53C50 53B30 53Z05 PDF BibTeX XML Cite \textit{H. Han} et al., Rep. Math. Phys. 84, No. 1, 69--73 (2019; Zbl 1441.53056) Full Text: DOI
Miao, Jiajing; Liu, Haiming \(\phi \)-pseudo sphere Gauss maps of Lorentzian hypersurfaces in anti de Sitter space. (Chinese. English summary) Zbl 1449.53015 Math. Pract. Theory 49, No. 16, 315-320 (2019). MSC: 53B30 53C50 53B25 53C40 PDF BibTeX XML Cite \textit{J. Miao} and \textit{H. Liu}, Math. Pract. Theory 49, No. 16, 315--320 (2019; Zbl 1449.53015)
Aledo, Juan A.; Rubio, Rafael M.; Salamanca, Juan J. Space-like hypersurfaces with functionally bounded mean curvature in Lorentzian warped products and generalized Calabi-Bernstein-type problems. (English) Zbl 1439.53060 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 4, 849-868 (2019). MSC: 53C42 35J60 53C50 PDF BibTeX XML Cite \textit{J. A. Aledo} et al., Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 4, 849--868 (2019; Zbl 1439.53060) Full Text: DOI
Lee, Soo-Young Some metric on Einstein Lorentzian warped product manifolds. (English) Zbl 1436.53047 Korean J. Math. 27, No. 4, 1133-1147 (2019). MSC: 53C50 53C25 58E10 PDF BibTeX XML Cite \textit{S.-Y. Lee}, Korean J. Math. 27, No. 4, 1133--1147 (2019; Zbl 1436.53047) Full Text: DOI
Chaubey, Sudhakar Kr; De, Uday Chand Characterization of the Lorentzian para-Sasakian manifolds admitting a quarter-symmetric non-metric connection. (English) Zbl 1442.53033 SUT J. Math. 55, No. 1, 53-67 (2019). MSC: 53C25 53C15 PDF BibTeX XML Cite \textit{S. K. Chaubey} and \textit{U. C. De}, SUT J. Math. 55, No. 1, 53--67 (2019; Zbl 1442.53033)
Aazami, Amir Babak; Maschler, Gideon Kähler metrics via Lorentzian geometry in dimension four. (English) Zbl 07170237 Complex Manifolds 7, 36-61 (2020). MSC: 53B30 53C55 PDF BibTeX XML Cite \textit{A. B. Aazami} and \textit{G. Maschler}, Complex Manifolds 7, 36--61 (2019; Zbl 07170237) Full Text: DOI
Siddiqi, Mohd Danish \(\eta\)-Ricci solitons in \(\delta\)-Lorentzian trans Sasakian manifolds with a semi-symmetric metric connection. (English) Zbl 1433.53047 Kyungpook Math. J. 59, No. 3, 537-562 (2019). MSC: 53C15 53C20 53C25 53E20 PDF BibTeX XML Cite \textit{M. D. Siddiqi}, Kyungpook Math. J. 59, No. 3, 537--562 (2019; Zbl 1433.53047) Full Text: DOI
Somashekhara, P.; Venkatesha; Kumar, R. T. Naveen The pseudo-quasi-conformal curvature tensor on \((LCS)_n\)-manifolds. (English) Zbl 1433.53050 JP J. Geom. Topol. 22, No. 1, 13-28 (2019). MSC: 53C15 53C20 53C25 PDF BibTeX XML Cite \textit{P. Somashekhara} et al., JP J. Geom. Topol. 22, No. 1, 13--28 (2019; Zbl 1433.53050) Full Text: DOI
Ssekajja, Samuel A characterization of minimal ascreen null hypersurfaces of (LCS)-space forms. (English) Zbl 1432.53067 N. Z. J. Math. 49, 15-29 (2019). MSC: 53C25 53C40 53C50 PDF BibTeX XML Cite \textit{S. Ssekajja}, N. Z. J. Math. 49, 15--29 (2019; Zbl 1432.53067) Full Text: Link
