Khodakaram-Tafti, Amin; Emdad, Homayoun; Mahzoon, Mojtaba Dynamical and chaotic behaviors of natural convection flow in semi-annular cylindrical domains using energy-conserving low-order spectral models. (English) Zbl 07568441 Appl. Math. Comput. 433, Article ID 127415, 21 p. (2022). MSC: 37Nxx 34Cxx 76Rxx PDF BibTeX XML Cite \textit{A. Khodakaram-Tafti} et al., Appl. Math. Comput. 433, Article ID 127415, 21 p. (2022; Zbl 07568441) Full Text: DOI OpenURL
Carlson, Elizabeth; Hudson, Joshua; Larios, Adam; Martinez, Vincent R.; Ng, Eunice; Whitehead, Jared P. Dynamically learning the parameters of a chaotic system using partial observations. (English) Zbl 07557758 Discrete Contin. Dyn. Syst. 42, No. 8, 3809-3839 (2022). MSC: 34D06 34A55 37C50 35B30 60H10 PDF BibTeX XML Cite \textit{E. Carlson} et al., Discrete Contin. Dyn. Syst. 42, No. 8, 3809--3839 (2022; Zbl 07557758) Full Text: DOI OpenURL
Da Lio, Francesca; Rivière, Tristan; Wettstein, Jerome Integrability by compensation for Dirac equation. (English) Zbl 07542933 Trans. Am. Math. Soc. 375, No. 6, 4477-4511 (2022). Reviewer: Zhipeng Yang (Göttingen) MSC: 35J46 35B65 81Q05 PDF BibTeX XML Cite \textit{F. Da Lio} et al., Trans. Am. Math. Soc. 375, No. 6, 4477--4511 (2022; Zbl 07542933) Full Text: DOI OpenURL
Rohila, Rajni; Mittal, R. C. Analysis of chaotic behavior of three-dimensional dynamical systems by a \(B\)-spline differential quadrature algorithm. (English) Zbl 07539588 Asian-Eur. J. Math. 15, No. 4, Article ID 2250077, 31 p. (2022). MSC: 65Pxx 37Dxx 65Lxx PDF BibTeX XML Cite \textit{R. Rohila} and \textit{R. C. Mittal}, Asian-Eur. J. Math. 15, No. 4, Article ID 2250077, 31 p. (2022; Zbl 07539588) Full Text: DOI OpenURL
Algaba, A.; Domínguez-Moreno, M. C.; Merino, M.; Rodríguez-Luis, A. J. Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system. (English) Zbl 07526864 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106482, 23 p. (2022). Reviewer: Yong Ye (Shenzhen) MSC: 34A34 34C20 34C23 34D45 34C37 34E10 PDF BibTeX XML Cite \textit{A. Algaba} et al., Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106482, 23 p. (2022; Zbl 07526864) Full Text: DOI OpenURL
Adiyaman, Meltem High order approach for solving chaotic and hyperchaotic problems. (English) Zbl 07523298 Hacet. J. Math. Stat. 51, No. 1, 27-47 (2022). MSC: 65L05 65L70 65P20 37M05 PDF BibTeX XML Cite \textit{M. Adiyaman}, Hacet. J. Math. Stat. 51, No. 1, 27--47 (2022; Zbl 07523298) Full Text: DOI OpenURL
Munshi, Sachin; Yang, Rongwei Complex solutions to Maxwell’s equations. (English) Zbl 1483.35245 Complex Anal. Synerg. 8, No. 1, Paper No. 2, 14 p. (2022). MSC: 35Q61 78A25 32A10 PDF BibTeX XML Cite \textit{S. Munshi} and \textit{R. Yang}, Complex Anal. Synerg. 8, No. 1, Paper No. 2, 14 p. (2022; Zbl 1483.35245) Full Text: DOI OpenURL
Deressa, Chernet Tuge; Etemad, Sina; Kaabar, Mohammed K. A.; Rezapour, Shahram Qualitative analysis of a hyperchaotic Lorenz-Stenflo mathematical model via the Caputo fractional operator. (English) Zbl 07487578 J. Funct. Spaces 2022, Article ID 4975104, 21 p. (2022). MSC: 34C60 34A08 76B15 34C05 34D20 34D08 34C28 34C23 PDF BibTeX XML Cite \textit{C. T. Deressa} et al., J. Funct. Spaces 2022, Article ID 4975104, 21 p. (2022; Zbl 07487578) Full Text: DOI OpenURL
Kerin, John; Engler, Hans On the Lorenz ’96 model and some generalizations. (English) Zbl 07461156 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 769-797 (2022). Reviewer: Eduard Musafirov (Grodno) MSC: 34C60 86A10 34C14 34C20 34C23 34C05 PDF BibTeX XML Cite \textit{J. Kerin} and \textit{H. Engler}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 769--797 (2022; Zbl 07461156) Full Text: DOI arXiv OpenURL
Pecher, Hartmut Corrigendum to: “Local well-posedness of the coupled Yang-Mills and Dirac system for low regularity data”. (English) Zbl 1480.35339 Nonlinearity 35, No. 2, C3-C4 (2022). MSC: 35Q40 35L70 81T13 35A01 35A02 PDF BibTeX XML Cite \textit{H. Pecher}, Nonlinearity 35, No. 2, C3--C4 (2022; Zbl 1480.35339) Full Text: DOI OpenURL
Pecher, Hartmut Local well-posedness of the coupled Yang-Mills and Dirac system for low regularity data. (English) Zbl 1477.35196 Nonlinearity 35, No. 1, 1-29 (2022); corrigendum ibid. 35, No. 2, C3-C4 (2022). MSC: 35Q40 35L70 81T13 35A01 35A02 PDF BibTeX XML Cite \textit{H. Pecher}, Nonlinearity 35, No. 1, 1--29 (2022; Zbl 1477.35196) Full Text: DOI arXiv OpenURL
Yang, Shuangling; Qu, Jingjia On first integrals of a family of generalized Lorenz-like systems. (English) Zbl 07568891 Chaos Solitons Fractals 151, Article ID 111141, 10 p. (2021). MSC: 34M03 34M15 34M45 PDF BibTeX XML Cite \textit{S. Yang} and \textit{J. Qu}, Chaos Solitons Fractals 151, Article ID 111141, 10 p. (2021; Zbl 07568891) Full Text: DOI OpenURL
Zheng, Xueyan Local existence of Chern-Simons gauged \(O(3)\) sigma equations. (English) Zbl 07546029 East Asian Math. J. 37, No. 5, 591-598 (2021). MSC: 35Q40 35L15 35L45 35F25 PDF BibTeX XML Cite \textit{X. Zheng}, East Asian Math. J. 37, No. 5, 591--598 (2021; Zbl 07546029) Full Text: DOI OpenURL
