Bukhari, Ayaz Hussain; Shoaib, Muhammad; Kiani, Adiqa Kausar; Chaudhary, Naveed Ishtiaq; Raja, Muhammad Asif Zahoor; Shu, Chi-Min Dynamical analysis of nonlinear fractional order Lorenz system with a novel design of intelligent solution predictive radial base networks. (English) Zbl 07736748 Math. Comput. Simul. 213, 324-347 (2023). MSC: 37-XX 34-XX PDF BibTeX XML Cite \textit{A. H. Bukhari} et al., Math. Comput. Simul. 213, 324--347 (2023; Zbl 07736748) Full Text: DOI
Čelikovský, Sergej; Lynnyk, Volodymyr; Lynnyk, Anna; Rehák, Branislav Generalized synchronization in the networks with directed acyclic structure. (English) Zbl 07729620 Kybernetika 59, No. 3, 437-460 (2023). MSC: 93C10 05C82 34D06 PDF BibTeX XML Cite \textit{S. Čelikovský} et al., Kybernetika 59, No. 3, 437--460 (2023; Zbl 07729620) Full Text: DOI
Vargas, D. A.; Falgout, R. D.; Günther, S.; Schroder, J. B. Multigrid reduction in time for chaotic dynamical systems. (English) Zbl 07729494 SIAM J. Sci. Comput. 45, No. 4, A2019-A2042 (2023). MSC: 65M22 65M55 65M06 65Y05 35Q53 PDF BibTeX XML Cite \textit{D. A. Vargas} et al., SIAM J. Sci. Comput. 45, No. 4, A2019--A2042 (2023; Zbl 07729494) Full Text: DOI arXiv
Elsonbaty, A.; Salman, Sanaa M.; Aldurayhim, A.; Abdo, N. F.; Hagras, E. A.; Elsadany, A. A. Dynamical analysis and encryption key-distribution application of new q-deformed reduced Lorenz system. (English) Zbl 1516.39002 S\(\vec{\text{e}}\)MA J. 80, No. 1, 131-158 (2023). MSC: 39A28 39A13 39A33 68P25 94A08 PDF BibTeX XML Cite \textit{A. Elsonbaty} et al., S\(\vec{\text{e}}\)MA J. 80, No. 1, 131--158 (2023; Zbl 1516.39002) Full Text: DOI
Baysal, Veli; Solmaz, Ramazan; Ma, Jun Investigation of chaotic resonance in type-I and type-II Morris-Lecar neurons. (English) Zbl 1511.92009 Appl. Math. Comput. 448, Article ID 127940, 11 p. (2023). MSC: 92C20 34C15 PDF BibTeX XML Cite \textit{V. Baysal} et al., Appl. Math. Comput. 448, Article ID 127940, 11 p. (2023; Zbl 1511.92009) Full Text: DOI
Meddour, Lotfi; Belakroum, Kheireddine On the equivalence of Lorenz system and Li system. (English) Zbl 07695433 Nonlinear Dyn. Syst. Theory 22, No. 1, 58-65 (2022). MSC: 34C41 34C20 37C15 PDF BibTeX XML Cite \textit{L. Meddour} and \textit{K. Belakroum}, Nonlinear Dyn. Syst. Theory 22, No. 1, 58--65 (2022; Zbl 07695433) Full Text: Link
Samia, Rezzag Chaos synchronization of the 4D hyperchaotic Lorenz Stenflo system. (English) Zbl 1504.65276 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 5, 391-397 (2022). MSC: 65P20 65P30 65P40 PDF BibTeX XML Cite \textit{R. Samia}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 5, 391--397 (2022; Zbl 1504.65276) Full Text: Link
Zlatanovska, Biljana; Piperevski, Boro A particular solution of the third-order shortened Lorenz system via integrability of a class of differential equations. (English) Zbl 1504.34003 Asian-Eur. J. Math. 15, No. 10, Article ID 2250242, 13 p. (2022). MSC: 34A05 34A34 34A12 PDF BibTeX XML Cite \textit{B. Zlatanovska} and \textit{B. Piperevski}, Asian-Eur. J. Math. 15, No. 10, Article ID 2250242, 13 p. (2022; Zbl 1504.34003) Full Text: DOI
Zlatanovska, Biljana; Dimovski, Dončo Recurrent solutions of the Lorenz system of differential equations. (English) Zbl 1505.65311 Asian-Eur. J. Math. 15, No. 10, Article ID 2250241, 32 p. (2022). MSC: 65Q10 39A12 41A58 65Q30 PDF BibTeX XML Cite \textit{B. Zlatanovska} and \textit{D. Dimovski}, Asian-Eur. J. Math. 15, No. 10, Article ID 2250241, 32 p. (2022; Zbl 1505.65311) Full Text: DOI
Zhang, Fangfang; Zhang, Shuaihu; Chen, Guanrong; Li, Chunbiao; Li, Zhengfeng; Pan, Changchun Special attractors and dynamic transport of the hybrid-order complex Lorenz system. (English) Zbl 1508.37048 Chaos Solitons Fractals 164, Article ID 112700, 27 p. (2022). MSC: 37D45 34A08 26A33 PDF BibTeX XML Cite \textit{F. Zhang} et al., Chaos Solitons Fractals 164, Article ID 112700, 27 p. (2022; Zbl 1508.37048) Full Text: DOI
Gonchenko, Aleksandr Sergeevich; Korotkov, Aleksandr Gennad’evich; Samylina, Evgeniya Aleksandrovna On a reversible three-dimensional system containing attractor and Lorenz repeller. (Russian. English summary) Zbl 1509.37039 Differ. Uravn. Protsessy Upr. 2022, No. 2, 187-204 (2022). MSC: 37D45 37G35 PDF BibTeX XML Cite \textit{A. S. Gonchenko} et al., Differ. Uravn. Protsessy Upr. 2022, No. 2, 187--204 (2022; Zbl 1509.37039) Full Text: Link
Du, Qiang; Gu, Yiqi; Yang, Haizhao; Zhou, Chao The discovery of dynamics via linear multistep methods and deep learning: error estimation. (English) Zbl 1506.65105 SIAM J. Numer. Anal. 60, No. 4, 2014-2045 (2022). MSC: 65L06 65L09 65L20 68T07 PDF BibTeX XML Cite \textit{Q. Du} et al., SIAM J. Numer. Anal. 60, No. 4, 2014--2045 (2022; Zbl 1506.65105) Full Text: DOI arXiv