Kar, Debabrata; Majhi, Pradip Eta-Ricci solitons on LP-Sasakian manifolds. (English) Zbl 1431.53027 Rev. Unión Mat. Argent. 60, No. 2, 391-405 (2019). MSC: 53C15 53C25 PDF BibTeX XML Cite \textit{D. Kar} and \textit{P. Majhi}, Rev. Unión Mat. Argent. 60, No. 2, 391--405 (2019; Zbl 1431.53027)
De, Uday Chand; Dey, Chiranjib Lorentzian manifolds: a characterization with semiconformal curvature tensor. (English) Zbl 1427.53023 Commun. Korean Math. Soc. 34, No. 3, 911-920 (2019). MSC: 53B30 53C25 53C50 53C80 PDF BibTeX XML Cite \textit{U. C. De} and \textit{C. Dey}, Commun. Korean Math. Soc. 34, No. 3, 911--920 (2019; Zbl 1427.53023) Full Text: DOI
Kumar, Sushil; Prasad, Rajendra; Singh, Punit Kumar Conformal semi-slant submersions from Lorentzian para Sasakian manifolds. (English) Zbl 1442.53022 Commun. Korean Math. Soc. 34, No. 2, 637-655 (2019). Reviewer: Włodzimierz Jelonek (Kraków) MSC: 53C15 53C42 53C50 PDF BibTeX XML Cite \textit{S. Kumar} et al., Commun. Korean Math. Soc. 34, No. 2, 637--655 (2019; Zbl 1442.53022) Full Text: DOI
Mantica, Carlo Alberto; Molinari, Luca Guido A note on concircular structure space-times. (English) Zbl 1426.53034 Commun. Korean Math. Soc. 34, No. 2, 633-635 (2019). MSC: 53B30 53C25 PDF BibTeX XML Cite \textit{C. A. Mantica} and \textit{L. G. Molinari}, Commun. Korean Math. Soc. 34, No. 2, 633--635 (2019; Zbl 1426.53034) Full Text: DOI arXiv
Grochowski, Marek Connections on bundles of horizontal frames associated with contact sub-pseudo-Riemannian manifolds. (English) Zbl 1427.53039 J. Geom. Phys. 146, Article ID 103518, 13 p. (2019). MSC: 53C17 53D10 53B30 PDF BibTeX XML Cite \textit{M. Grochowski}, J. Geom. Phys. 146, Article ID 103518, 13 p. (2019; Zbl 1427.53039) Full Text: DOI
Bär, Christian; Strohmaier, Alexander An index theorem for Lorentzian manifolds with compact spacelike Cauchy boundary. (English) Zbl 1429.83004 Am. J. Math. 141, No. 5, 1421-1455 (2019). MSC: 83C05 83C60 53C50 58J20 58J45 PDF BibTeX XML Cite \textit{C. Bär} and \textit{A. Strohmaier}, Am. J. Math. 141, No. 5, 1421--1455 (2019; Zbl 1429.83004) Full Text: DOI
Wang, Yiran; Zhou, Ting Inverse problems for quadratic derivative nonlinear wave equations. (English) Zbl 1439.35572 Commun. Partial Differ. Equations 44, No. 11, 1140-1158 (2019). MSC: 35R30 35L71 58J45 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{T. Zhou}, Commun. Partial Differ. Equations 44, No. 11, 1140--1158 (2019; Zbl 1439.35572) Full Text: DOI arXiv
Gutiérrez, Manuel; Olea, Benjamín Lower bound of null injectivity radius without curvature assumptions in a family of null cones. (English) Zbl 1428.53079 Ann. Global Anal. Geom. 56, No. 3, 507-518 (2019). Reviewer: Gabriel Eduard Vilcu (Ploieşti) MSC: 53C50 53C22 PDF BibTeX XML Cite \textit{M. Gutiérrez} and \textit{B. Olea}, Ann. Global Anal. Geom. 56, No. 3, 507--518 (2019; Zbl 1428.53079) Full Text: DOI
Han, Xiaoli; Jost, Jürgen; Liu, Lei; Zhao, Liang Global existence of the harmonic map heat flow into Lorentzian manifolds. (English. French summary) Zbl 1431.53067 J. Math. Pures Appl. (9) 130, 130-156 (2019). Reviewer: Mehmet Akif Akyol (Bingöl) MSC: 53C43 53C50 58E20 PDF BibTeX XML Cite \textit{X. Han} et al., J. Math. Pures Appl. (9) 130, 130--156 (2019; Zbl 1431.53067) Full Text: DOI