Dlamini, Anastacia; Goufo, Emile F. Doungmo; Khumalo, Melusi On the Caputo-Fabrizio fractal fractional representation for the Lorenz chaotic system. (English) Zbl 07533433 AIMS Math. 6, No. 11, 12395-12421 (2021). MSC: 26A33 34A08 34B15 PDF BibTeX XML Cite \textit{A. Dlamini} et al., AIMS Math. 6, No. 11, 12395--12421 (2021; Zbl 07533433) Full Text: DOI OpenURL
Contreras-Reyes, Javier E. Chaotic systems with asymmetric heavy-tailed noise: application to 3D attractors. (English) Zbl 07514664 Chaos Solitons Fractals 145, Article ID 110820, 6 p. (2021). MSC: 60-XX 34-XX PDF BibTeX XML Cite \textit{J. E. Contreras-Reyes}, Chaos Solitons Fractals 145, Article ID 110820, 6 p. (2021; Zbl 07514664) Full Text: DOI OpenURL
Kainov, M.; Kazakov, A. On examples of pseudohyperbolic attractors in flows and maps. (English) Zbl 07503329 Lobachevskii J. Math. 42, No. 14, 3451-3467 (2021). MSC: 37-XX 34-XX PDF BibTeX XML Cite \textit{M. Kainov} and \textit{A. Kazakov}, Lobachevskii J. Math. 42, No. 14, 3451--3467 (2021; Zbl 07503329) Full Text: DOI OpenURL
Guo, Siyu; Luo, Albert C. J. A family of periodic motions to chaos with infinite homoclinic orbits in the Lorenz system. (English) Zbl 07503327 Lobachevskii J. Math. 42, No. 14, 3382-3437 (2021). MSC: 37-XX 34-XX PDF BibTeX XML Cite \textit{S. Guo} and \textit{A. C. J. Luo}, Lobachevskii J. Math. 42, No. 14, 3382--3437 (2021; Zbl 07503327) Full Text: DOI OpenURL
Hart, Allen G.; Hook, James L.; Dawes, Jonathan H. P. Echo state networks trained by Tikhonov least squares are \(L^2(\mu)\) approximators of ergodic dynamical systems. (English) Zbl 07477842 Physica D 421, Article ID 132882, 9 p. (2021). MSC: 37M25 37M10 PDF BibTeX XML Cite \textit{A. G. Hart} et al., Physica D 421, Article ID 132882, 9 p. (2021; Zbl 07477842) Full Text: DOI arXiv OpenURL
Földes, Juraj; Glatt-Holtz, Nathan E.; Herzog, David P. Sensitivity of steady states in a degenerately damped stochastic Lorenz system. (English) Zbl 1487.37069 Stoch. Dyn. 21, No. 8, Article ID 2150055, 32 p. (2021). MSC: 37H30 37A25 37A50 PDF BibTeX XML Cite \textit{J. Földes} et al., Stoch. Dyn. 21, No. 8, Article ID 2150055, 32 p. (2021; Zbl 1487.37069) Full Text: DOI arXiv OpenURL
Pecher, Hartmut Improved well-posedness results for the Maxwell-Klein-Gordon system in 2D. (English) Zbl 1477.35195 Commun. Pure Appl. Anal. 20, No. 9, 2965-2989 (2021). MSC: 35Q40 35L70 35B65 35B33 35A01 35A02 81T13 PDF BibTeX XML Cite \textit{H. Pecher}, Commun. Pure Appl. Anal. 20, No. 9, 2965--2989 (2021; Zbl 1477.35195) Full Text: DOI arXiv OpenURL
Li, Xianyi; Mirjalol, Umirzakov Modeling and analysis of dynamics for a 3D mixed Lorenz system with a damped term. (English) Zbl 07412234 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 2, 217-241 (2021). MSC: 37-XX 34-XX PDF BibTeX XML Cite \textit{X. Li} and \textit{U. Mirjalol}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 2, 217--241 (2021; Zbl 07412234) Full Text: DOI OpenURL
Zhong, Jiyu Qualitative properties and two strong resonances of a discrete reduced Lorenz system. (English) Zbl 1481.37051 J. Difference Equ. Appl. 27, No. 6, 858-884 (2021). MSC: 37G05 37M20 39A28 39A30 PDF BibTeX XML Cite \textit{J. Zhong}, J. Difference Equ. Appl. 27, No. 6, 858--884 (2021; Zbl 1481.37051) Full Text: DOI OpenURL
He, Lili Scattering from infinity of the Maxwell Klein Gordon equations in Lorenz gauge. (English) Zbl 1482.35186 Commun. Math. Phys. 386, No. 3, 1747-1801 (2021). MSC: 35Q40 81T13 81Q05 83C22 35B40 35A01 78A45 PDF BibTeX XML Cite \textit{L. He}, Commun. Math. Phys. 386, No. 3, 1747--1801 (2021; Zbl 1482.35186) Full Text: DOI arXiv OpenURL
Park, Junho; Moon, Sungju; Seo, Jaemyeong Mango; Baik, Jong-Jin Systematic comparison between the generalized Lorenz equations and DNS in the two-dimensional Rayleigh-Bénard convection. (English) Zbl 1471.35028 Chaos 31, No. 7, 073119, 16 p. (2021). MSC: 35B32 35Q35 37D45 PDF BibTeX XML Cite \textit{J. Park} et al., Chaos 31, No. 7, 073119, 16 p. (2021; Zbl 1471.35028) Full Text: DOI arXiv OpenURL
Özer, Ahmet Özkan Stabilization results for well-posed potential formulations of a current-controlled piezoelectric beam and their approximations. (English) Zbl 1475.78003 Appl. Math. Optim. 84, No. 1, 877-914 (2021). MSC: 78A25 78A55 74F15 74H15 74N30 93B52 78M20 74S20 PDF BibTeX XML Cite \textit{A. Ö. Özer}, Appl. Math. Optim. 84, No. 1, 877--914 (2021; Zbl 1475.78003) Full Text: DOI OpenURL
Zhang, Jiantang; Huang, Sixun; Cheng, Jin Parameter estimation for a chaotic dynamical system with partial observations. (English) Zbl 1471.34035 J. Inverse Ill-Posed Probl. 29, No. 4, 515-524 (2021). MSC: 34A34 34C28 93B30 65D30 93C15 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Inverse Ill-Posed Probl. 29, No. 4, 515--524 (2021; Zbl 1471.34035) Full Text: DOI OpenURL