Khodakaram-Tafti, Amin; Emdad, Homayoun; Mahzoon, Mojtaba Dynamical and chaotic behaviors of natural convection flow in semi-annular cylindrical domains using energy-conserving low-order spectral models. (English) Zbl 1510.76052 Appl. Math. Comput. 433, Article ID 127415, 21 p. (2022). MSC: 76E06 PDF BibTeX XML Cite \textit{A. Khodakaram-Tafti} et al., Appl. Math. Comput. 433, Article ID 127415, 21 p. (2022; Zbl 1510.76052) Full Text: DOI
Yang, Shuangling; Shi, Shaoyun; Li, Wenlei On integrability of the segmented disc dynamo: the effect of mechanical friction. (English) Zbl 1510.70044 Z. Angew. Math. Phys. 73, No. 3, Paper No. 125, 33 p. (2022). MSC: 70H06 70H07 78A55 PDF BibTeX XML Cite \textit{S. Yang} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 125, 33 p. (2022; Zbl 1510.70044) Full Text: DOI
Rohila, Rajni; Mittal, R. C. Analysis of chaotic behavior of three-dimensional dynamical systems by a \(B\)-spline differential quadrature algorithm. (English) Zbl 1520.65079 Asian-Eur. J. Math. 15, No. 4, Article ID 2250077, 31 p. (2022). MSC: 65P10 65D07 PDF BibTeX XML Cite \textit{R. Rohila} and \textit{R. C. Mittal}, Asian-Eur. J. Math. 15, No. 4, Article ID 2250077, 31 p. (2022; Zbl 1520.65079) Full Text: DOI
Algaba, A.; Domínguez-Moreno, M. C.; Merino, M.; Rodríguez-Luis, A. J. Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system. (English) Zbl 1500.34016 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106482, 23 p. (2022). Reviewer: Yong Ye (Shenzhen) MSC: 34A34 34C20 34C23 34D45 34C37 34E10 34C05 37D45 PDF BibTeX XML Cite \textit{A. Algaba} et al., Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106482, 23 p. (2022; Zbl 1500.34016) Full Text: DOI
Adiyaman, Meltem High order approach for solving chaotic and hyperchaotic problems. (English) Zbl 1499.65270 Hacet. J. Math. Stat. 51, No. 1, 27-47 (2022). MSC: 65L05 65L70 65P20 37M05 PDF BibTeX XML Cite \textit{M. Adiyaman}, Hacet. J. Math. Stat. 51, No. 1, 27--47 (2022; Zbl 1499.65270) Full Text: DOI
Deressa, Chernet Tuge; Etemad, Sina; Kaabar, Mohammed K. A.; Rezapour, Shahram Qualitative analysis of a hyperchaotic Lorenz-Stenflo mathematical model via the Caputo fractional operator. (English) Zbl 1492.34050 J. Funct. Spaces 2022, Article ID 4975104, 21 p. (2022). MSC: 34C60 34A08 76B15 34C05 34D20 34D08 34C28 34C23 PDF BibTeX XML Cite \textit{C. T. Deressa} et al., J. Funct. Spaces 2022, Article ID 4975104, 21 p. (2022; Zbl 1492.34050) Full Text: DOI
Kerin, John; Engler, Hans On the Lorenz ’96 model and some generalizations. (English) Zbl 1492.34055 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 769-797 (2022). Reviewer: Eduard Musafirov (Grodno) MSC: 34C60 86A10 34C14 34C20 34C23 34C05 PDF BibTeX XML Cite \textit{J. Kerin} and \textit{H. Engler}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 769--797 (2022; Zbl 1492.34055) Full Text: DOI arXiv
Cerdán, Luis Ultrashort pulse generation in nanolasers by means of Lorenz-Haken instabilities. (English) Zbl 07768084 Ann. Phys., Berlin 533, No. 9, Article ID 2100122, 11 p. (2021). MSC: 81-XX PDF BibTeX XML Cite \textit{L. Cerdán}, Ann. Phys., Berlin 533, No. 9, Article ID 2100122, 11 p. (2021; Zbl 07768084) Full Text: DOI
Toni, Bourama Archimedean and non-Archimedean approaches to mathematical modeling. (English) Zbl 1504.00010 Toni, Bourama (ed.), The mathematics of patterns, symmetries, and beauties in nature. In honor of John Adam. Cham: Springer. STEAM-H, Sci. Technol. Eng. Agric. Math. Health, 117-142 (2021). MSC: 00A71 PDF BibTeX XML Cite \textit{B. Toni}, in: The mathematics of patterns, symmetries, and beauties in nature. In honor of John Adam. Cham: Springer. 117--142 (2021; Zbl 1504.00010) Full Text: DOI
Yoshida, Hiroyuki From local bifurcations to global dynamics: Hopf systems from the applied perspective. (English) Zbl 1508.37007 Orlando, Giuseppe (ed.) et al., Nonlinearities in economics. An interdisciplinary approach to economic dynamics, growth and cycles. Cham: Springer. Dyn. Model. Econom. Econ. Finance 29, 73-86 (2021). MSC: 37-01 37D45 37G35 37G10 34K18 34K23 PDF BibTeX XML Cite \textit{H. Yoshida}, Dyn. Model. Econom. Econ. Finance 29, 73--86 (2021; Zbl 1508.37007) Full Text: DOI
Singh, Ajit K. Complex chaotic systems and its complexity. (English) Zbl 1497.37043 Chadli, Ouayl (ed.) et al., Mathematical analysis and applications, MAA 2020. Selected papers based on the presentations at the conference, Jamshedpur, India, November 2–4, 2020. Singapore: Springer. Springer Proc. Math. Stat. 381, 155-166 (2021). MSC: 37D45 PDF BibTeX XML Cite \textit{A. K. Singh}, Springer Proc. Math. Stat. 381, 155--166 (2021; Zbl 1497.37043) Full Text: DOI
Dlamini, Anastacia; Goufo, Emile F. Doungmo; Khumalo, Melusi On the Caputo-Fabrizio fractal fractional representation for the Lorenz chaotic system. (English) Zbl 1514.34015 AIMS Math. 6, No. 11, 12395-12421 (2021). MSC: 34A08 34A34 34C28 26A33 65L05 PDF BibTeX XML Cite \textit{A. Dlamini} et al., AIMS Math. 6, No. 11, 12395--12421 (2021; Zbl 1514.34015) Full Text: DOI