de la Fuente, Daniel; Palomo, Francisco J.; Romero, Alfonso On non-degenerate null normal sections of codimension two spacelike surfaces. (English) Zbl 1421.53059 Bull. Malays. Math. Sci. Soc. (2) 42, No. 4, 1451-1467 (2019). MSC: 53C42 53C24 53C50 PDF BibTeX XML Cite \textit{D. de la Fuente} et al., Bull. Malays. Math. Sci. Soc. (2) 42, No. 4, 1451--1467 (2019; Zbl 1421.53059) Full Text: DOI
Zhang, Bo; Chen, Zhiqi; Deng, Shaoqiang Pseudo-Riemannian weakly symmetric manifolds of low dimension. (English) Zbl 07088818 Czech. Math. J. 69, No. 3, 811-835 (2019). MSC: 53C30 22E46 PDF BibTeX XML Cite \textit{B. Zhang} et al., Czech. Math. J. 69, No. 3, 811--835 (2019; Zbl 07088818) Full Text: DOI
Karmanova, M. B. Area of graph surfaces on Carnot groups with sub-Lorentzian structure. (English. Russian original) Zbl 1419.53035 Dokl. Math. 99, No. 2, 145-148 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 485, No. 2, 145-148 (2019). MSC: 53C17 53C30 53B30 PDF BibTeX XML Cite \textit{M. B. Karmanova}, Dokl. Math. 99, No. 2, 145--148 (2019; Zbl 1419.53035); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 485, No. 2, 145--148 (2019) Full Text: DOI
Hu, Shichang; Wang, Zhigang; Tang, Xiaoqing Tubular surfaces of center curves on spacelike surfaces in Lorentz-Minkowski 3-space. (English) Zbl 1422.53010 Math. Methods Appl. Sci. 42, No. 9, 3136-3166 (2019). Reviewer: Hans-Peter Schröcker (Innsbruck) MSC: 53A35 58C25 58K99 53B30 PDF BibTeX XML Cite \textit{S. Hu} et al., Math. Methods Appl. Sci. 42, No. 9, 3136--3166 (2019; Zbl 1422.53010) Full Text: DOI
Chen, Qiyu; Tamburelli, Andrea Constant mean curvature foliation of globally hyperbolic \((2 + 1)\)-spacetimes with particles. (English) Zbl 1432.53090 Geom. Dedicata 201, 281-315 (2019). Reviewer: Pedro Lauridsen Ribeiro (Santo André) MSC: 53C50 53C42 53C80 83C05 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{A. Tamburelli}, Geom. Dedicata 201, 281--315 (2019; Zbl 1432.53090) Full Text: DOI arXiv
Massamba, Fortuné; Ssekajja, Samuel Some integrations on null hypersurfaces in Lorentzian manifolds. (English) Zbl 1427.53072 Bull. Korean Math. Soc. 56, No. 1, 229-243 (2019). Reviewer: John Urbas (Canberra) MSC: 53C40 53C50 53C12 PDF BibTeX XML Cite \textit{F. Massamba} and \textit{S. Ssekajja}, Bull. Korean Math. Soc. 56, No. 1, 229--243 (2019; Zbl 1427.53072) Full Text: DOI
Alarcón, Eva M.; Alías, Luis J.; dos Santos, Fábio R. A new approach to minimal and maximal hypersurfaces in product spaces. (English) Zbl 1418.53064 Result. Math. 74, No. 3, Paper No. 116, 22 p. (2019). MSC: 53C42 53C50 PDF BibTeX XML Cite \textit{E. M. Alarcón} et al., Result. Math. 74, No. 3, Paper No. 116, 22 p. (2019; Zbl 1418.53064) Full Text: DOI