Huang, Weisheng; Yang, Xiao-Song Chaos in the periodically parametrically excited Lorenz system. (English) Zbl 1471.34083 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 8, Article ID 2130024, 15 p. (2021). MSC: 34C28 34A34 37C60 34D45 37D45 PDF BibTeX XML Cite \textit{W. Huang} and \textit{X.-S. Yang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 8, Article ID 2130024, 15 p. (2021; Zbl 1471.34083) Full Text: DOI OpenURL
Ginoux, Jean-Marc Slow invariant manifolds of slow-fast dynamical systems. (English) Zbl 1471.34114 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 7, Article ID 2150112, 17 p. (2021). MSC: 34E15 34C45 37M21 PDF BibTeX XML Cite \textit{J.-M. Ginoux}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 7, Article ID 2150112, 17 p. (2021; Zbl 1471.34114) Full Text: DOI arXiv OpenURL
Zhang, Xu Boundedness of a class of complex Lorenz systems. (English) Zbl 1471.34036 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 7, Article ID 2150101, 22 p. (2021). MSC: 34A34 34C11 34C28 37D45 34D45 PDF BibTeX XML Cite \textit{X. Zhang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 7, Article ID 2150101, 22 p. (2021; Zbl 1471.34036) Full Text: DOI OpenURL
Čelikovský, Sergej; Chen, Guanrong Generalized Lorenz canonical form revisited. (English) Zbl 1467.93048 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2150079, 15 p. (2021). MSC: 93B10 93C15 93C20 PDF BibTeX XML Cite \textit{S. Čelikovský} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2150079, 15 p. (2021; Zbl 1467.93048) Full Text: DOI OpenURL
Gonchenko, Sergey; Kazakov, Alexey; Turaev, Dmitry Wild pseudohyperbolic attractor in a four-dimensional Lorenz system. (English) Zbl 1472.34106 Nonlinearity 34, No. 4, 2018-2047 (2021). Reviewer: Eduard Musafirov (Grodno) MSC: 34D45 34A34 34C28 37D45 PDF BibTeX XML Cite \textit{S. Gonchenko} et al., Nonlinearity 34, No. 4, 2018--2047 (2021; Zbl 1472.34106) Full Text: DOI arXiv OpenURL
Ray, Arnob; Pal, Arnab; Ghosh, Dibakar; Dana, Syamal K.; Hens, Chittaranjan Mitigating long transient time in deterministic systems by resetting. (English) Zbl 1466.37060 Chaos 31, No. 1, 011103, 7 p. (2021). MSC: 37M05 37M21 37H10 PDF BibTeX XML Cite \textit{A. Ray} et al., Chaos 31, No. 1, 011103, 7 p. (2021; Zbl 1466.37060) Full Text: DOI arXiv OpenURL
Verheul, Nick; Crommelin, Daan Stochastic parametrization with VARX processes. (English) Zbl 1462.62556 Commun. Appl. Math. Comput. Sci. 16, No. 1, 33-57 (2021). MSC: 62M10 62F30 62J10 60G15 60H10 65C20 70K70 PDF BibTeX XML Cite \textit{N. Verheul} and \textit{D. Crommelin}, Commun. Appl. Math. Comput. Sci. 16, No. 1, 33--57 (2021; Zbl 1462.62556) Full Text: DOI arXiv OpenURL
Vijayalakshmi, Palanisamy; Jiang, Zhiheng; Wang, Xiong Lagrangian formulation of Lorenz and Chen systems. (English) Zbl 1464.37057 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150055, 7 p. (2021). MSC: 37J06 34A08 26A33 PDF BibTeX XML Cite \textit{P. Vijayalakshmi} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150055, 7 p. (2021; Zbl 1464.37057) Full Text: DOI OpenURL
Moon, Sungju; Baik, Jong-Jin; Seo, Jaemyeong Mango Chaos synchronization in generalized Lorenz systems and an application to image encryption. (English) Zbl 1462.37042 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105708, 14 p. (2021). MSC: 37D45 34D06 65D18 PDF BibTeX XML Cite \textit{S. Moon} et al., Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105708, 14 p. (2021; Zbl 1462.37042) Full Text: DOI OpenURL
Strickler, Edouard Randomly switched vector fields sharing a zero on a common invariant face. (English) Zbl 1470.60211 Stoch. Dyn. 21, No. 2, Article ID 2150007, 20 p. (2021). MSC: 60J25 34A37 37H15 37A50 92D30 PDF BibTeX XML Cite \textit{E. Strickler}, Stoch. Dyn. 21, No. 2, Article ID 2150007, 20 p. (2021; Zbl 1470.60211) Full Text: DOI arXiv OpenURL
Du, Yi Juan; Shiue, Ming-Cheng Analysis and computation of continuous data assimilation algorithms for Lorenz 63 system based on nonlinear nudging techniques. (English) Zbl 1461.65210 J. Comput. Appl. Math. 386, Article ID 113246, 18 p. (2021). MSC: 65L09 PDF BibTeX XML Cite \textit{Y. J. Du} and \textit{M.-C. Shiue}, J. Comput. Appl. Math. 386, Article ID 113246, 18 p. (2021; Zbl 1461.65210) Full Text: DOI OpenURL
Talbi, Ibtissem; Ouannas, Adel; Khennaoui, Amina-Aicha; Berkane, Abdelhak; Batiha, Iqbal M.; Grassi, Giuseppe; Pham, Viet-Thanh Different dimensional fractional-order discrete chaotic systems based on the Caputo \(h\)-difference discrete operator: dynamics, control, and synchronization. (English) Zbl 1487.39013 Adv. Difference Equ. 2020, Paper No. 624, 14 p. (2020). MSC: 39A13 39A70 26A33 PDF BibTeX XML Cite \textit{I. Talbi} et al., Adv. Difference Equ. 2020, Paper No. 624, 14 p. (2020; Zbl 1487.39013) Full Text: DOI OpenURL