Guo, Siyu; Luo, Albert C. J. A family of periodic motions to chaos with infinite homoclinic orbits in the Lorenz system. (English) Zbl 1496.37022 Lobachevskii J. Math. 42, No. 14, 3382-3437 (2021). MSC: 37C29 37C25 37C70 37G15 37G35 PDF BibTeX XML Cite \textit{S. Guo} and \textit{A. C. J. Luo}, Lobachevskii J. Math. 42, No. 14, 3382--3437 (2021; Zbl 1496.37022) Full Text: DOI
Földes, Juraj; Glatt-Holtz, Nathan E.; Herzog, David P. Sensitivity of steady states in a degenerately damped stochastic Lorenz system. (English) Zbl 1487.37069 Stoch. Dyn. 21, No. 8, Article ID 2150055, 32 p. (2021). MSC: 37H30 37A25 37A50 PDF BibTeX XML Cite \textit{J. Földes} et al., Stoch. Dyn. 21, No. 8, Article ID 2150055, 32 p. (2021; Zbl 1487.37069) Full Text: DOI arXiv
Baysal, Veli; Yılmaz, Ergin Chaotic signal induced delay decay in Hodgkin-Huxley neuron. (English) Zbl 1510.92041 Appl. Math. Comput. 411, Article ID 126540, 12 p. (2021). MSC: 92C20 PDF BibTeX XML Cite \textit{V. Baysal} and \textit{E. Yılmaz}, Appl. Math. Comput. 411, Article ID 126540, 12 p. (2021; Zbl 1510.92041) Full Text: DOI
Penenko, Alexey V.; Mukatova, Zhadyra S.; Salimova, Akzhan B. Numerical study of the coefficient identification algorithm based on ensembles of adjoint problem solutions for a production-destruction model. (English) Zbl 07412526 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 5, 581-592 (2021). MSC: 47J06 65N21 PDF BibTeX XML Cite \textit{A. V. Penenko} et al., Int. J. Nonlinear Sci. Numer. Simul. 22, No. 5, 581--592 (2021; Zbl 07412526) Full Text: DOI
Li, Xianyi; Mirjalol, Umirzakov Modeling and analysis of dynamics for a 3D mixed Lorenz system with a damped term. (English) Zbl 07412234 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 2, 217-241 (2021). MSC: 37-XX 34-XX PDF BibTeX XML Cite \textit{X. Li} and \textit{U. Mirjalol}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 2, 217--241 (2021; Zbl 07412234) Full Text: DOI
Zhong, Jiyu Qualitative properties and two strong resonances of a discrete reduced Lorenz system. (English) Zbl 1481.37051 J. Difference Equ. Appl. 27, No. 6, 858-884 (2021). MSC: 37G05 37M20 39A28 39A30 PDF BibTeX XML Cite \textit{J. Zhong}, J. Difference Equ. Appl. 27, No. 6, 858--884 (2021; Zbl 1481.37051) Full Text: DOI
Mider, Marcin; Schauer, Moritz; van der Meulen, Frank Continuous-discrete smoothing of diffusions. (English) Zbl 1475.60150 Electron. J. Stat. 15, No. 2, 4295-4342 (2021). MSC: 60J60 65C05 62F15 PDF BibTeX XML Cite \textit{M. Mider} et al., Electron. J. Stat. 15, No. 2, 4295--4342 (2021; Zbl 1475.60150) Full Text: DOI arXiv Link
Özer, Ahmet Özkan Stabilization results for well-posed potential formulations of a current-controlled piezoelectric beam and their approximations. (English) Zbl 1475.78003 Appl. Math. Optim. 84, No. 1, 877-914 (2021). MSC: 78A25 78A55 74F15 74H15 74N30 93B52 78M20 74S20 PDF BibTeX XML Cite \textit{A. Ö. Özer}, Appl. Math. Optim. 84, No. 1, 877--914 (2021; Zbl 1475.78003) Full Text: DOI
Zhang, Jiantang; Huang, Sixun; Cheng, Jin Parameter estimation for a chaotic dynamical system with partial observations. (English) Zbl 1471.34035 J. Inverse Ill-Posed Probl. 29, No. 4, 515-524 (2021). MSC: 34A34 34C28 93B30 65D30 93C15 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Inverse Ill-Posed Probl. 29, No. 4, 515--524 (2021; Zbl 1471.34035) Full Text: DOI
Huang, Weisheng; Yang, Xiao-Song Chaos in the periodically parametrically excited Lorenz system. (English) Zbl 1471.34083 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 8, Article ID 2130024, 15 p. (2021). MSC: 34C28 34A34 37C60 34D45 37D45 PDF BibTeX XML Cite \textit{W. Huang} and \textit{X.-S. Yang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 8, Article ID 2130024, 15 p. (2021; Zbl 1471.34083) Full Text: DOI
Ginoux, Jean-Marc Slow invariant manifolds of slow-fast dynamical systems. (English) Zbl 1471.34114 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 7, Article ID 2150112, 17 p. (2021). MSC: 34E15 34C45 37M21 PDF BibTeX XML Cite \textit{J.-M. Ginoux}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 7, Article ID 2150112, 17 p. (2021; Zbl 1471.34114) Full Text: DOI arXiv
Zhang, Xu Boundedness of a class of complex Lorenz systems. (English) Zbl 1471.34036 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 7, Article ID 2150101, 22 p. (2021). MSC: 34A34 34C11 34C28 37D45 34D45 PDF BibTeX XML Cite \textit{X. Zhang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 7, Article ID 2150101, 22 p. (2021; Zbl 1471.34036) Full Text: DOI
Čelikovský, Sergej; Chen, Guanrong Generalized Lorenz canonical form revisited. (English) Zbl 1467.93048 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2150079, 15 p. (2021). MSC: 93B10 93C15 93C20 PDF BibTeX XML Cite \textit{S. Čelikovský} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2150079, 15 p. (2021; Zbl 1467.93048) Full Text: DOI
