×

A relative Lubin-Tate theorem via higher formal geometry. (English) Zbl 1349.14148

Summary: We formulate a theory of punctured affine formal schemes, suitable for describing certain phenomena within algebraic topology. As a proof-of-concept we show that the Morava \(K\)-theoretic localizations of Morava \(E\)-theory, which arise in transchromatic homotopy theory, corepresent a Lubin-Tate-type moduli problem in this framework.

MSC:

14L05 Formal groups, \(p\)-divisible groups
55N22 Bordism and cobordism theories and formal group laws in algebraic topology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M Ando, C P French, N Ganter, The Jacobi orientation and the two-variable elliptic genus, Algebr. Geom. Topol. 8 (2008) 493 · Zbl 1165.55002 · doi:10.2140/agt.2008.8.493
[2] M Ando, J Morava, A renormalized Riemann-Roch formula and the Thom isomorphism for the free loop space (editors A Adem, G Carlsson, R Cohen), Contemp. Math. 279, Amer. Math. Soc. (2001) 11 · Zbl 1009.57042 · doi:10.1090/conm/279/04552
[3] M Ando, J Morava, H Sadofsky, Completions of \(\mathbbZ/(p)\)-Tate cohomology of periodic spectra, Geom. Topol. 2 (1998) 145 · Zbl 0907.55006 · doi:10.2140/gt.1998.2.145
[4] M Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974) 165 · Zbl 0317.14001 · doi:10.1007/BF01390174
[5] A A Beĭlinson, Residues and adèles, Funktsional. Anal. i Prilozhen. 14 (1980) 44 · Zbl 0509.14018 · doi:10.1007/BF01078412
[6] J P C Greenlees, N P Strickland, Varieties and local cohomology for chromatic group cohomology rings, Topology 38 (1999) 1093 · Zbl 0959.55005 · doi:10.1016/S0040-9383(98)00048-2
[7] M Hovey, Bousfield localization functors and Hopkins’ chromatic splitting conjecture (editors M Cenkl, H Miller), Contemp. Math. 181, Amer. Math. Soc. (1995) 225 · Zbl 0830.55004 · doi:10.1090/conm/181/02036
[8] A Huber, On the Parshin-Beĭlinson adèles for schemes, Abh. Math. Sem. Univ. Hamburg 61 (1991) 249 · Zbl 0763.14006 · doi:10.1007/BF02950770
[9] D C Isaksen, A model structure on the category of prosimplicial sets, Trans. Amer. Math. Soc. 353 (2001) 2805 · Zbl 0978.55014 · doi:10.1090/S0002-9947-01-02722-2
[10] D C Isaksen, Calculating limits and colimits in procategories, Fund. Math. 175 (2002) 175 · Zbl 1039.18002 · doi:10.4064/fm175-2-7
[11] P T Johnstone, Stone spaces, Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press (1982) · Zbl 0499.54001
[12] K Kato, Existence theorem for higher local fields (editors I Fesenko, M Kurihara), Geom. Topol. Monogr. 3 (2000) 165 · Zbl 1008.11061 · doi:10.2140/gtm.2000.3.165
[13] K Kato, S Saito, Global class field theory of arithmetic schemes (editors S J Bloch, R K Dennis, E M Friedlander, M R Stein), Contemp. Math. 55, Amer. Math. Soc. (1986) 255 · Zbl 0614.14001 · doi:10.1090/conm/055.1/862639
[14] T Lawson, N Naumann, Commutativity conditions for truncated Brown-Peterson spectra of height \(2\), J. Topol. 5 (2012) 137 · Zbl 1280.55007 · doi:10.1112/jtopol/jtr030
[15] J Lubin, J Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966) 49 · Zbl 0156.04105 · doi:10.1215/S0012-7094-59-02627-4
[16] D V Osipov, The Krichever correspondence for algebraic varieties, Izv. Ross. Akad. Nauk Ser. Mat. 65 (2001) 91 · Zbl 1068.14053 · doi:10.1070/IM2001v065n05ABEH000358
[17] D V Osipov, \(n\)-dimensional local fields and adèles on \(n\)-dimensional schemes (editors N Young, Y Choi), London Math. Soc. Lecture Note Ser. 347, Cambridge Univ. Press (2008) 131 · Zbl 1144.11078
[18] C Rezk, Notes on the Hopkins-Miller theorem (editors M Mahowald, S Priddy), Contemp. Math. 220, Amer. Math. Soc. (1998) 313 · Zbl 0910.55004 · doi:10.1090/conm/220/03107
[19] S Saito, Arithmetic on two-dimensional local rings, Invent. Math. 85 (1986) 379 · Zbl 0609.13003 · doi:10.1007/BF01389096
[20] S Saito, Class field theory for two-dimensional local rings (editor Y Ihara), Adv. Stud. Pure Math. 12, North-Holland (1987) 343 · Zbl 0672.12006
[21] T M Schlank, N Stapleton, A transchromatic proof of Strickland’s theorem, · Zbl 1373.55004
[22] N Stapleton, Transchromatic generalized character maps, Algebr. Geom. Topol. 13 (2013) 171 · Zbl 1300.55011 · doi:10.2140/agt.2013.13.171
[23] N Stapleton, Transchromatic twisted character maps, J. Homotopy Relat. Struct. 10 (2015) 29 · Zbl 1318.55011 · doi:10.1007/s40062-013-0040-9
[24] T Torii, On degeneration of one-dimensional formal group laws and applications to stable homotopy theory, Amer. J. Math. 125 (2003) 1037 · Zbl 1046.55003 · doi:10.1353/ajm.2003.0036
[25] T Torii, Milnor operations and the generalized Chern character (editors M Ando, N Minami, J Morava, W S Wilson), Geom. Topol. Monogr. 10 (2007) 383 · Zbl 1258.55004 · doi:10.2140/gtm.2007.10.383
[26] T Torii, Comparison of Morava \(E\)-theories, Math. Zeitschrift 266 (2010) 933 · Zbl 1203.55004 · doi:10.1007/s00209-009-0605-9
[27] T Torii, HKR characters, \(p\)-divisible groups and the generalized Chern character, Trans. Amer. Math. Soc. 362 (2010) 6159 · Zbl 1253.55005 · doi:10.1090/S0002-9947-2010-05194-3
[28] T Torii, \(K(n)\)-localization of the \(K(n+1)\)-local \(E_{n+1}\)-Adams spectral sequences, Pacific J. Math. 250 (2011) 439 · Zbl 1227.55017 · doi:10.2140/pjm.2011.250.439
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.