Jin, Liang; Peng, Lu; Cui, Xiaojun On class A Lorentzian 2-tori with poles. II. Foliations by timelike lines. (English) Zbl 1417.53021 Differ. Geom. Appl. 65, 16-29 (2019). MSC: 53B30 53C22 53C50 PDF BibTeX XML Cite \textit{L. Jin} et al., Differ. Geom. Appl. 65, 16--29 (2019; Zbl 1417.53021) Full Text: DOI arXiv
Polovinkin, Igor; Shishkina, Elina; Sitnik, Sergei Space of images of the mixed Riesz hyperbolic B-potential and analytic continuation. (English) Zbl 1418.35278 J. Inverse Ill-Posed Probl. 27, No. 2, 171-184 (2019). MSC: 35L81 35L20 46E30 47G40 PDF BibTeX XML Cite \textit{I. Polovinkin} et al., J. Inverse Ill-Posed Probl. 27, No. 2, 171--184 (2019; Zbl 1418.35278) Full Text: DOI
Turgay, Nurettin C.; Kelleci, Alev; Şen, Rüya Yeğin; Canfes, Elif Özkara On quasi-minimal isometric immersions into non-flat semi Riemannian space forms of index two. (English) Zbl 1415.53046 Mladenov, Ivaïlo M. (ed.) et al., Proceedings of the 20th international conference on geometry, integrability and quantization, Sts. Constantine and Elena (near Varna), Bulgaria, June 2–7, 2018. Sofia: Avangard Prima; Sofia: Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering. Geom. Integrability Quantization 20, 255-265 (2019). MSC: 53C42 53C40 53C43 53C50 PDF BibTeX XML Cite \textit{N. C. Turgay} et al., Geom. Integrability Quantization 20, 255--265 (2019; Zbl 1415.53046) Full Text: DOI Euclid
Herranz, Francisco J.; Ballesteros, Angel; Gutierrez-Sagredo, Ivan; Santander, Mariano Cayley-Klein Poisson homogeneous spaces. (English) Zbl 07060437 Mladenov, Ivaïlo M. (ed.) et al., Proceedings of the 20th international conference on geometry, integrability and quantization, Sts. Constantine and Elena (near Varna), Bulgaria, June 2–7, 2018. Sofia: Avangard Prima; Sofia: Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering. Geometry, Integrability and Quantization 20, 161-183 (2019). MSC: 17B63 53C30 PDF BibTeX XML Cite \textit{F. J. Herranz} et al., Geom. Integrability Quantization 20, 161--183 (2019; Zbl 07060437) Full Text: DOI Euclid
Grouy, Thibaut Orbital integrals on Lorentzian symmetric spaces. (English) Zbl 1418.43005 J. Geom. Phys. 138, 1-19 (2019). Reviewer: Benjamin Cahen (Metz) MSC: 43A85 53C50 44A99 53C65 53C35 PDF BibTeX XML Cite \textit{T. Grouy}, J. Geom. Phys. 138, 1--19 (2019; Zbl 1418.43005) Full Text: DOI
Xu, Na; Chen, Zhiqi; Tan, Ju Left invariant pseudo-Riemannian metrics on solvable Lie groups. (English) Zbl 1412.53101 J. Geom. Phys. 137, 247-254 (2019). MSC: 53C50 53C43 PDF BibTeX XML Cite \textit{N. Xu} et al., J. Geom. Phys. 137, 247--254 (2019; Zbl 1412.53101) Full Text: DOI
Aquino, Cícero P.; Batista, Márcio; de Lima, Henrique F. On the umbilicity of generalized linear Weingarten spacelike hypersurfaces in a Lorentzian space form. (English) Zbl 1414.53049 J. Geom. Phys. 137, 228-236 (2019). MSC: 53C42 53B30 53C50 53Z05 PDF BibTeX XML Cite \textit{C. P. Aquino} et al., J. Geom. Phys. 137, 228--236 (2019; Zbl 1414.53049) Full Text: DOI