Moon, Sungju; Baik, Jong-Jin; Hong, Seong-Ho Coexisting attractors in a physically extended Lorenz system. (English) Zbl 1469.37059 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2130016, 15 p. (2021). MSC: 37M22 37M20 37D45 PDF BibTeX XML Cite \textit{S. Moon} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 5, Article ID 2130016, 15 p. (2021; Zbl 1469.37059) Full Text: DOI
Guo, Siyu; Luo, Albert C. J. On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system. (English) Zbl 1469.37016 Chaos 31, No. 4, 043106, 13 p. (2021). Reviewer: Zhengdong Du (Chengdu) MSC: 37C29 37C27 37G15 37M20 37M21 PDF BibTeX XML Cite \textit{S. Guo} and \textit{A. C. J. Luo}, Chaos 31, No. 4, 043106, 13 p. (2021; Zbl 1469.37016) Full Text: DOI
Gonchenko, Sergey; Kazakov, Alexey; Turaev, Dmitry Wild pseudohyperbolic attractor in a four-dimensional Lorenz system. (English) Zbl 1472.34106 Nonlinearity 34, No. 4, 2018-2047 (2021). Reviewer: Eduard Musafirov (Grodno) MSC: 34D45 34A34 34C28 37D45 PDF BibTeX XML Cite \textit{S. Gonchenko} et al., Nonlinearity 34, No. 4, 2018--2047 (2021; Zbl 1472.34106) Full Text: DOI arXiv
Ray, Arnob; Pal, Arnab; Ghosh, Dibakar; Dana, Syamal K.; Hens, Chittaranjan Mitigating long transient time in deterministic systems by resetting. (English) Zbl 1466.37060 Chaos 31, No. 1, 011103, 7 p. (2021). MSC: 37M05 37M21 37H10 PDF BibTeX XML Cite \textit{A. Ray} et al., Chaos 31, No. 1, 011103, 7 p. (2021; Zbl 1466.37060) Full Text: DOI arXiv
Vijayalakshmi, Palanisamy; Jiang, Zhiheng; Wang, Xiong Lagrangian formulation of Lorenz and Chen systems. (English) Zbl 1464.37057 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150055, 7 p. (2021). MSC: 37J06 34A08 26A33 PDF BibTeX XML Cite \textit{P. Vijayalakshmi} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150055, 7 p. (2021; Zbl 1464.37057) Full Text: DOI
Du, Yi Juan; Shiue, Ming-Cheng Analysis and computation of continuous data assimilation algorithms for Lorenz 63 system based on nonlinear nudging techniques. (English) Zbl 1461.65210 J. Comput. Appl. Math. 386, Article ID 113246, 18 p. (2021). MSC: 65L09 PDF BibTeX XML Cite \textit{Y. J. Du} and \textit{M.-C. Shiue}, J. Comput. Appl. Math. 386, Article ID 113246, 18 p. (2021; Zbl 1461.65210) Full Text: DOI
Wang, Huanqing; Yue, Hanxue; Liu, Siwen; Li, Tieshan Adaptive fixed-time control for Lorenz systems. (English) Zbl 1517.93080 Nonlinear Dyn. 102, No. 4, 2617-2625 (2020). MSC: 93D21 34H10 93C40 PDF BibTeX XML Cite \textit{H. Wang} et al., Nonlinear Dyn. 102, No. 4, 2617--2625 (2020; Zbl 1517.93080) Full Text: DOI
Talbi, Ibtissem; Ouannas, Adel; Khennaoui, Amina-Aicha; Berkane, Abdelhak; Batiha, Iqbal M.; Grassi, Giuseppe; Pham, Viet-Thanh Different dimensional fractional-order discrete chaotic systems based on the Caputo \(h\)-difference discrete operator: dynamics, control, and synchronization. (English) Zbl 1487.39013 Adv. Difference Equ. 2020, Paper No. 624, 14 p. (2020). MSC: 39A13 39A70 26A33 PDF BibTeX XML Cite \textit{I. Talbi} et al., Adv. Difference Equ. 2020, Paper No. 624, 14 p. (2020; Zbl 1487.39013) Full Text: DOI
Khomenko, Alexei; Shikura, Alexey Nonlinear kinetics of transition between transport flow modes. (English) Zbl 07531592 Physica A 557, Article ID 124965, 7 p. (2020). MSC: 82-XX 82-02 82B26 82C26 37F99 PDF BibTeX XML Cite \textit{A. Khomenko} and \textit{A. Shikura}, Physica A 557, Article ID 124965, 7 p. (2020; Zbl 07531592) Full Text: DOI
Arshad, Usman; Khan, Majid; Shaukat, Sajjad; Amin, Muhammad; Shah, Tariq An efficient image privacy scheme based on nonlinear chaotic system and linear canonical transformation. (English) Zbl 07530129 Physica A 546, Article ID 123458, 18 p. (2020). MSC: 82-XX PDF BibTeX XML Cite \textit{U. Arshad} et al., Physica A 546, Article ID 123458, 18 p. (2020; Zbl 07530129) Full Text: DOI
Hart, Allen; Hook, James; Dawes, Jonathan Embedding and approximation theorems for echo state networks. (English) Zbl 1468.68098 Neural Netw. 128, 234-247 (2020). MSC: 68Q06 37M05 55N31 PDF BibTeX XML Cite \textit{A. Hart} et al., Neural Netw. 128, 234--247 (2020; Zbl 1468.68098) Full Text: DOI arXiv
Adiyaman, Meltem Evrenosoglu; Noyan, Burcu Residual method for nonlinear system of initial value problems. (English) Zbl 1474.65207 Comput. Methods Differ. Equ. 8, No. 4, 733-744 (2020). MSC: 65L05 65L20 92D30 PDF BibTeX XML Cite \textit{M. E. Adiyaman} and \textit{B. Noyan}, Comput. Methods Differ. Equ. 8, No. 4, 733--744 (2020; Zbl 1474.65207) Full Text: DOI
Zlatanovska, Biljana; Piperevski, Boro Dynamic analysis of the dual Lorenz system. (English) Zbl 1465.37027 Asian-Eur. J. Math. 13, No. 8, Article ID 2050171, 12 p. (2020). MSC: 37C10 37C79 34A34 PDF BibTeX XML Cite \textit{B. Zlatanovska} and \textit{B. Piperevski}, Asian-Eur. J. Math. 13, No. 8, Article ID 2050171, 12 p. (2020; Zbl 1465.37027) Full Text: DOI