Siddheshwar, P. G.; Revathi, B. R.; Kanchana, C. Effect of gravity modulation on linear, weakly-nonlinear and local-nonlinear stability analyses of stationary double-diffusive convection in a dielectric liquid. (English) Zbl 1483.76011 Meccanica 55, No. 10, 2003-2019 (2020). MSC: 76A99 76E06 76E30 76E25 76R50 PDF BibTeX XML Cite \textit{P. G. Siddheshwar} et al., Meccanica 55, No. 10, 2003--2019 (2020; Zbl 1483.76011) Full Text: DOI OpenURL
Kanchana, C.; Siddheshwar, P. G.; Yi, Zhao The effect of boundary conditions on the onset of chaos in Rayleigh-Bénard convection using energy-conserving Lorenz models. (English) Zbl 1481.76068 Appl. Math. Modelling 88, 349-366 (2020). MSC: 76D05 65M99 68T07 PDF BibTeX XML Cite \textit{C. Kanchana} et al., Appl. Math. Modelling 88, 349--366 (2020; Zbl 1481.76068) Full Text: DOI OpenURL
Hart, Allen; Hook, James; Dawes, Jonathan Embedding and approximation theorems for echo state networks. (English) Zbl 1468.68098 Neural Netw. 128, 234-247 (2020). MSC: 68Q06 37M05 55N31 PDF BibTeX XML Cite \textit{A. Hart} et al., Neural Netw. 128, 234--247 (2020; Zbl 1468.68098) Full Text: DOI arXiv OpenURL
Adiyaman, Meltem Evrenosoglu; Noyan, Burcu Residual method for nonlinear system of initial value problems. (English) Zbl 1474.65207 Comput. Methods Differ. Equ. 8, No. 4, 733-744 (2020). MSC: 65L05 65L20 92D30 PDF BibTeX XML Cite \textit{M. E. Adiyaman} and \textit{B. Noyan}, Comput. Methods Differ. Equ. 8, No. 4, 733--744 (2020; Zbl 1474.65207) Full Text: DOI OpenURL
Zlatanovska, Biljana; Piperevski, Boro Dynamic analysis of the dual Lorenz system. (English) Zbl 1465.37027 Asian-Eur. J. Math. 13, No. 8, Article ID 2050171, 12 p. (2020). MSC: 37C10 37C79 34A34 PDF BibTeX XML Cite \textit{B. Zlatanovska} and \textit{B. Piperevski}, Asian-Eur. J. Math. 13, No. 8, Article ID 2050171, 12 p. (2020; Zbl 1465.37027) Full Text: DOI OpenURL
Zlatanovska, Biljana; Dimovski, Dončo A modified Lorenz system: definition and solution. (English) Zbl 1459.34058 Asian-Eur. J. Math. 13, No. 8, Article ID 2050164, 7 p. (2020). MSC: 34A34 34A05 34A12 PDF BibTeX XML Cite \textit{B. Zlatanovska} and \textit{D. Dimovski}, Asian-Eur. J. Math. 13, No. 8, Article ID 2050164, 7 p. (2020; Zbl 1459.34058) Full Text: DOI OpenURL
Dong, Chengwei; Liu, Huihui; Li, Hantao Unstable periodic orbits analysis in the generalized Lorenz-type system. (English) Zbl 1459.37022 J. Stat. Mech. Theory Exp. 2020, No. 7, Article ID 073211, 21 p. (2020). MSC: 37C27 37D45 34C25 34C28 37G10 37M20 34C23 PDF BibTeX XML Cite \textit{C. Dong} et al., J. Stat. Mech. Theory Exp. 2020, No. 7, Article ID 073211, 21 p. (2020; Zbl 1459.37022) Full Text: DOI OpenURL
Hammami, M. A.; Rettab, N. H. On the region of attraction of dynamical systems: application to Lorenz equations. (English) Zbl 1457.93043 Arch. Control Sci. 30, No. 3, 389-409 (2020). MSC: 93C15 34C28 93D20 93D30 93C10 PDF BibTeX XML Cite \textit{M. A. Hammami} and \textit{N. H. Rettab}, Arch. Control Sci. 30, No. 3, 389--409 (2020; Zbl 1457.93043) Full Text: DOI OpenURL
Barge, Héctor; Sanjurjo, José M. R. A Conley index study of the evolution of the Lorenz strange set. (English) Zbl 1453.37018 Physica D 401, Article ID 132162, 11 p. (2020). MSC: 37B30 34C45 37C10 34D45 34C28 PDF BibTeX XML Cite \textit{H. Barge} and \textit{J. M. R. Sanjurjo}, Physica D 401, Article ID 132162, 11 p. (2020; Zbl 1453.37018) Full Text: DOI arXiv OpenURL
Sharma, Binay Kumar; Aneja, Neetu; Tripathi, P. Reduced order multiswitching synchronization between two hyperchaotic systems of different order. (English) Zbl 1458.34101 Nonlinear Dyn. Syst. Theory 20, No. 5, 542-551 (2020). MSC: 34D06 34A34 34C28 34H05 PDF BibTeX XML Cite \textit{B. K. Sharma} et al., Nonlinear Dyn. Syst. Theory 20, No. 5, 542--551 (2020; Zbl 1458.34101) Full Text: Link OpenURL
Wang, Heyuan; Li, Jia; Wang, Meiyu; Song, Siqi; Wang, Xiaofan; Cao, Tingting Dynamical behavior analysis and numerical simulation of new five-mode Lorenz-like equations. (Chinese. English summary) Zbl 1463.35407 J. Shenyang Norm. Univ., Nat. Sci. 38, No. 2, 164-170 (2020). MSC: 35Q30 37D45 65P40 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Shenyang Norm. Univ., Nat. Sci. 38, No. 2, 164--170 (2020; Zbl 1463.35407) Full Text: DOI OpenURL
Pena Ramirez, Jonatan; Alvarez, Joaquin Mixed synchronization in unidirectionally coupled chaotic oscillators. (English) Zbl 1454.93265 Lacarbonara, Walter (ed.) et al., Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume II. Cham: Springer. 315-323 (2020). MSC: 93D99 93C15 34H10 PDF BibTeX XML Cite \textit{J. Pena Ramirez} and \textit{J. Alvarez}, in: Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume II. Cham: Springer. 315--323 (2020; Zbl 1454.93265) Full Text: DOI OpenURL
Shen, Bo-Wen Homoclinic orbits and solitary waves within the nondissipative Lorenz model and KdV equation. (English) Zbl 1471.34084 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050257, 15 p. (2020). Reviewer: Yingxin Guo (Qufu) MSC: 34C37 35C07 92D25 PDF BibTeX XML Cite \textit{B.-W. Shen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050257, 15 p. (2020; Zbl 1471.34084) Full Text: DOI OpenURL