Gannot, Oran The null-geodesic flow near horizons. (English) Zbl 1426.37061 Trans. Am. Math. Soc. 371, No. 7, 4769-4791 (2019). Reviewer: Vasyl Gorkaviy (Kharkov) MSC: 37N20 37D40 58J47 35L05 47A53 83C57 53C50 53B30 PDF BibTeX XML Cite \textit{O. Gannot}, Trans. Am. Math. Soc. 371, No. 7, 4769--4791 (2019; Zbl 1426.37061) Full Text: DOI arXiv
Schmalz, Gerd; Ganji, Masoud A criterion for local embeddability of three-dimensional CR structures. (English) Zbl 1423.32031 Ann. Mat. Pura Appl. (4) 198, No. 2, 491-503 (2019). Reviewer: Gabjin Yun (Yongin) MSC: 32V30 32V05 53B30 PDF BibTeX XML Cite \textit{G. Schmalz} and \textit{M. Ganji}, Ann. Mat. Pura Appl. (4) 198, No. 2, 491--503 (2019; Zbl 1423.32031) Full Text: DOI
Grant, James D. E.; Kunzinger, Michael; Sämann, Clemens Inextendibility of spacetimes and Lorentzian length spaces. (English) Zbl 1416.53042 Ann. Global Anal. Geom. 55, No. 1, 133-147 (2019). Reviewer: Raina Ivanova (Hilo) MSC: 53C23 53C50 53B30 53C80 83C75 PDF BibTeX XML Cite \textit{J. D. E. Grant} et al., Ann. Global Anal. Geom. 55, No. 1, 133--147 (2019; Zbl 1416.53042) Full Text: DOI Backlinks: MO
Burelle, Jean-Philippe; Francoeur, Dominik Foliations between crooked planes in 3-dimensional Minkowski space. (English) Zbl 07029241 Int. J. Math. 30, No. 1, Article ID 1950004, 7 p. (2019). MSC: 20H10 53C50 PDF BibTeX XML Cite \textit{J.-P. Burelle} and \textit{D. Francoeur}, Int. J. Math. 30, No. 1, Article ID 1950004, 7 p. (2019; Zbl 07029241) Full Text: DOI arXiv
De, Uday Chand; Suh, Young Jin Some characterizations of Lorentzian manifolds. (English) Zbl 1405.53034 Int. J. Geom. Methods Mod. Phys. 16, No. 1, Article ID 1950016, 18 p. (2019). MSC: 53B30 53C25 53C50 53C80 51B20 83F05 PDF BibTeX XML Cite \textit{U. C. De} and \textit{Y. J. Suh}, Int. J. Geom. Methods Mod. Phys. 16, No. 1, Article ID 1950016, 18 p. (2019; Zbl 1405.53034) Full Text: DOI
Bouharis, Amel; Djebbar, Bachir Ricci solitons on Lorentzian four-dimensional generalized symmetric spaces. (English) Zbl 1447.53058 J. Math. Phys. Anal. Geom. 14, No. 2, 132-140 (2018). MSC: 53C50 53C25 53C35 PDF BibTeX XML Cite \textit{A. Bouharis} and \textit{B. Djebbar}, J. Math. Phys. Anal. Geom. 14, No. 2, 132--140 (2018; Zbl 1447.53058) Full Text: DOI
Baum, Helga; Leistner, Thomas Lorentzian geometry: holonomy, spinors, and Cauchy problems. (English) Zbl 07099817 Cortés, Vicente (ed.) et al., Geometric flows and the geometry of space-time. Based on the summer school and workshop, Hamburg, Germany, September 2016. Cham: Birkhäuser (ISBN 978-3-030-01125-3/hbk; 978-3-030-01126-0/ebook). Tutorials, Schools, and Workshops in the Mathematical Sciences, 1-76 (2018). Reviewer: Renato G. Bettiol (New York) MSC: 53-02 53C50 53C29 53C27 53C25 PDF BibTeX XML Cite \textit{H. Baum} and \textit{T. Leistner}, in: Geometric flows and the geometry of space-time. Based on the summer school and workshop, Hamburg, Germany, September 2016. Cham: Birkhäuser. 1--76 (2018; Zbl 07099817) Full Text: DOI