Zlatanovska, Biljana; Dimovski, Dončo A modified Lorenz system: definition and solution. (English) Zbl 1459.34058 Asian-Eur. J. Math. 13, No. 8, Article ID 2050164, 7 p. (2020). MSC: 34A34 34A05 34A12 PDF BibTeX XML Cite \textit{B. Zlatanovska} and \textit{D. Dimovski}, Asian-Eur. J. Math. 13, No. 8, Article ID 2050164, 7 p. (2020; Zbl 1459.34058) Full Text: DOI
Dong, Chengwei; Liu, Huihui; Li, Hantao Unstable periodic orbits analysis in the generalized Lorenz-type system. (English) Zbl 1459.37022 J. Stat. Mech. Theory Exp. 2020, No. 7, Article ID 073211, 21 p. (2020). MSC: 37C27 37D45 34C25 34C28 37G10 37M20 34C23 PDF BibTeX XML Cite \textit{C. Dong} et al., J. Stat. Mech. Theory Exp. 2020, No. 7, Article ID 073211, 21 p. (2020; Zbl 1459.37022) Full Text: DOI
Sharma, Binay Kumar; Aneja, Neetu; Tripathi, P. Reduced order multiswitching synchronization between two hyperchaotic systems of different order. (English) Zbl 1458.34101 Nonlinear Dyn. Syst. Theory 20, No. 5, 542-551 (2020). MSC: 34D06 34A34 34C28 34H05 PDF BibTeX XML Cite \textit{B. K. Sharma} et al., Nonlinear Dyn. Syst. Theory 20, No. 5, 542--551 (2020; Zbl 1458.34101) Full Text: Link
Zheng, Xu; Feng, Chen; Li, Tengyue; Cheng, Lun; He, Bo Construction and analysis of complex network based on Pro-DPCA preprocessing algorithm. (Chinese. English summary) Zbl 1474.90090 Period. Ocean Univ. China 50, No. 7, 143-152 (2020). MSC: 90B15 62M10 PDF BibTeX XML Cite \textit{X. Zheng} et al., Period. Ocean Univ. China 50, No. 7, 143--152 (2020; Zbl 1474.90090) Full Text: DOI
Wang, Heyuan; Li, Jia; Wang, Meiyu; Song, Siqi; Wang, Xiaofan; Cao, Tingting Dynamical behavior analysis and numerical simulation of new five-mode Lorenz-like equations. (Chinese. English summary) Zbl 1463.35407 J. Shenyang Norm. Univ., Nat. Sci. 38, No. 2, 164-170 (2020). MSC: 35Q30 37D45 65P40 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Shenyang Norm. Univ., Nat. Sci. 38, No. 2, 164--170 (2020; Zbl 1463.35407) Full Text: DOI
Pena Ramirez, Jonatan; Alvarez, Joaquin Mixed synchronization in unidirectionally coupled chaotic oscillators. (English) Zbl 1454.93265 Lacarbonara, Walter (ed.) et al., Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume II. Cham: Springer. 315-323 (2020). MSC: 93D99 93C15 34H10 PDF BibTeX XML Cite \textit{J. Pena Ramirez} and \textit{J. Alvarez}, in: Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume II. Cham: Springer. 315--323 (2020; Zbl 1454.93265) Full Text: DOI
Durey, Matthew Bifurcations and chaos in a Lorenz-like pilot-wave system. (English) Zbl 1456.37095 Chaos 30, No. 10, 103115, 12 p. (2020). MSC: 37M20 37N10 70K50 70K55 PDF BibTeX XML Cite \textit{M. Durey}, Chaos 30, No. 10, 103115, 12 p. (2020; Zbl 1456.37095) Full Text: DOI
Zhou, Ri-Gui; Li, Ying-Bin Quantum image encryption based on Lorenz hyper-chaotic system. (English) Zbl 1450.81036 Int. J. Quantum Inf. 18, No. 5, Article ID 2050022, 21 p. (2020). MSC: 81P94 68U10 81Q50 60J60 PDF BibTeX XML Cite \textit{R.-G. Zhou} and \textit{Y.-B. Li}, Int. J. Quantum Inf. 18, No. 5, Article ID 2050022, 21 p. (2020; Zbl 1450.81036) Full Text: DOI
Doungmo Goufo, Emile Franc The proto-Lorenz system in its chaotic fractional and fractal structure. (English) Zbl 1452.37086 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050180, 14 p. (2020). MSC: 37M22 37M05 37C45 37D45 26A33 28A80 PDF BibTeX XML Cite \textit{E. F. Doungmo Goufo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050180, 14 p. (2020; Zbl 1452.37086) Full Text: DOI
Meddour, Lotfi; Zeraoulia, Elhadj About the three-dimensional quadratic autonomous system with two quadratic terms equivalent to the Lorenz system. (English) Zbl 1448.93136 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 133-143 (2020). MSC: 93C15 93C10 34C28 34C41 PDF BibTeX XML Cite \textit{L. Meddour} and \textit{E. Zeraoulia}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 133--143 (2020; Zbl 1448.93136) Full Text: Link
Huang, Lilian; Zhang, Zefeng; Xiang, Jianhong Simplified method and synchronization for a class of complex chaotic systems. (English) Zbl 1451.34073 Math. Methods Appl. Sci. 43, No. 4, 1857-1867 (2020). Reviewer: Changjin Xu (Guiyang) MSC: 34D06 34A34 34C28 34C20 34H10 PDF BibTeX XML Cite \textit{L. Huang} et al., Math. Methods Appl. Sci. 43, No. 4, 1857--1867 (2020; Zbl 1451.34073) Full Text: DOI
Leonov, G. A.; Mokaev, R. N.; Kuznetsov, N. V.; Mokaev, T. N. Homoclinic bifurcations and chaos in the fishing principle for the Lorenz-like systems. (English) Zbl 1450.34027 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050124, 20 p. (2020). MSC: 34C23 34C28 34A34 34C37 37M20 PDF BibTeX XML Cite \textit{G. A. Leonov} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050124, 20 p. (2020; Zbl 1450.34027) Full Text: DOI