Goluskin, David Bounding extrema over global attractors using polynomial optimisation. (English) Zbl 1453.37075 Nonlinearity 33, No. 9, 4878-4899 (2020). MSC: 37M22 37C70 37C75 90C23 90C90 PDF BibTeX XML Cite \textit{D. Goluskin}, Nonlinearity 33, No. 9, 4878--4899 (2020; Zbl 1453.37075) Full Text: DOI arXiv OpenURL
Wang, Shuai; Yang, Xue; Li, Yong The mechanism of rotating waves in a ring of unidirectionally coupled Lorenz systems. (English) Zbl 07265419 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105370, 12 p. (2020). Reviewer: Chunrui Zhang (Harbin) MSC: 34C25 34C15 34C23 34C05 34D20 PDF BibTeX XML Cite \textit{S. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105370, 12 p. (2020; Zbl 07265419) Full Text: DOI OpenURL
Meddour, Lotfi; Zeraoulia, Elhadj About the three-dimensional quadratic autonomous system with two quadratic terms equivalent to the Lorenz system. (English) Zbl 1448.93136 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 133-143 (2020). MSC: 93C15 93C10 34C28 34C41 PDF BibTeX XML Cite \textit{L. Meddour} and \textit{E. Zeraoulia}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 133--143 (2020; Zbl 1448.93136) Full Text: Link OpenURL
Huang, Lilian; Zhang, Zefeng; Xiang, Jianhong Simplified method and synchronization for a class of complex chaotic systems. (English) Zbl 1451.34073 Math. Methods Appl. Sci. 43, No. 4, 1857-1867 (2020). Reviewer: Changjin Xu (Guiyang) MSC: 34D06 34A34 34C28 34C20 34H10 PDF BibTeX XML Cite \textit{L. Huang} et al., Math. Methods Appl. Sci. 43, No. 4, 1857--1867 (2020; Zbl 1451.34073) Full Text: DOI OpenURL
Leonov, G. A.; Mokaev, R. N.; Kuznetsov, N. V.; Mokaev, T. N. Homoclinic bifurcations and chaos in the fishing principle for the Lorenz-like systems. (English) Zbl 1450.34027 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050124, 20 p. (2020). MSC: 34C23 34C28 34A34 34C37 37M20 PDF BibTeX XML Cite \textit{G. A. Leonov} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050124, 20 p. (2020; Zbl 1450.34027) Full Text: DOI OpenURL
Pecher, Hartmut Low regularity well-posedness for the Yang-Mills system in Fourier-Lebesgue spaces. (English) Zbl 1452.35161 SIAM J. Math. Anal. 52, No. 4, 3131-3148 (2020). Reviewer: Markus Holzmann (Graz) MSC: 35Q40 35L70 81T13 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{H. Pecher}, SIAM J. Math. Anal. 52, No. 4, 3131--3148 (2020; Zbl 1452.35161) Full Text: DOI arXiv OpenURL
Yang, Fangyan; Cao, Yongming; Chen, Lijuan; Li, Qingdu Sequence of routes to chaos in a Lorenz-type system. (English) Zbl 1448.34092 Discrete Dyn. Nat. Soc. 2020, Article ID 3162170, 10 p. (2020). Reviewer: Aleksandra Tutueva (St. Petersburg) MSC: 34C28 34A34 34D45 34C23 34C05 34C14 37D45 PDF BibTeX XML Cite \textit{F. Yang} et al., Discrete Dyn. Nat. Soc. 2020, Article ID 3162170, 10 p. (2020; Zbl 1448.34092) Full Text: DOI OpenURL
Geurts, Bernard J.; Holm, Darryl D.; Luesink, Erwin Lyapunov exponents of two stochastic Lorenz 63 systems. (English) Zbl 1459.37066 J. Stat. Phys. 179, No. 5-6, 1343-1365 (2020). MSC: 37L55 37A60 37D25 34D08 60H30 76M35 PDF BibTeX XML Cite \textit{B. J. Geurts} et al., J. Stat. Phys. 179, No. 5--6, 1343--1365 (2020; Zbl 1459.37066) Full Text: DOI arXiv OpenURL
Milici, Constantin; Machado, José Tenreiro; Drăgănescu, Gheorghe Application of the Euler and Runge-Kutta generalized methods for FDE and symbolic packages in the analysis of some fractional attractors. (English) Zbl 07201330 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 159-170 (2020). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{C. Milici} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 159--170 (2020; Zbl 07201330) Full Text: DOI OpenURL
Liu, Yang; Wada, Takeshi Long range scattering for the Maxwell-Schrödinger system in the Lorenz gauge without any restriction on the size of data. (English) Zbl 1434.35214 J. Differ. Equations 269, No. 4, 2798-2852 (2020). MSC: 35Q61 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{T. Wada}, J. Differ. Equations 269, No. 4, 2798--2852 (2020; Zbl 1434.35214) Full Text: DOI OpenURL
Wang, Haijun; Zhang, Fumin Bifurcations, ultimate boundedness and singular orbits in a unified hyperchaotic Lorenz-type system. (English) Zbl 1471.34071 Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1791-1820 (2020). Reviewer: Gheorghe Tigan (Timișoara) MSC: 34C23 34C45 34C37 34C11 34A34 34C28 PDF BibTeX XML Cite \textit{H. Wang} and \textit{F. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1791--1820 (2020; Zbl 1471.34071) Full Text: DOI OpenURL