Bär, Christian; Hannes, Sebastian Boundary value problems for the Lorentzian Dirac operator. (English) Zbl 1422.58005 Andersen, Jørgen Ellegaard (ed.) et al., Geometry and physics. A festschrift in honour of Nigel Hitchin. Volume 1. Oxford: Oxford University Press. 3-18 (2018). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 58J32 58J20 58J45 53C27 PDF BibTeX XML Cite \textit{C. Bär} and \textit{S. Hannes}, in: Geometry and physics. A festschrift in honour of Nigel Hitchin. Volume 1. Oxford: Oxford University Press. 3--18 (2018; Zbl 1422.58005) Full Text: DOI
Lee, Ji-Eun Biharmonic spacelike curves in Lorentzian Heisenberg space. (English) Zbl 1419.53022 Commun. Korean Math. Soc. 33, No. 4, 1309-1320 (2018). MSC: 53B25 53B30 53C30 PDF BibTeX XML Cite \textit{J.-E. Lee}, Commun. Korean Math. Soc. 33, No. 4, 1309--1320 (2018; Zbl 1419.53022) Full Text: DOI
Haseeb, Abdul; Prasad, Rajendra On concircular curvature tensor in a Lorentzian \(\alpha\)-Sasakian manifold with respect to the quarter-symmetric non-metric connection. (English) Zbl 1419.53025 Acta Comment. Univ. Tartu. Math. 22, No. 2, 279-292 (2018). MSC: 53B30 53B05 53C25 PDF BibTeX XML Cite \textit{A. Haseeb} and \textit{R. Prasad}, Acta Comment. Univ. Tartu. Math. 22, No. 2, 279--292 (2018; Zbl 1419.53025) Full Text: DOI
Mondal, Ashis Some curves on three dimensional Lorentzian trans-Sasakian manifolds. (English) Zbl 1438.53085 Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 61, 19-29 (2018). MSC: 53C25 53C50 PDF BibTeX XML Cite \textit{A. Mondal}, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 61, 19--29 (2018; Zbl 1438.53085)
Impera, Debora; Musso, Emilio Space-like Willmore immersions. (English) Zbl 1415.53055 Riv. Mat. Univ. Parma (N.S.) 9, No. 2, 255-282 (2018). MSC: 53C50 53C42 53A10 PDF BibTeX XML Cite \textit{D. Impera} and \textit{E. Musso}, Riv. Mat. Univ. Parma (N.S.) 9, No. 2, 255--282 (2018; Zbl 1415.53055)
Andersson, Lars; Bär, Christian Wave and Dirac equations on manifolds. (English) Zbl 1417.83003 Brüning, Jochen (ed.) et al., Space – time – matter. Analytic and geometric structures. Berlin: De Gruyter. 324-348 (2018). MSC: 83C05 83C57 81Q05 35L05 83C60 58J45 53C50 53C27 PDF BibTeX XML Cite \textit{L. Andersson} and \textit{C. Bär}, in: Space -- time -- matter. Analytic and geometric structures. Berlin: De Gruyter. 324--348 (2018; Zbl 1417.83003) Full Text: DOI
Baum, Helga Lorentzian manifolds with special holonomy – constructions and global properties. (English) Zbl 1417.83004 Brüning, Jochen (ed.) et al., Space – time – matter. Analytic and geometric structures. Berlin: De Gruyter. 51-68 (2018). MSC: 83C05 83C35 83C60 53A10 83C10 53C50 53C29 53C22 PDF BibTeX XML Cite \textit{H. Baum}, in: Space -- time -- matter. Analytic and geometric structures. Berlin: De Gruyter. 51--68 (2018; Zbl 1417.83004) Full Text: DOI