Yang, Fangyan; Cao, Yongming; Chen, Lijuan; Li, Qingdu Sequence of routes to chaos in a Lorenz-type system. (English) Zbl 1448.34092 Discrete Dyn. Nat. Soc. 2020, Article ID 3162170, 10 p. (2020). Reviewer: Aleksandra Tutueva (St. Petersburg) MSC: 34C28 34A34 34D45 34C23 34C05 34C14 37D45 PDF BibTeX XML Cite \textit{F. Yang} et al., Discrete Dyn. Nat. Soc. 2020, Article ID 3162170, 10 p. (2020; Zbl 1448.34092) Full Text: DOI
Geurts, Bernard J.; Holm, Darryl D.; Luesink, Erwin Lyapunov exponents of two stochastic Lorenz 63 systems. (English) Zbl 1459.37066 J. Stat. Phys. 179, No. 5-6, 1343-1365 (2020). MSC: 37L55 37A60 37D25 34D08 60H30 76M35 PDF BibTeX XML Cite \textit{B. J. Geurts} et al., J. Stat. Phys. 179, No. 5--6, 1343--1365 (2020; Zbl 1459.37066) Full Text: DOI arXiv
Liu, Yang; Wada, Takeshi Long range scattering for the Maxwell-Schrödinger system in the Lorenz gauge without any restriction on the size of data. (English) Zbl 1434.35214 J. Differ. Equations 269, No. 4, 2798-2852 (2020). MSC: 35Q61 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{T. Wada}, J. Differ. Equations 269, No. 4, 2798--2852 (2020; Zbl 1434.35214) Full Text: DOI
Wang, Haijun; Zhang, Fumin Bifurcations, ultimate boundedness and singular orbits in a unified hyperchaotic Lorenz-type system. (English) Zbl 1471.34071 Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1791-1820 (2020). Reviewer: Gheorghe Tigan (Timișoara) MSC: 34C23 34C45 34C37 34C11 34A34 34C28 PDF BibTeX XML Cite \textit{H. Wang} and \textit{F. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1791--1820 (2020; Zbl 1471.34071) Full Text: DOI
Breden, Maxime; Kuehn, Christian Computing invariant sets of random differential equations using polynomial chaos. (English) Zbl 1441.37057 SIAM J. Appl. Dyn. Syst. 19, No. 1, 577-618 (2020). Reviewer: Carlo Laing (Auckland) MSC: 37H10 37H05 37M21 37M22 34F05 60H35 41A58 65C30 PDF BibTeX XML Cite \textit{M. Breden} and \textit{C. Kuehn}, SIAM J. Appl. Dyn. Syst. 19, No. 1, 577--618 (2020; Zbl 1441.37057) Full Text: DOI arXiv
Yang, Ting Homoclinic orbits and chaos in the generalized Lorenz system. (English) Zbl 1450.34029 Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 1097-1108 (2020). Reviewer: Nikolay Dimitrov (Ruse) MSC: 34C37 34C28 34C05 34D20 34C45 37D45 PDF BibTeX XML Cite \textit{T. Yang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 1097--1108 (2020; Zbl 1450.34029) Full Text: DOI
Hassan, Sk. Sarif; Reddy, Moole Parameswar; Rout, Ranjeet Kumar Dynamics of the modified \(n\)-degree Lorenz system. (English) Zbl 07664254 Appl. Math. Nonlinear Sci. 4, No. 2, 315-330 (2019). MSC: 37D45 34C28 PDF BibTeX XML Cite \textit{Sk. S. Hassan} et al., Appl. Math. Nonlinear Sci. 4, No. 2, 315--330 (2019; Zbl 07664254) Full Text: DOI
Liu, Bin; Sun, Zhijie; Luo, Yihao; Zhong, Yuxuan Uniform synchronization for chaotic dynamical systems via event-triggered impulsive control. (English) Zbl 07569427 Physica A 531, Article ID 121725, 14 p. (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{B. Liu} et al., Physica A 531, Article ID 121725, 14 p. (2019; Zbl 07569427) Full Text: DOI
Coşkun, Safa Bozkurt; Atay, Mehmet Tarık; Şentürk, Erman Interpolated variational iteration method for solving the jamming transition problem. (English) Zbl 07316784 Math. Comput. Simul. 166, 481-493 (2019). MSC: 90Bxx 90-XX PDF BibTeX XML Cite \textit{S. B. Coşkun} et al., Math. Comput. Simul. 166, 481--493 (2019; Zbl 07316784) Full Text: DOI
Peng, Dong; Sun, Kehui; He, Shaobo; Alamodi, Abdulaziz O. A. What is the lowest order of the fractional-order chaotic systems to behave chaotically? (English) Zbl 1448.34090 Chaos Solitons Fractals 119, 163-170 (2019). MSC: 34C28 65P20 34A08 65L05 PDF BibTeX XML Cite \textit{D. Peng} et al., Chaos Solitons Fractals 119, 163--170 (2019; Zbl 1448.34090) Full Text: DOI
Xiao, Yugu; Yao, Jing On the equivalence of the coefficient of variation ordering and the Lorenz ordering within two-parameter families. (English) Zbl 07229574 Li, Quan-Lin (ed.) et al., Stochastic models in reliability, network security and system safety. Essays dedicated to Professor Jinhua Cao on the occasion of his 80th birthday. Singapore: Springer. Commun. Comput. Inf. Sci. 1102, 285-294 (2019). MSC: 68Mxx PDF BibTeX XML Cite \textit{Y. Xiao} and \textit{J. Yao}, Commun. Comput. Inf. Sci. 1102, 285--294 (2019; Zbl 07229574) Full Text: DOI
Cang, Shijian; Li, Yue; Zhang, Ruiye; Wang, Zenghui Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points. (English) Zbl 1439.34045 Nonlinear Dyn. 95, No. 1, 381-390 (2019). MSC: 34C28 37D45 34D45 PDF BibTeX XML Cite \textit{S. Cang} et al., Nonlinear Dyn. 95, No. 1, 381--390 (2019; Zbl 1439.34045) Full Text: DOI