Breden, Maxime; Kuehn, Christian Computing invariant sets of random differential equations using polynomial chaos. (English) Zbl 1441.37057 SIAM J. Appl. Dyn. Syst. 19, No. 1, 577-618 (2020). Reviewer: Carlo Laing (Auckland) MSC: 37H10 37H05 37M21 37M22 34F05 60H35 41A58 65C30 PDF BibTeX XML Cite \textit{M. Breden} and \textit{C. Kuehn}, SIAM J. Appl. Dyn. Syst. 19, No. 1, 577--618 (2020; Zbl 1441.37057) Full Text: DOI arXiv OpenURL
Yang, Ting Homoclinic orbits and chaos in the generalized Lorenz system. (English) Zbl 1450.34029 Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 1097-1108 (2020). Reviewer: Nikolay Dimitrov (Ruse) MSC: 34C37 34C28 34C05 34D20 34C45 37D45 PDF BibTeX XML Cite \textit{T. Yang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 1097--1108 (2020; Zbl 1450.34029) Full Text: DOI OpenURL
Gao, Richie A novel track control for Lorenz system with single state feedback. (English) Zbl 1448.93128 Chaos Solitons Fractals 122, 236-244 (2019). MSC: 93C10 34H10 34C60 93D09 PDF BibTeX XML Cite \textit{R. Gao}, Chaos Solitons Fractals 122, 236--244 (2019; Zbl 1448.93128) Full Text: DOI OpenURL
Reyes, Tiffany; Shen, Bo-Wen A recurrence analysis of chaotic and non-chaotic solutions within a generalized nine-dimensional Lorenz model. (English) Zbl 1448.34091 Chaos Solitons Fractals 125, 1-12 (2019). MSC: 34C28 37B20 34C25 34C60 PDF BibTeX XML Cite \textit{T. Reyes} and \textit{B.-W. Shen}, Chaos Solitons Fractals 125, 1--12 (2019; Zbl 1448.34091) Full Text: DOI OpenURL
Peng, Dong; Sun, Kehui; He, Shaobo; Alamodi, Abdulaziz O. A. What is the lowest order of the fractional-order chaotic systems to behave chaotically? (English) Zbl 1448.34090 Chaos Solitons Fractals 119, 163-170 (2019). MSC: 34C28 65P20 34A08 65L05 PDF BibTeX XML Cite \textit{D. Peng} et al., Chaos Solitons Fractals 119, 163--170 (2019; Zbl 1448.34090) Full Text: DOI OpenURL
Khennaoui, Amina-Aicha; Ouannas, Adel; Bendoukha, Samir; Grassi, Giuseppe; Lozi, René Pierre; Pham, Viet-Thanh On fractional-order discrete-time systems: chaos, stabilization and synchronization. (English) Zbl 1451.37052 Chaos Solitons Fractals 119, 150-162 (2019). MSC: 37D45 93C55 39A33 39A30 PDF BibTeX XML Cite \textit{A.-A. Khennaoui} et al., Chaos Solitons Fractals 119, 150--162 (2019; Zbl 1451.37052) Full Text: DOI OpenURL
Tusset, Angelo M.; Balthazar, Jose M.; Ribeiro, Mauricio A.; Lenz, Wagner B.; Marsola, Thiago C. L.; Pereira, Mateus F. V. Dynamics analysis and control of the Malkus-Lorenz waterwheel with parametric errors. (English) Zbl 1452.70009 Belhaq, Mohamed (ed.), Topics in nonlinear mechanics and physics. Selected papers from CSNDD 2018, the 4th international conference on structural nonlinear dynamics and diagnosis, Tangier, Morocco, June 25–27, 2018. Singapore: Springer. Springer Proc. Phys. 228, 57-70 (2019). MSC: 70E60 93B52 93C15 PDF BibTeX XML Cite \textit{A. M. Tusset} et al., Springer Proc. Phys. 228, 57--70 (2019; Zbl 1452.70009) Full Text: DOI OpenURL
Xu, Jianzhong; Wang, Weigang; Mo, Jiaqi Asymptotic solution to a class of turbulent Lorenz system for atmospheric physics. (Chinese. English summary) Zbl 1449.34182 J. Jilin Univ., Sci. 57, No. 5, 1041-1046 (2019). MSC: 34D05 34A12 34A34 34C28 PDF BibTeX XML Cite \textit{J. Xu} et al., J. Jilin Univ., Sci. 57, No. 5, 1041--1046 (2019; Zbl 1449.34182) Full Text: DOI OpenURL
Cang, Shijian; Li, Yue; Zhang, Ruiye; Wang, Zenghui Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points. (English) Zbl 1439.34045 Nonlinear Dyn. 95, No. 1, 381-390 (2019). MSC: 34C28 37D45 34D45 PDF BibTeX XML Cite \textit{S. Cang} et al., Nonlinear Dyn. 95, No. 1, 381--390 (2019; Zbl 1439.34045) Full Text: DOI OpenURL
Schoenmaker, Wim; Brachtendorf, Hans-Georg; Bittner, Kai; Tischendorf, Caren; Strohm, Christian EM-equations, coupling to heat and to circuits. (English) Zbl 1441.78004 ter Maten, E. Jan W. (ed.) et al., Nanoelectronic coupled problems solutions. Cham: Springer. Math. Ind. 29, 25-41 (2019). MSC: 78A25 78A35 78-02 94C05 65L80 80A19 35K05 35Q60 35Q81 PDF BibTeX XML Cite \textit{W. Schoenmaker} et al., Math. Ind. 29, 25--41 (2019; Zbl 1441.78004) Full Text: DOI OpenURL
Pecher, Hartmut Low regularity local well-posedness for the higher-dimensional Yang-Mills equation in Lorenz gauge. (English) Zbl 1437.35598 Adv. Differ. Equ. 24, No. 5-6, 283-320 (2019). MSC: 35Q40 35L70 81T13 35B65 35A01 35A02 70S15 PDF BibTeX XML Cite \textit{H. Pecher}, Adv. Differ. Equ. 24, No. 5--6, 283--320 (2019; Zbl 1437.35598) Full Text: Euclid OpenURL
Hassan, Sk. Sarif Computational complex dynamics of the discrete Lorenz system. (English) Zbl 1431.34064 J. Appl. Nonlinear Dyn. 8, No. 3, 345-366 (2019). MSC: 34C60 34C28 37D45 PDF BibTeX XML Cite \textit{Sk. S. Hassan}, J. Appl. Nonlinear Dyn. 8, No. 3, 345--366 (2019; Zbl 1431.34064) Full Text: DOI arXiv OpenURL
Cameron, Maria; Yang, Shuo Computing the quasipotential for highly dissipative and chaotic SDEs an application to stochastic Lorenz’63. (English) Zbl 1451.65164 Commun. Appl. Math. Comput. Sci. 14, No. 2, 207-246 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 65M75 65C30 34F05 60H10 58J65 PDF BibTeX XML Cite \textit{M. Cameron} and \textit{S. Yang}, Commun. Appl. Math. Comput. Sci. 14, No. 2, 207--246 (2019; Zbl 1451.65164) Full Text: DOI arXiv OpenURL
