Astashkin, S. V. Sequences of independent functions in rearrangement invariant spaces. (English. Russian original) Zbl 07331429 Sib. Math. J. 62, No. 2, 189-198 (2021); translation from Sib. Mat. Zh. 62, No. 2, 239-249 (2021). MSC: 60G 46E 47B PDF BibTeX XML Cite \textit{S. V. Astashkin}, Sib. Math. J. 62, No. 2, 189--198 (2021; Zbl 07331429); translation from Sib. Mat. Zh. 62, No. 2, 239--249 (2021) Full Text: DOI
Wang, Kangji; Gong, Wanzhong Non-\(l_n^{(1)}\) point and uniformly non-\(l_n^{(1)}\) point in Orlicz-Bochner sequence spaces. (English) Zbl 07295979 Math. Appl. 33, No. 3, 652-665 (2020). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{K. Wang} and \textit{W. Gong}, Math. Appl. 33, No. 3, 652--665 (2020; Zbl 07295979)
Zajkowski, Krzysztof Bounds on tail probabilities for quadratic forms in dependent sub-Gaussian random variables. (English) Zbl 1453.60064 Stat. Probab. Lett. 167, Article ID 108898, 7 p. (2020). MSC: 60E15 PDF BibTeX XML Cite \textit{K. Zajkowski}, Stat. Probab. Lett. 167, Article ID 108898, 7 p. (2020; Zbl 1453.60064) Full Text: DOI
Dong, Xiaoli; Gong, Wanzhong \(I\)-convexity and \(Q\)-convexity of Orlicz-Bochner function spaces with the Luxemburg norm. (Chinese. English summary) Zbl 07266727 J. East China Norm. Univ., Nat. Sci. Ed., No. 1, 40-50 (2020). MSC: 46B20 46E40 PDF BibTeX XML Cite \textit{X. Dong} and \textit{W. Gong}, J. East China Norm. Univ., Nat. Sci. Ed. , No. 1, 40--50 (2020; Zbl 07266727) Full Text: DOI
Bakery, Awad A.; Mohamed, OM Kalthum S. K. Eigenvalues of s-type operators on prequasi normed \(C(t,p)\). (English) Zbl 07247498 J. Funct. Spaces 2020, Article ID 8713938, 9 p. (2020). Reviewer: Ömer Gök (Istanbul) MSC: 47B06 47B37 47L20 PDF BibTeX XML Cite \textit{A. A. Bakery} and \textit{O. K. S. K. Mohamed}, J. Funct. Spaces 2020, Article ID 8713938, 9 p. (2020; Zbl 07247498) Full Text: DOI
del Campo, Ricardo; Fernández, Antonio; Mayoral, Fernando; Naranjo, Francisco; Sánchez-Pérez, Enrique A. When and where the Orlicz and Luxemburg (quasi-) norms are equivalent? (English) Zbl 07244663 J. Math. Anal. Appl. 491, No. 1, Article ID 124302, 17 p. (2020). MSC: 46E30 PDF BibTeX XML Cite \textit{R. del Campo} et al., J. Math. Anal. Appl. 491, No. 1, Article ID 124302, 17 p. (2020; Zbl 07244663) Full Text: DOI
Bahrouni, Anouar; Repovš, Dušan D. Low perturbations for a class of nonuniformly elliptic problems. (English) Zbl 1442.35116 Mediterr. J. Math. 17, No. 4, Paper No. 111, 9 p. (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35J91 58E30 PDF BibTeX XML Cite \textit{A. Bahrouni} and \textit{D. D. Repovš}, Mediterr. J. Math. 17, No. 4, Paper No. 111, 9 p. (2020; Zbl 1442.35116) Full Text: DOI
Bedouhene, Fazia; Djabri, Yousra; Boulahia, Fatiha Ergodicity in Stepanov-Orlicz spaces. (English) Zbl 1443.46019 Ann. Funct. Anal. 11, No. 1, 137-153 (2020). MSC: 46E30 47A35 PDF BibTeX XML Cite \textit{F. Bedouhene} et al., Ann. Funct. Anal. 11, No. 1, 137--153 (2020; Zbl 1443.46019) Full Text: DOI