Barbot, Thierry Lorentzian Kleinian groups. (English) Zbl 1415.30028 Ji, Lizhen (ed.) et al., Handbook of group actions. Volume III. Somerville, MA: International Press; Beijing: Higher Education Press. Adv. Lect. Math. (ALM) 40, 311-358 (2018). MSC: 30F40 30F60 53B30 53C50 53C55 30-02 53-02 PDF BibTeX XML Cite \textit{T. Barbot}, in: Handbook of group actions. Volume III. Somerville, MA: International Press; Beijing: Higher Education Press. 311--358 (2018; Zbl 1415.30028)
Huang, Tiren; Sun, Mingbao; Tan, Shenyang Geodesics in a step 4 sub-Lorentzian manifold. (English) Zbl 1424.53077 Adv. Math., Beijing 47, No. 4, 580-594 (2018). MSC: 53C22 53C50 58E10 PDF BibTeX XML Cite \textit{T. Huang} et al., Adv. Math., Beijing 47, No. 4, 580--594 (2018; Zbl 1424.53077) Full Text: DOI
Ardentov, A. A.; Sachkov, Yu. L.; Huang, T.; Yang, X. Extremal trajectories in the sub-Lorentzian problem on the Engel group. (English. Russian original) Zbl 1409.53032 Sb. Math. 209, No. 11, 1547-1574 (2018); translation from Mat. Sb. 209, No. 11, 3-31 (2018). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 53C17 53C50 22E25 43A80 PDF BibTeX XML Cite \textit{A. A. Ardentov} et al., Sb. Math. 209, No. 11, 1547--1574 (2018; Zbl 1409.53032); translation from Mat. Sb. 209, No. 11, 3--31 (2018) Full Text: DOI
Brozos-Vázquez, M.; García-Río, E.; Gavino-Fernández, S.; Gilkey, P. The structure of the Ricci tensor on locally homogeneous Lorentzian gradient Ricci solitons. (English) Zbl 1411.53036 Proc. R. Soc. Edinb., Sect. A, Math. 148, No. 3, 461-482 (2018). Reviewer: Marian Hotloś (Wrocław) MSC: 53C25 53C21 53B30 53C24 PDF BibTeX XML Cite \textit{M. Brozos-Vázquez} et al., Proc. R. Soc. Edinb., Sect. A, Math. 148, No. 3, 461--482 (2018; Zbl 1411.53036) Full Text: DOI
Khiar, Hamid; Alaa, Nour Eddine; Khalfi, Hamza Classification of some ruled surfaces in the Lorentz-Heisenberg space. (English) Zbl 1406.53014 J. Adv. Math. Stud. 11, No. 2, 306-315 (2018). MSC: 53B25 53B30 53C30 PDF BibTeX XML Cite \textit{H. Khiar} et al., J. Adv. Math. Stud. 11, No. 2, 306--315 (2018; Zbl 1406.53014)
Nasehi, Mehri; Aghasi, Mansour On the geometry of some solvable extensions of the Heisenberg group. (English) Zbl 06986968 Czech. Math. J. 68, No. 3, 723-740 (2018). MSC: 53C30 53C50 53C43 PDF BibTeX XML Cite \textit{M. Nasehi} and \textit{M. Aghasi}, Czech. Math. J. 68, No. 3, 723--740 (2018; Zbl 06986968) Full Text: DOI
Jung, Yoon-Tae; Choi, Eun-Hee; Lee, Soo-Young Nonconstant warping functions on Einstein Lorentzian warped product manifolds. (English) Zbl 1403.53030 Honam Math. J. 40, No. 3, 447-456 (2018). MSC: 53C15 53C21 53C25 58D17 PDF BibTeX XML Cite \textit{Y.-T. Jung} et al., Honam Math. J. 40, No. 3, 447--456 (2018; Zbl 1403.53030) Full Text: DOI
Brinkschulte, Judith; Hill, C. Denson Non locally trivializable CR line bundles over compact Lorentzian CR manifolds. (Fibrés en droites CR non localement triviaux sur des variétés CR Lorentziennes compactes.) (English. French summary) Zbl 1417.32035 Ann. Inst. Fourier 68, No. 1, 101-108 (2018). Reviewer: Steve Deckelman (Menomonie) MSC: 32V05 32G07 PDF BibTeX XML Cite \textit{J. Brinkschulte} and \textit{C. D. Hill}, Ann. Inst. Fourier 68, No. 1, 101--108 (2018; Zbl 1417.32035) Full Text: DOI arXiv