Kamdem Kuate, P. D.; Lai, Qiang; Fotsin, Hilaire Dynamics, synchronization and electronic implementations of a new Lorenz-like chaotic system with nonhyperbolic equilibria. (English) Zbl 1443.34019 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950197, 19 p. (2019). MSC: 34A34 34C28 34C23 34D06 34D08 34D45 94C60 34A36 PDF BibTeX XML Cite \textit{P. D. Kamdem Kuate} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950197, 19 p. (2019; Zbl 1443.34019) Full Text: DOI OpenURL
Wawrzaszek, Anna; Krasińska, Agata Hopf bifurcations, periodic windows and intermittency in the generalized Lorenz model. (English) Zbl 1439.34022 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1930042, 15 p. (2019). MSC: 34A34 34C23 34C05 34D20 34C28 PDF BibTeX XML Cite \textit{A. Wawrzaszek} and \textit{A. Krasińska}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1930042, 15 p. (2019; Zbl 1439.34022) Full Text: DOI OpenURL
Song, Juan; Niu, Yanmin; Li, Xiong The existence of homoclinic orbits in the Lorenz system via the undetermined coefficient method. (English) Zbl 1428.34062 Appl. Math. Comput. 355, 497-515 (2019). MSC: 34C37 37C29 37D45 PDF BibTeX XML Cite \textit{J. Song} et al., Appl. Math. Comput. 355, 497--515 (2019; Zbl 1428.34062) Full Text: DOI OpenURL
Li, Wenjuan; Niu, Xiaomeng; Li, Xuchao; Yu, Yuanhong Hopf bifurcation analysis of the four dimensiond hyperchaotic Lorenz system. (Chinese. English summary) Zbl 1438.34127 Math. Pract. Theory 49, No. 5, 295-301 (2019). MSC: 34C23 34D20 34A34 34C28 34C05 PDF BibTeX XML Cite \textit{W. Li} et al., Math. Pract. Theory 49, No. 5, 295--301 (2019; Zbl 1438.34127) OpenURL
Demina, Maria V. Classification of meromorphic integrals for autonomous nonlinear ordinary differential equations with two dominant monomials. (English) Zbl 1425.34103 J. Math. Anal. Appl. 479, No. 2, 1851-1862 (2019). Reviewer: Mykola Grygorenko (Kyïv) MSC: 34M05 30D35 PDF BibTeX XML Cite \textit{M. V. Demina}, J. Math. Anal. Appl. 479, No. 2, 1851--1862 (2019; Zbl 1425.34103) Full Text: DOI OpenURL
Wang, Haijun On singular orbits and global exponential attractive set of a Lorenz-type system. (English) Zbl 1423.34024 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 6, Article ID 1950082, 11 p. (2019). MSC: 34A34 34C28 34C37 34D45 PDF BibTeX XML Cite \textit{H. Wang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 6, Article ID 1950082, 11 p. (2019; Zbl 1423.34024) Full Text: DOI OpenURL
Pecher, Hartmut The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. (English) Zbl 1415.35234 Discrete Contin. Dyn. Syst. 39, No. 8, 4875-4893 (2019). MSC: 35Q40 35L70 PDF BibTeX XML Cite \textit{H. Pecher}, Discrete Contin. Dyn. Syst. 39, No. 8, 4875--4893 (2019; Zbl 1415.35234) Full Text: DOI arXiv OpenURL
Chen, Yuming; Yin, Zongbin The Jacobi stability of a Lorenz-type multistable hyperchaotic system with a curve of equilibria. (English) Zbl 1419.34138 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 5, Article ID 1950062, 10 p. (2019). MSC: 34C28 34A34 37D45 34C05 34D20 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{Z. Yin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 5, Article ID 1950062, 10 p. (2019; Zbl 1419.34138) Full Text: DOI OpenURL
Shen, Bo-Wen Aggregated negative feedback in a generalized Lorenz model. (English) Zbl 1414.34011 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 3, Article ID 1950037, 20 p. (2019). MSC: 34A34 93B52 34D08 34C28 PDF BibTeX XML Cite \textit{B.-W. Shen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 3, Article ID 1950037, 20 p. (2019; Zbl 1414.34011) Full Text: DOI OpenURL
Van Kekem, Dirk L.; Sterk, Alef E. Symmetries in the Lorenz-96 model. (English) Zbl 1415.34040 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950008, 18 p. (2019). MSC: 34A34 34C14 34C23 34C45 37G40 34C05 PDF BibTeX XML Cite \textit{D. L. Van Kekem} and \textit{A. E. Sterk}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950008, 18 p. (2019; Zbl 1415.34040) Full Text: DOI arXiv OpenURL
Wu, Yan; Braselton, Jim; Jin, Yao; El Shahat, Adel Adaptive control of bi-directionally coupled Lorenz systems with uncertainties. (English) Zbl 1406.93175 J. Franklin Inst. 356, No. 3, 1287-1301 (2019). MSC: 93C40 93C41 93D05 93C15 37D45 93B52 37N35 PDF BibTeX XML Cite \textit{Y. Wu} et al., J. Franklin Inst. 356, No. 3, 1287--1301 (2019; Zbl 1406.93175) Full Text: DOI OpenURL
Liu, Yongjian; Wei, Zhouchao; Li, Chunbiao; Liu, Aimin; Li, Lijie Attractor and bifurcation of forced Lorenz-84 system. (English) Zbl 1418.60060 Int. J. Geom. Methods Mod. Phys. 16, No. 1, Article ID 1950002, 20 p. (2019). MSC: 60H10 34D23 34C27 34D45 34F05 PDF BibTeX XML Cite \textit{Y. Liu} et al., Int. J. Geom. Methods Mod. Phys. 16, No. 1, Article ID 1950002, 20 p. (2019; Zbl 1418.60060) Full Text: DOI OpenURL