Zlatanov, Boyan Kottman’s constant, packing constant and Riesz angle in some classes of Köthe sequence spaces. (English) Zbl 07238221 Carpathian J. Math. 35, No. 1, 103-124 (2019). MSC: 46B20 46B45 46A45 PDF BibTeX XML Cite \textit{B. Zlatanov}, Carpathian J. Math. 35, No. 1, 103--124 (2019; Zbl 07238221)
Kończak, Joanna Non-square points of Orlicz-Lorentz function spaces. (English) Zbl 1448.46018 Commentat. Math. 59, No. 1-2, 1-17 (2019). MSC: 46B20 46E30 46B42 46A80 PDF BibTeX XML Cite \textit{J. Kończak}, Commentat. Math. 59, No. 1--2, 1--17 (2019; Zbl 1448.46018) Full Text: DOI
Cui, Yunan; Foralewski, Paweł; Hudzik, Henryk \(M\)-constants in Orlicz-Lorentz function spaces. (English) Zbl 1441.46013 Math. Nachr. 292, No. 12, 2556-2573 (2019). MSC: 46B20 46E30 46B42 46B45 46A80 PDF BibTeX XML Cite \textit{Y. Cui} et al., Math. Nachr. 292, No. 12, 2556--2573 (2019; Zbl 1441.46013) Full Text: DOI
Duan, Lifen; Zuo, Mingxia \(k\)-uniform rotund points in Orlicz sequence spaces equipped with Luxemburg norm. (Chinese. English summary) Zbl 1438.46018 J. Yangzhou Univ., Nat. Sci. Ed. 22, No. 1, 4-6, 38 (2019). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{L. Duan} and \textit{M. Zuo}, J. Yangzhou Univ., Nat. Sci. Ed. 22, No. 1, 4--6, 38 (2019; Zbl 1438.46018) Full Text: DOI
Tripathy, Nilambar; Dutta, Salila Certain properties of the sequence space \(\tilde \ell \left ({M,p,q} \right)\) of non-absolute type using four tuple band matrix \(B\left ({\tilde r,\tilde s,\tilde t,\tilde u} \right)\). (Certain properties of the sequence space \(\tilde \ell \left ({M,p,q} \right)\) of non-absolute type using four tupple band matrix \(B\left ({\tilde r,\tilde s,\tilde t,\tilde u} \right)\).) (English) Zbl 1449.46010 Southeast Asian Bull. Math. 43, No. 1, 139-152 (2019). MSC: 46A45 40C05 46B45 PDF BibTeX XML Cite \textit{N. Tripathy} and \textit{S. Dutta}, Southeast Asian Bull. Math. 43, No. 1, 139--152 (2019; Zbl 1449.46010)
Zajkowski, Krzysztof Norms of sub-exponential random vectors. (English) Zbl 1435.46025 Stat. Probab. Lett. 152, 147-152 (2019). MSC: 46E30 60E15 PDF BibTeX XML Cite \textit{K. Zajkowski}, Stat. Probab. Lett. 152, 147--152 (2019; Zbl 1435.46025) Full Text: DOI
Gong, Wanzhong; Dong, Xiaoli; Wang, Kangji \(I\)-convexity and \(Q\)-convexity in Orlicz-Bochner function spaces equipped with the Luxemburg norm. (English) Zbl 1421.46015 Ann. Funct. Anal. 10, No. 1, 81-96 (2019). MSC: 46B20 46E40 46E30 PDF BibTeX XML Cite \textit{W. Gong} et al., Ann. Funct. Anal. 10, No. 1, 81--96 (2019; Zbl 1421.46015) Full Text: DOI Euclid
Yan, Erlu; Shi, Zhongrui Property (\(K\)) of Orlicz-Bochner sequence spaces. (Chinese. English summary) Zbl 1438.46019 Commun. Appl. Math. Comput. 32, No. 3, 631-643 (2018). MSC: 46B20 46B45 46E40 PDF BibTeX XML Cite \textit{E. Yan} and \textit{Z. Shi}, Commun. Appl. Math. Comput. 32, No. 3, 631--643 (2018; Zbl 1438.46019) Full Text: DOI