Hassan, Sk. Sarif Computational complex dynamics of the discrete Lorenz system. (English) Zbl 1431.34064 J. Appl. Nonlinear Dyn. 8, No. 3, 345-366 (2019). MSC: 34C60 34C28 37D45 PDF BibTeX XML Cite \textit{Sk. S. Hassan}, J. Appl. Nonlinear Dyn. 8, No. 3, 345--366 (2019; Zbl 1431.34064) Full Text: DOI arXiv
Wang, Rui; Kalnay, Eugenia; Balachandran, Balakumar Neural machine-based forecasting of chaotic dynamics. (English) Zbl 1430.37043 Nonlinear Dyn. 98, No. 4, 2903-2917 (2019). MSC: 37D45 68T07 37M05 PDF BibTeX XML Cite \textit{R. Wang} et al., Nonlinear Dyn. 98, No. 4, 2903--2917 (2019; Zbl 1430.37043) Full Text: DOI
Baysal, Veli; Saraç, Zehra; Yilmaz, Ergin Chaotic resonance in Hodgkin-Huxley neuron. (English) Zbl 1430.92015 Nonlinear Dyn. 97, No. 2, 1275-1285 (2019). MSC: 92C20 92C42 92B20 PDF BibTeX XML Cite \textit{V. Baysal} et al., Nonlinear Dyn. 97, No. 2, 1275--1285 (2019; Zbl 1430.92015) Full Text: DOI
Cameron, Maria; Yang, Shuo Computing the quasipotential for highly dissipative and chaotic SDEs an application to stochastic Lorenz’63. (English) Zbl 1451.65164 Commun. Appl. Math. Comput. Sci. 14, No. 2, 207-246 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 65M75 65C30 34F05 60H10 58J65 PDF BibTeX XML Cite \textit{M. Cameron} and \textit{S. Yang}, Commun. Appl. Math. Comput. Sci. 14, No. 2, 207--246 (2019; Zbl 1451.65164) Full Text: DOI arXiv
Kamdem Kuate, P. D.; Lai, Qiang; Fotsin, Hilaire Dynamics, synchronization and electronic implementations of a new Lorenz-like chaotic system with nonhyperbolic equilibria. (English) Zbl 1443.34019 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950197, 19 p. (2019). MSC: 34A34 34C28 34C23 34D06 34D08 34D45 94C60 34A36 PDF BibTeX XML Cite \textit{P. D. Kamdem Kuate} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950197, 19 p. (2019; Zbl 1443.34019) Full Text: DOI
Wawrzaszek, Anna; Krasińska, Agata Hopf bifurcations, periodic windows and intermittency in the generalized Lorenz model. (English) Zbl 1439.34022 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1930042, 15 p. (2019). MSC: 34A34 34C23 34C05 34D20 34C28 PDF BibTeX XML Cite \textit{A. Wawrzaszek} and \textit{A. Krasińska}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1930042, 15 p. (2019; Zbl 1439.34022) Full Text: DOI
Wang, Xingyuan; Gao, Suo Application of matrix semi-tensor product in chaotic image encryption. (English) Zbl 1455.94038 J. Franklin Inst. 356, No. 18, 11638-11667 (2019). MSC: 94A08 37D45 15A69 94A60 93A15 PDF BibTeX XML Cite \textit{X. Wang} and \textit{S. Gao}, J. Franklin Inst. 356, No. 18, 11638--11667 (2019; Zbl 1455.94038) Full Text: DOI
Song, Juan; Niu, Yanmin; Li, Xiong The existence of homoclinic orbits in the Lorenz system via the undetermined coefficient method. (English) Zbl 1428.34062 Appl. Math. Comput. 355, 497-515 (2019). MSC: 34C37 37C29 37D45 PDF BibTeX XML Cite \textit{J. Song} et al., Appl. Math. Comput. 355, 497--515 (2019; Zbl 1428.34062) Full Text: DOI
Arshad, Usman; Batool, Syeda Iram; Amin, Muhammad A novel image encryption scheme based on Walsh compressed quantum spinning chaotic Lorenz system. (English) Zbl 1428.81068 Int. J. Theor. Phys. 58, No. 10, 3565-3588 (2019). MSC: 81P94 94A60 81Q50 42C10 PDF BibTeX XML Cite \textit{U. Arshad} et al., Int. J. Theor. Phys. 58, No. 10, 3565--3588 (2019; Zbl 1428.81068) Full Text: DOI
Wang, Juan; Pan, Bowen; Tang, Cong; Ding, Qun Construction method and performance analysis of chaotic S-box based on fireworks algorithm. (English) Zbl 1432.94145 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1950158, 11 p. (2019). MSC: 94A60 94A62 37D45 PDF BibTeX XML Cite \textit{J. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1950158, 11 p. (2019; Zbl 1432.94145) Full Text: DOI
Li, Wenjuan; Niu, Xiaomeng; Li, Xuchao; Yu, Yuanhong Hopf bifurcation analysis of the four dimensiond hyperchaotic Lorenz system. (Chinese. English summary) Zbl 1438.34127 Math. Pract. Theory 49, No. 5, 295-301 (2019). MSC: 34C23 34D20 34A34 34C28 34C05 PDF BibTeX XML Cite \textit{W. Li} et al., Math. Pract. Theory 49, No. 5, 295--301 (2019; Zbl 1438.34127)
Wang, Haijun On singular orbits and global exponential attractive set of a Lorenz-type system. (English) Zbl 1423.34024 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 6, Article ID 1950082, 11 p. (2019). MSC: 34A34 34C28 34C37 34D45 PDF BibTeX XML Cite \textit{H. Wang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 6, Article ID 1950082, 11 p. (2019; Zbl 1423.34024) Full Text: DOI
Mohammadi, Hossein; Challenor, Peter; Goodfellow, Marc Emulating dynamic non-linear simulators using Gaussian processes. (English) Zbl 1507.62135 Comput. Stat. Data Anal. 139, 178-196 (2019). MSC: 62-08 PDF BibTeX XML Cite \textit{H. Mohammadi} et al., Comput. Stat. Data Anal. 139, 178--196 (2019; Zbl 1507.62135) Full Text: DOI arXiv