Sun, Baojiang; Li, Min; Zhang, Fangfang; Wang, Hui; Liu, Jian The characteristics and self-time-delay synchronization of two-time-delay complex Lorenz system. (English) Zbl 1405.93117 J. Franklin Inst. 356, No. 1, 334-350 (2019). MSC: 93C15 93C10 37D45 34C28 34H10 PDF BibTeX XML Cite \textit{B. Sun} et al., J. Franklin Inst. 356, No. 1, 334--350 (2019; Zbl 1405.93117) Full Text: DOI OpenURL
Pecher, Hartmut Infinite energy solutions for the \((3+1)\)-dimensional Yang-Mills equation in Lorenz gauge. (English) Zbl 1406.35313 Commun. Pure Appl. Anal. 18, No. 2, 663-688 (2019). MSC: 35Q40 35L70 81T13 70S15 PDF BibTeX XML Cite \textit{H. Pecher}, Commun. Pure Appl. Anal. 18, No. 2, 663--688 (2019; Zbl 1406.35313) Full Text: DOI OpenURL
Nespirnyy, V. N. Mutual synchronization of two Lorenz systems in the class of impulsive controls. (Russian. English summary) Zbl 1487.34120 Mekh. Tverd. Tela 48, 57-64 (2018). MSC: 34H05 34A37 93D05 PDF BibTeX XML Cite \textit{V. N. Nespirnyy}, Mekh. Tverd. Tela 48, 57--64 (2018; Zbl 1487.34120) Full Text: Link OpenURL
Wang, Haijun; Li, Xianyi Hopf bifurcation and new singular orbits coined in a Lorenz-like system. (English) Zbl 1461.34024 J. Appl. Anal. Comput. 8, No. 5, 1307-1325 (2018). MSC: 34A34 34C05 34C23 34C37 34D20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{X. Li}, J. Appl. Anal. Comput. 8, No. 5, 1307--1325 (2018; Zbl 1461.34024) Full Text: DOI OpenURL
Paulin, Daniel; Jasra, Ajay; Crisan, Dan; Beskos, Alexandros On concentration properties of partially observed chaotic systems. (English) Zbl 1434.37047 Adv. Appl. Probab. 50, No. 2, 440-479 (2018). MSC: 37M22 37D45 34C28 70K55 PDF BibTeX XML Cite \textit{D. Paulin} et al., Adv. Appl. Probab. 50, No. 2, 440--479 (2018; Zbl 1434.37047) Full Text: DOI arXiv OpenURL
Kazakov, A. O.; Kozlov, A. D. The assymmetric Lorenz attractor as an example of a new pseudohyperbolic attractor of three-dimensional systems. (Russian. English summary) Zbl 1449.34045 Zh. Sredn. Mat. Obshch. 20, No. 2, 187-198 (2018). Reviewer: Artyom Andronov (Saransk) MSC: 34A34 34C23 34D45 37D45 34C37 34D08 34C14 PDF BibTeX XML Cite \textit{A. O. Kazakov} and \textit{A. D. Kozlov}, Zh. Sredn. Mat. Obshch. 20, No. 2, 187--198 (2018; Zbl 1449.34045) Full Text: DOI OpenURL
Kanchana, C. Transforming analytically intractable dynamical systems with a control parameter into a tractable Ginzburg-Landau equation: few illustration. (English) Zbl 1433.34056 Nepali Math. Sci. Rep. 35, No. 1-2, 35-44 (2018). MSC: 34C20 PDF BibTeX XML Cite \textit{C. Kanchana}, Nepali Math. Sci. Rep. 35, No. 1--2, 35--44 (2018; Zbl 1433.34056) OpenURL
Huang, Kaiyin; Shi, Shaoyun; Li, Wenlei Meromorphic and formal first integrals for the Lorenz system. (English) Zbl 1420.34004 J. Nonlinear Math. Phys. 25, No. 1, 106-121 (2018). MSC: 34A05 34C14 37C10 37J35 PDF BibTeX XML Cite \textit{K. Huang} et al., J. Nonlinear Math. Phys. 25, No. 1, 106--121 (2018; Zbl 1420.34004) Full Text: DOI OpenURL
Zlatanovska, Biljana; Dimovski, Dončo Models for the Lorenz system. (English) Zbl 1421.39001 Mat. Bilt. 42, No. 2, 75-84 (2018). MSC: 39A10 65L06 PDF BibTeX XML Cite \textit{B. Zlatanovska} and \textit{D. Dimovski}, Mat. Bilt. 42, No. 2, 75--84 (2018; Zbl 1421.39001) Full Text: Link OpenURL
Eilertsen, Justin S.; Magnan, Jerry F. Asymptotically exact codimension-four dynamics and bifurcations in two-dimensional thermosolutal convection at high thermal Rayleigh number: chaos from a quasi-periodic homoclinic explosion and quasi-periodic intermittency. (English) Zbl 1415.37046 Physica D 382-383, 1-21 (2018). MSC: 37D45 37G10 76R50 76R10 35B35 PDF BibTeX XML Cite \textit{J. S. Eilertsen} and \textit{J. F. Magnan}, Physica D 382--383, 1--21 (2018; Zbl 1415.37046) Full Text: DOI OpenURL
Inage, Shin-ichi; Yamaguchi, Kazumi Proposal of the “data to equation” algorithm. (English) Zbl 1415.37104 Chaos Solitons Fractals 114, 423-432 (2018). MSC: 37M10 65Q10 PDF BibTeX XML Cite \textit{S.-i. Inage} and \textit{K. Yamaguchi}, Chaos Solitons Fractals 114, 423--432 (2018; Zbl 1415.37104) Full Text: DOI OpenURL
Wang, Jinbin; Zhang, Rui Analysis on chaos synchronization of time-delay Lorenz system. (Chinese. English summary) Zbl 1424.34243 Math. Pract. Theory 48, No. 12, 254-258 (2018). MSC: 34K18 34A34 34K23 34K20 34K25 34K50 PDF BibTeX XML Cite \textit{J. Wang} and \textit{R. Zhang}, Math. Pract. Theory 48, No. 12, 254--258 (2018; Zbl 1424.34243) OpenURL
Bálint, Péter; Melbourne, Ian Statistical properties for flows with unbounded roof function, including the Lorenz attractor. (English) Zbl 1405.60029 J. Stat. Phys. 172, No. 4, 1101-1126 (2018). MSC: 60F05 34D45 PDF BibTeX XML Cite \textit{P. Bálint} and \textit{I. Melbourne}, J. Stat. Phys. 172, No. 4, 1101--1126 (2018; Zbl 1405.60029) Full Text: DOI arXiv Link OpenURL