Zhou, Chenghua; Gong, Wanzhong; Zhang, Daoxiang O-convexity of Orlicz-Bochner spaces with the Luxemburg norm. (Chinese. English summary) Zbl 1424.46022 J. Shandong Univ., Nat. Sci. 53, No. 6, 44-52 (2018). MSC: 46B20 46E30 46E40 PDF BibTeX XML Cite \textit{C. Zhou} et al., J. Shandong Univ., Nat. Sci. 53, No. 6, 44--52 (2018; Zbl 1424.46022) Full Text: DOI
Cui, Yunan; Foralewski, Paweł; Hudzik, Henryk \(M\)-constants in Orlicz-Lorentz sequence spaces with applications to fixed point theory. (English) Zbl 1402.46011 Fixed Point Theory 19, No. 1, 141-166 (2018). Reviewer: Barry Turett (Rochester) MSC: 46B20 46B45 46A45 46B42 46A80 47H10 PDF BibTeX XML Cite \textit{Y. Cui} et al., Fixed Point Theory 19, No. 1, 141--166 (2018; Zbl 1402.46011) Full Text: DOI
Shi, Zhongrui; Wang, Yujiao The nonsquare point of Orlicz-Bochner sequence spaces. (English) Zbl 1399.46020 Southeast Asian Bull. Math. 41, No. 2, 249-258 (2017). MSC: 46B20 46B25 46B45 PDF BibTeX XML Cite \textit{Z. Shi} and \textit{Y. Wang}, Southeast Asian Bull. Math. 41, No. 2, 249--258 (2017; Zbl 1399.46020)
Şengül, Hacer; Et, Mikail Some geometric properties of generalized difference Cesàro sequence spaces. (English) Zbl 1390.46020 Thai J. Math. 15, No. 2, 465-474 (2017). Reviewer: Faruk Özger (Izmir) MSC: 46B45 46B20 PDF BibTeX XML Cite \textit{H. Şengül} and \textit{M. Et}, Thai J. Math. 15, No. 2, 465--474 (2017; Zbl 1390.46020) Full Text: Link
Ye, Xiao Feng; Wang, Teng Fei Two-weighted norm inequalities of singular integral operators on weighted Morrey spaces. (English) Zbl 1386.42011 Georgian Math. J. 24, No. 4, 629-638 (2017). MSC: 42B20 42B25 PDF BibTeX XML Cite \textit{X. F. Ye} and \textit{T. F. Wang}, Georgian Math. J. 24, No. 4, 629--638 (2017; Zbl 1386.42011) Full Text: DOI
Shi, Zhongrui; Wang, Yujiao The locally uniformly non-square points of Orlicz-Bochner sequence spaces. (English) Zbl 1384.46012 Math. Nachr. 290, No. 5-6, 920-929 (2017). Reviewer: Atanu Manna (Bhadohi) MSC: 46B20 46B25 46B45 46E40 PDF BibTeX XML Cite \textit{Z. Shi} and \textit{Y. Wang}, Math. Nachr. 290, No. 5--6, 920--929 (2017; Zbl 1384.46012) Full Text: DOI
Castillo, René Erlín; Rafeiro, Humberto An introductory course in Lebesgue spaces. (English) Zbl 1352.46003 CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Cham: Springer (ISBN 978-3-319-30032-0/hbk; 978-3-319-30034-4/ebook). xii, 461 p. (2016). Reviewer: Alexei Yu. Karlovich (Lisboa) MSC: 46-02 46E30 47G10 PDF BibTeX XML Cite \textit{R. E. Castillo} and \textit{H. Rafeiro}, An introductory course in Lebesgue spaces. Cham: Springer (2016; Zbl 1352.46003) Full Text: DOI
Fabian, Marián; Lajara, Sebastián Rotund renormings in spaces of Bochner integrable functions. (English) Zbl 1348.46010 J. Convex Anal. 22, No. 4, 1025-1039 (2015). Reviewer: Pawel Kolwicz (Poznań) MSC: 46B03 46B20 46E40 PDF BibTeX XML Cite \textit{M. Fabian} and \textit{S. Lajara}, J. Convex Anal. 22, No. 4, 1025--1039 (2016; Zbl 1348.46010) Full Text: Link