Gudapati, Nishanth On \(3 + 1\) Lorentzian Einstein manifolds with one rotational isometry. (English) Zbl 1400.83006 Gen. Relativ. Gravitation 50, No. 8, Paper No. 93, 25 p. (2018). MSC: 83C05 83C40 83E15 83C80 83C57 53C50 35L70 PDF BibTeX XML Cite \textit{N. Gudapati}, Gen. Relativ. Gravitation 50, No. 8, Paper No. 93, 25 p. (2018; Zbl 1400.83006) Full Text: DOI
Kunzinger, Michael; Sämann, Clemens Lorentzian length spaces. (English) Zbl 06970105 Ann. Global Anal. Geom. 54, No. 3, 399-447 (2018). MSC: 53C23 53C50 53B30 53C80 PDF BibTeX XML Cite \textit{M. Kunzinger} and \textit{C. Sämann}, Ann. Global Anal. Geom. 54, No. 3, 399--447 (2018; Zbl 06970105) Full Text: DOI arXiv Backlinks: MO
Li, Xingxiao; Chang, Xiufen Rigidity theorems of the space-like \(\lambda \)-hypersurfaces in the Lorentzian space \(\mathbb{R}_1^{n + 1}\). (English) Zbl 1413.53085 J. Math., Wuhan Univ. 38, No. 2, 253-268 (2018). MSC: 53C24 53C42 53C50 PDF BibTeX XML Cite \textit{X. Li} and \textit{X. Chang}, J. Math., Wuhan Univ. 38, No. 2, 253--268 (2018; Zbl 1413.53085) Full Text: DOI arXiv
Atindogbe, Cyriaque; Gutiérrez, Manuel; Hounnonkpe, Raymond New properties on normalized null hypersurfaces. (English) Zbl 1397.53031 Mediterr. J. Math. 15, No. 4, Paper No. 166, 1-19 (2018); correction ibid. 15, No. 6, Paper No. 209, 4 p. (2018). MSC: 53B25 53B30 53B50 PDF BibTeX XML Cite \textit{C. Atindogbe} et al., Mediterr. J. Math. 15, No. 4, Paper No. 166, 1--19 (2018; Zbl 1397.53031) Full Text: DOI
Lupo, Umberto On the global “two-sided” characteristic Cauchy problem for linear wave equations on manifolds. (English) Zbl 1404.58041 Lett. Math. Phys. 108, No. 10, 2315-2362 (2018). Reviewer: Valery V. Karachik (Chelyabinsk) MSC: 58J45 58J47 58Z05 35L15 53C50 81T20 PDF BibTeX XML Cite \textit{U. Lupo}, Lett. Math. Phys. 108, No. 10, 2315--2362 (2018; Zbl 1404.58041) Full Text: DOI
Galloway, Gregory J.; Vega, Carlos Rigidity in vacuum under conformal symmetry. (English) Zbl 1400.53060 Lett. Math. Phys. 108, No. 10, 2285-2292 (2018). Reviewer: Anthony D. Osborne (Keele) MSC: 53C50 83C75 PDF BibTeX XML Cite \textit{G. J. Galloway} and \textit{C. Vega}, Lett. Math. Phys. 108, No. 10, 2285--2292 (2018; Zbl 1400.53060) Full Text: DOI
Karmanova, M. B. Maximal surfaces on five-dimensional group structures. (English. Russian original) Zbl 1402.53025 Sib. Math. J. 59, No. 3, 442-457 (2018); translation from Sib. Mat. Zh. 59, No. 3, 561-579 (2018). MSC: 53C17 53C50 PDF BibTeX XML Cite \textit{M. B. Karmanova}, Sib. Math. J. 59, No. 3, 442--457 (2018; Zbl 1402.53025); translation from Sib. Mat. Zh. 59, No. 3, 561--579 (2018) Full Text: DOI
Woolgar, Eric; Wylie, William Curvature-dimension bounds for Lorentzian splitting theorems. (English) Zbl 1395.53078 J. Geom. Phys. 132, 131-145 (2018). MSC: 53C50 53C80 PDF BibTeX XML Cite \textit{E. Woolgar} and \textit{W. Wylie}, J. Geom. Phys. 132, 131--145 (2018; Zbl 1395.53078) Full Text: DOI