Anees, Amir; Hussain, Iqtadar A novel method to identify initial values of chaotic maps in cybersecurity. (English) Zbl 1416.94038 Symmetry 11, No. 2, Paper No. 140, 21 p. (2019). MSC: 94A60 37D45 PDF BibTeX XML Cite \textit{A. Anees} and \textit{I. Hussain}, Symmetry 11, No. 2, Paper No. 140, 21 p. (2019; Zbl 1416.94038) Full Text: DOI
Chen, Yuming; Yin, Zongbin The Jacobi stability of a Lorenz-type multistable hyperchaotic system with a curve of equilibria. (English) Zbl 1419.34138 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 5, Article ID 1950062, 10 p. (2019). MSC: 34C28 34A34 37D45 34C05 34D20 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{Z. Yin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 5, Article ID 1950062, 10 p. (2019; Zbl 1419.34138) Full Text: DOI
Hafstein, Sigurdur; Kawan, Christoph Numerical approximation of the data-rate limit for state estimation under communication constraints. (English) Zbl 1415.93017 J. Math. Anal. Appl. 473, No. 2, 1280-1304 (2019); corrigendum ibid. 509, No. 2, Article ID 125967, 4 p. (2022). MSC: 93A14 93C62 93E10 93B40 PDF BibTeX XML Cite \textit{S. Hafstein} and \textit{C. Kawan}, J. Math. Anal. Appl. 473, No. 2, 1280--1304 (2019; Zbl 1415.93017) Full Text: DOI arXiv
Van Kekem, Dirk L.; Sterk, Alef E. Symmetries in the Lorenz-96 model. (English) Zbl 1415.34040 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950008, 18 p. (2019). MSC: 34A34 34C14 34C23 34C45 37G40 34C05 PDF BibTeX XML Cite \textit{D. L. Van Kekem} and \textit{A. E. Sterk}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950008, 18 p. (2019; Zbl 1415.34040) Full Text: DOI arXiv
Liu, Yongjian; Wei, Zhouchao; Li, Chunbiao; Liu, Aimin; Li, Lijie Attractor and bifurcation of forced Lorenz-84 system. (English) Zbl 1418.60060 Int. J. Geom. Methods Mod. Phys. 16, No. 1, Article ID 1950002, 20 p. (2019). MSC: 60H10 34D23 34C27 34D45 34F05 PDF BibTeX XML Cite \textit{Y. Liu} et al., Int. J. Geom. Methods Mod. Phys. 16, No. 1, Article ID 1950002, 20 p. (2019; Zbl 1418.60060) Full Text: DOI
Sun, Baojiang; Li, Min; Zhang, Fangfang; Wang, Hui; Liu, Jian The characteristics and self-time-delay synchronization of two-time-delay complex Lorenz system. (English) Zbl 1405.93117 J. Franklin Inst. 356, No. 1, 334-350 (2019). MSC: 93C15 93C10 37D45 34C28 34H10 PDF BibTeX XML Cite \textit{B. Sun} et al., J. Franklin Inst. 356, No. 1, 334--350 (2019; Zbl 1405.93117) Full Text: DOI
Nespirnyy, V. N. Mutual synchronization of two Lorenz systems in the class of impulsive controls. (Russian. English summary) Zbl 1487.34120 Mekh. Tverd. Tela 48, 57-64 (2018). MSC: 34H05 34A37 93D05 PDF BibTeX XML Cite \textit{V. N. Nespirnyy}, Mekh. Tverd. Tela 48, 57--64 (2018; Zbl 1487.34120) Full Text: Link
Wang, Haijun; Li, Xianyi Hopf bifurcation and new singular orbits coined in a Lorenz-like system. (English) Zbl 1461.34024 J. Appl. Anal. Comput. 8, No. 5, 1307-1325 (2018). MSC: 34A34 34C05 34C23 34C37 34D20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{X. Li}, J. Appl. Anal. Comput. 8, No. 5, 1307--1325 (2018; Zbl 1461.34024) Full Text: DOI
Lenka, Bichitra Kumar; Banerjee, Soumitro Sufficient conditions for asymptotic stability and stabilization of autonomous fractional order systems. (English) Zbl 1510.34017 Commun. Nonlinear Sci. Numer. Simul. 56, 365-379 (2018). MSC: 34A08 34H15 93D15 PDF BibTeX XML Cite \textit{B. K. Lenka} and \textit{S. Banerjee}, Commun. Nonlinear Sci. Numer. Simul. 56, 365--379 (2018; Zbl 1510.34017) Full Text: DOI
Paulin, Daniel; Jasra, Ajay; Crisan, Dan; Beskos, Alexandros On concentration properties of partially observed chaotic systems. (English) Zbl 1434.37047 Adv. Appl. Probab. 50, No. 2, 440-479 (2018). MSC: 37M22 37D45 34C28 70K55 PDF BibTeX XML Cite \textit{D. Paulin} et al., Adv. Appl. Probab. 50, No. 2, 440--479 (2018; Zbl 1434.37047) Full Text: DOI arXiv
Yang, Lufeng; Ma, Ning Application of the multi-stage shifted spectral method in numerical weather predication. (Chinese. English summary) Zbl 1438.37048 J. Nat. Sci. Hunan Norm. Univ. 41, No. 6, 65-70 (2018). MSC: 37N10 86A08 PDF BibTeX XML Cite \textit{L. Yang} and \textit{N. Ma}, J. Nat. Sci. Hunan Norm. Univ. 41, No. 6, 65--70 (2018; Zbl 1438.37048) Full Text: DOI
Huang, Kaiyin; Shi, Shaoyun; Li, Wenlei Meromorphic and formal first integrals for the Lorenz system. (English) Zbl 1420.34004 J. Nonlinear Math. Phys. 25, No. 1, 106-121 (2018). MSC: 34A05 34C14 37C10 37J35 PDF BibTeX XML Cite \textit{K. Huang} et al., J. Nonlinear Math. Phys. 25, No. 1, 106--121 (2018; Zbl 1420.34004) Full Text: DOI
Zlatanovska, Biljana; Dimovski, Dončo Models for the Lorenz system. (English) Zbl 1421.39001 Mat. Bilt. 42, No. 2, 75-84 (2018). MSC: 39A10 65L06 PDF BibTeX XML Cite \textit{B. Zlatanovska} and \textit{D. Dimovski}, Mat. Bilt. 42, No. 2, 75--84 (2018; Zbl 1421.39001) Full Text: Link