Shi, Zhongrui; Zhu, Juanli; Shi, Siyu Uniformly rotund in every direction in generalized Orlicz function spaces with Luxemburg norm. (Chinese. English summary) Zbl 1340.46019 J. Lanzhou Univ., Nat. Sci. 51, No. 1, 119-123 (2015). MSC: 46B20 46E30 PDF BibTeX XML Cite \textit{Z. Shi} et al., J. Lanzhou Univ., Nat. Sci. 51, No. 1, 119--123 (2015; Zbl 1340.46019) Full Text: DOI
Manna, Atanu; Srivastava, P. D. Some geometric properties of Musielak-Orlicz sequence spaces generated by de la Vallée-Poussin means. (English) Zbl 1342.46015 Math. Inequal. Appl. 18, No. 2, 687-705 (2015). Reviewer: Pawel Kolwicz (Poznań) MSC: 46B20 46B25 46B40 46B45 46A45 46A80 PDF BibTeX XML Cite \textit{A. Manna} and \textit{P. D. Srivastava}, Math. Inequal. Appl. 18, No. 2, 687--705 (2015; Zbl 1342.46015) Full Text: DOI
Coeurjolly, Jean-François Almost sure behavior of functionals of stationary Gibbs point processes. (English) Zbl 1315.60054 Stat. Probab. Lett. 97, 241-246 (2015). MSC: 60G55 60G10 PDF BibTeX XML Cite \textit{J.-F. Coeurjolly}, Stat. Probab. Lett. 97, 241--246 (2015; Zbl 1315.60054) Full Text: DOI
Chen, Jiecheng; Yu, Xiao Weighted estimates for vector-valued commutators of generalized fractional integrals. (English) Zbl 1305.42014 Math. Inequal. Appl. 17, No. 4, 1299-1320 (2014). MSC: 42B20 42B25 PDF BibTeX XML Cite \textit{J. Chen} and \textit{X. Yu}, Math. Inequal. Appl. 17, No. 4, 1299--1320 (2014; Zbl 1305.42014) Full Text: DOI
Et, Mikail; Karakaş, Murat; Karakaya, Vatan Some geometric properties of a new difference sequence space defined by de la Vallée-Poussin mean. (English) Zbl 1317.46014 Appl. Math. Comput. 234, 237-244 (2014). MSC: 46B45 46B20 PDF BibTeX XML Cite \textit{M. Et} et al., Appl. Math. Comput. 234, 237--244 (2014; Zbl 1317.46014) Full Text: DOI
Shi, Zhongrui; Wang, Xiaozhuo \(k\)-rotundity of generalized Orlicz sequence spaces with Luxemburg norm. (Chinese. English summary) Zbl 1313.46025 J. Syst. Sci. Math. Sci. 34, No. 2, 206-217 (2014). MSC: 46B20 46A45 PDF BibTeX XML Cite \textit{Z. Shi} and \textit{X. Wang}, J. Syst. Sci. Math. Sci. 34, No. 2, 206--217 (2014; Zbl 1313.46025)
Cui, Yunan; Hudzik, Henryk; Lewicki, Grzegorz Order asymptotically isometric copies of \(c_0\) in the subspaces of order continuous elements in Orlicz spaces. (English) Zbl 1315.46012 J. Convex Anal. 21, No. 3, 663-680 (2014). MSC: 46B04 46E30 PDF BibTeX XML Cite \textit{Y. Cui} et al., J. Convex Anal. 21, No. 3, 663--680 (2014; Zbl 1315.46012) Full Text: Link
Narloch, Agata; Szymaszkiewicz, Lucjan Asymptotically isometric copies of \(c_{0}\) in Musielak-Orlicz spaces. (English) Zbl 1298.46011 Opusc. Math. 34, No. 1, 161-169 (2014). Reviewer: Pawel Kolwicz (Poznań) MSC: 46B04 46E30 46B25 PDF BibTeX XML Cite \textit{A. Narloch} and \textit{L. Szymaszkiewicz}, Opusc. Math. 34, No. 1, 161--169 (2014; Zbl 1298.46011) Full Text: DOI
Manna, Atanu; Srivastava, P. D. On (\(k\)-\(NUC\))-property in Musielak-Orlicz spaces defined by de la Vallée-Poussin means and some countably modulared spaces. (English) Zbl 1305.46009 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 2, 187-200 (2014). MSC: 46B20 46A45 46A80 PDF BibTeX XML Cite \textit{A. Manna} and \textit{P. D. Srivastava}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 2, 187--200 (2014; Zbl 1305.46009) Full Text: Link
