×

On the generalized Lorenz canonical form. (English) Zbl 1100.37016

Here, the generalized Lorenz canonical form is introduced and used to classify various recently published chaotic systems. This classification with respect to global nonsingular coordinate transformation and time scaling is summarized as well.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37A40 Nonsingular (and infinite-measure preserving) transformations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Čelikovský, S.; Chen, G., On a generalized Lorenz canonical form of chaotic systems, Int J Bifur Chaos, 12, 1789-1812 (2002) · Zbl 1043.37023
[2] Čelikovský S, Chen G. Hyperbolic-type generalized Lorenz system and its canonical form. In: Proceedings of the 15th triennial world congress of IFAC, Barcelona, Spain, July 2002, CD ROM.; Čelikovský S, Chen G. Hyperbolic-type generalized Lorenz system and its canonical form. In: Proceedings of the 15th triennial world congress of IFAC, Barcelona, Spain, July 2002, CD ROM.
[3] Čelikovský, S.; Vaněček, A., Bilinear systems and chaos, Kybernetika, 30, 403-424 (1994) · Zbl 0823.93026
[4] Chen, G.; Dong, X., From chaos to order: methodologies, perspectives, and applications (1998), World Scientific Pub. Co.: World Scientific Pub. Co. Singapore
[5] Chen, G.; Ueta, T., Yet another chaotic attractor, Int J Bifur Chaos, 9, 1465-1466 (1999) · Zbl 0962.37013
[6] Li, T. C.; Chen, G.; Tang, Y., On stability and bifurcation of Chen’s system, Chaos, Solitons & Fractals, 19, 1269-1282 (2004) · Zbl 1069.34060
[7] Lian, K.; Liu, P., Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis, IEEE Trans Circ Syst-I, 47, 1418-1424 (2000) · Zbl 1011.94033
[8] Liu, C.; Liu, T.; Liu, L.; Liu, K., A new chaotic attractor, Chaos, Solitons & Fractals, 22, 1031-1038 (2004) · Zbl 1060.37027
[9] Lorenz, E. N., Deterministic nonperiodic flow, J Atmos Sci, 20, 130-141 (1963) · Zbl 1417.37129
[10] Lü, J.; Chen, G., A new chaotic attractor coined, Int J Bifur Chaos, 12, 659-661 (2002) · Zbl 1063.34510
[11] Lü, J.; Chen, G.; Cheng, D.; Čelikovský, S., Bridge the gap between the Lorenz system and the Chen system, Int J Bifur Chaos, 12, 2917-2926 (2002) · Zbl 1043.37026
[12] Shilnikov, A. L.; Shilnikov, L. P.; Turaev, D. V., Normal forms and Lorenz attractors, Int J Bifur Chaos, 3, 1123-1139 (1993) · Zbl 0885.58080
[13] Shimizu, T.; Morioka, N., On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model, Phys Lett A, 76, 3-4, 201-204 (1976)
[14] Sparrow, C., The Lorenz equations: bifurcation, chaos, and strange attractor (1982), Springer-Verlag: Springer-Verlag New York
[15] Ueta, T.; Chen, G., Bifurcation analysis of Chen’s equation, Int J Bifur Chaos, 10, 1917-1931 (2000) · Zbl 1090.37531
[16] Vaněček, A.; Čelikovský, S., Control systems: from linear analysis to synthesis of chaos (1996), Prentice-Hall: Prentice-Hall London · Zbl 0874.93006
[17] Zhou, T. S.; Chen, G.; Čelikovský, S., Si’lnikov chaos in the generalized Lorenz canonical form of dynamics systems, Nonlinear Dynamics, 39, 319-334 (2005) · Zbl 1142.70012
[18] Zhou, T. S.; Chen, G.; Tang, Y., Chen’s attractor exists, Int J Bifur Chaos, 14, 3167-3178 (2004) · Zbl 1129.37326
[19] Zhou, T. S.; Chen, G.; Tang, Y., Complex dynamical behaviors of the chaotic Chen’s system, Int J Bifur Chaos, 13, 2561-2574 (2003) · Zbl 1046.37018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.