Bocea, Marian; Mihăilescu, Mihai The principal frequency of \(\Delta_\infty\) as a limit of Rayleigh quotients involving Luxemburg norms. (English) Zbl 1286.35184 Bull. Sci. Math. 138, No. 2, 236-252 (2014). MSC: 35P30 35D30 46E30 49J40 49J45 PDF BibTeX XML Cite \textit{M. Bocea} and \textit{M. Mihăilescu}, Bull. Sci. Math. 138, No. 2, 236--252 (2014; Zbl 1286.35184) Full Text: DOI
Karakaş, Murat; Et, Mikail; Karakaya, Vatan Some geometric properties of a new difference sequence space involving lacunary sequences. (English) Zbl 1313.46011 Acta Math. Sci., Ser. B, Engl. Ed. 33, No. 6, 1711-1720 (2013). MSC: 46A45 40A05 46B20 46B45 PDF BibTeX XML Cite \textit{M. Karakaş} et al., Acta Math. Sci., Ser. B, Engl. Ed. 33, No. 6, 1711--1720 (2013; Zbl 1313.46011) Full Text: DOI
Et, Mikail; Karakaş, Murat; Çınar, Muhammed Some geometric properties of a new modular space defined by Zweier operator. (English) Zbl 1304.46008 Fixed Point Theory Appl. 2013, Paper No. 165, 10 p. (2013). MSC: 46A45 46B20 PDF BibTeX XML Cite \textit{M. Et} et al., Fixed Point Theory Appl. 2013, Paper No. 165, 10 p. (2013; Zbl 1304.46008) Full Text: DOI
Ma, Zhenhua; Cui, Yunan Some important geometric properties in Cesàro-Orlicz sequence spaces. (English) Zbl 1299.46017 Adv. Math., Beijing 42, No. 3, 348-354 (2013). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{Z. Ma} and \textit{Y. Cui}, Adv. Math., Beijing 42, No. 3, 348--354 (2013; Zbl 1299.46017)
Shi, Zhongrui; Wang, XiaoZhuo \(k\)-extreme point of generalized Orlicz sequence spaces with Luxemburg norm. (English) Zbl 1296.46015 Commentat. Math. 53, No. 2, 247-262 (2013). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{Z. Shi} and \textit{X. Wang}, Commentat. Math. 53, No. 2, 247--262 (2013; Zbl 1296.46015)
Foralewski, Paweł; Hudzik, Henryk; Kaczmarek, Radosław; Krbec, Miroslav; Wójtowicz, Marek On the moduli and characteristic of monotonicity in Orlicz-Lorentz function spaces. (English) Zbl 1295.46013 J. Convex Anal. 20, No. 4, 955-970 (2013). MSC: 46B20 46B42 46A80 46E30 PDF BibTeX XML Cite \textit{P. Foralewski} et al., J. Convex Anal. 20, No. 4, 955--970 (2013; Zbl 1295.46013) Full Text: Link
Abdullayev, Farhod; Bocea, Marian The Robin eigenvalue problem for the \(p(x)\)-Laplacian as \(p\to \infty \). (English) Zbl 1292.35137 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 91, 32-45 (2013). MSC: 35J92 35D30 35D40 35J20 35J60 35J66 35J70 35P30 46E30 46E35 49J40 PDF BibTeX XML Cite \textit{F. Abdullayev} and \textit{M. Bocea}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 91, 32--45 (2013; Zbl 1292.35137) Full Text: DOI
Bellomi, Marcello; Caliari, Marco; Squassina, Marco Computing the first eigenpair for problems with variable exponents. (English) Zbl 1282.65143 J. Fixed Point Theory Appl. 13, No. 2, 561-570 (2013). MSC: 65N25 65N30 35P15 35P30 PDF BibTeX XML Cite \textit{M. Bellomi} et al., J. Fixed Point Theory Appl. 13, No. 2, 561--570 (2013; Zbl 1282.65143) Full Text: DOI arXiv
Çinar, Muhammed; Karakaş, Murat; Et, Mikail Some geometric properties of the metric space \(V[{\lambda},p]\). (English) Zbl 1291.46009 J. Inequal. Appl. 2013, Paper No. 28, 7 p. (2013). MSC: 46B20 46A45 PDF BibTeX XML Cite \textit{M. Çinar} et al., J. Inequal. Appl. 2013, Paper No. 28, 7 p. (2013; Zbl 1291.46009) Full Text: DOI
Foralewski, Paweł; Hudzik, Henryk; Kolwicz, Paweł Non-squareness properties of Orlicz-Lorentz function spaces. (English) Zbl 1291.46011 J. Inequal. Appl. 2013, Paper No. 32, 25 p. (2013). MSC: 46B20 46B42 46A80 46E30 PDF BibTeX XML Cite \textit{P. Foralewski} et al., J. Inequal. Appl. 2013, Paper No. 32, 25 p. (2013; Zbl 1291.46011) Full Text: DOI
Çınar, Muhammed; Karakaş, Murat; Et, Mikail Some geometric properties of a new type metric space. (English) Zbl 1288.46006 Appl. Appl. Math. 8, No. 2, 756-766 (2013). MSC: 46A45 46B20 PDF BibTeX XML Cite \textit{M. Çınar} et al., Appl. Appl. Math. 8, No. 2, 756--766 (2013; Zbl 1288.46006) Full Text: Link
Labuschagne, Louis E. A crossed product approach to Orlicz spaces. (English) Zbl 1309.46036 Proc. Lond. Math. Soc. (3) 107, No. 5, 965-1003 (2013). Reviewer: Stanisław Goldstein (Łódź) MSC: 46L52 46L51 46E30 47L65 PDF BibTeX XML Cite \textit{L. E. Labuschagne}, Proc. Lond. Math. Soc. (3) 107, No. 5, 965--1003 (2013; Zbl 1309.46036) Full Text: DOI arXiv
Foralewski, Paweł On some geometric properties of generalized Orlicz-Lorentz sequence spaces. (English) Zbl 1277.46010 Indag. Math., New Ser. 24, No. 2, 346-372 (2013). Reviewer: Pawel Kolwicz (Poznań) MSC: 46B45 46B20 46B42 46A80 PDF BibTeX XML Cite \textit{P. Foralewski}, Indag. Math., New Ser. 24, No. 2, 346--372 (2013; Zbl 1277.46010) Full Text: DOI
Babenko, Yu. V.; Skorokhodov, D. S. The Kolmogorov and Stechkin problems for classes of functions whose second derivative belongs to the Orlicz space. (English. Russian original) Zbl 1287.46023 Math. Notes 91, No. 2, 161-171 (2012); translation from Mat. Zametki 91, No. 2, 172-183 (2012). MSC: 46E30 41A35 PDF BibTeX XML Cite \textit{Yu. V. Babenko} and \textit{D. S. Skorokhodov}, Math. Notes 91, No. 2, 161--171 (2012; Zbl 1287.46023); translation from Mat. Zametki 91, No. 2, 172--183 (2012) Full Text: DOI
Dai, Zhimin; Xing, Yuming; Ding, Shusen; Wang, Yong Inequalities for the composition of Green’s operator and the potential operator. (English) Zbl 1281.35035 J. Inequal. Appl. 2012, Paper No. 271, 13 p. (2012). MSC: 35J60 31B05 58A10 46E35 PDF BibTeX XML Cite \textit{Z. Dai} et al., J. Inequal. Appl. 2012, Paper No. 271, 13 p. (2012; Zbl 1281.35035) Full Text: DOI
Gong, Wanzhong; Shi, Zhongrui Monotone points in Orlicz-Bochner sequence spaces. (English) Zbl 1289.46019 Anal. Theory Appl. 28, No. 4, 301-311 (2012). MSC: 46B20 46B42 46B45 46E40 PDF BibTeX XML Cite \textit{W. Gong} and \textit{Z. Shi}, Anal. Theory Appl. 28, No. 4, 301--311 (2012; Zbl 1289.46019) Full Text: DOI
Ji, Dandan LURWC in Orlicz-Sobolev spaces. (Chinese. English summary) Zbl 1274.46066 Pure Appl. Math. 28, No. 4, 493-500 (2012). MSC: 46E30 46B20 PDF BibTeX XML Cite \textit{D. Ji}, Pure Appl. Math. 28, No. 4, 493--500 (2012; Zbl 1274.46066)
Demiriz, Serkan; Çakan, Celal Some topological and geometrical properties of the sequence space \(e^r(u,p)\). (English) Zbl 1274.46016 Acta Math. Sci., Ser. B, Engl. Ed. 32, No. 4, 1513-1528 (2012). MSC: 46A45 PDF BibTeX XML Cite \textit{S. Demiriz} and \textit{C. Çakan}, Acta Math. Sci., Ser. B, Engl. Ed. 32, No. 4, 1513--1528 (2012; Zbl 1274.46016) Full Text: DOI
Shi, Zhongrui; Zhai, Jiayu \(\lambda\) point and \(\lambda\) property in generalized Orlicz spaces with Luxemburg norm. (English) Zbl 1265.46052 J. East China Norm. Univ., Nat. Sci. Ed. 2012, No. 1, 63-73 (2012). MSC: 46E30 46B20 PDF BibTeX XML Cite \textit{Z. Shi} and \textit{J. Zhai}, J. East China Norm. Univ., Nat. Sci. Ed. 2012, No. 1, 63--73 (2012; Zbl 1265.46052) Full Text: DOI
Shi, Zhongrui; Liu, Chunyan Explosiveness of Musielak-Orlicz sequence spaces. (English) Zbl 1265.46036 Acta Anal. Funct. Appl. 14, No. 1, 14-22 (2012). MSC: 46B45 46B20 PDF BibTeX XML Cite \textit{Z. Shi} and \textit{C. Liu}, Acta Anal. Funct. Appl. 14, No. 1, 14--22 (2012; Zbl 1265.46036) Full Text: DOI
Krnić, Mario Multidimensional Hilbert-type inequality on the weighted Orlicz spaces. (English) Zbl 1254.26027 Mediterr. J. Math. 9, No. 4, 883-895 (2012). MSC: 26D10 46E30 PDF BibTeX XML Cite \textit{M. Krnić}, Mediterr. J. Math. 9, No. 4, 883--895 (2012; Zbl 1254.26027) Full Text: DOI
Foralewski, Paweł On some geometric properties of generalized Orlicz-Lorentz function spaces. (English) Zbl 1259.46024 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 17, 6217-6236 (2012). Reviewer: Pawel Kolwicz (Poznań) MSC: 46E30 46B20 46B42 46A80 PDF BibTeX XML Cite \textit{P. Foralewski}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 17, 6217--6236 (2012; Zbl 1259.46024) Full Text: DOI
Jain, Pankaj; Persson, Lars-Erik; Upreti, Priti On products of generalized Orlicz spaces. (English) Zbl 1253.26030 Math. Inequal. Appl. 15, No. 3, 663-674 (2012). MSC: 26D10 26D15 46E35 PDF BibTeX XML Cite \textit{P. Jain} et al., Math. Inequal. Appl. 15, No. 3, 663--674 (2012; Zbl 1253.26030) Full Text: DOI Link
Shi, Zhongrui; Liu, Chunyan Exposed points and strongly exposed points in Musielak-Orlicz sequence spaces. (English) Zbl 1242.46020 Taiwanese J. Math. 16, No. 1, 305-322 (2012). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{Z. Shi} and \textit{C. Liu}, Taiwanese J. Math. 16, No. 1, 305--322 (2012; Zbl 1242.46020) Full Text: DOI Link
Shang, Shaoqiang; Cui, Yunan; Fu, Yongqiang Midpoint locally uniform rotundity of Musielak-Orlicz-Bochner function spaces endowed with the Luxemburg norm. (English) Zbl 1242.46019 J. Convex Anal. 19, No. 1, 213-223 (2012). MSC: 46B20 46E30 46E40 PDF BibTeX XML Cite \textit{S. Shang} et al., J. Convex Anal. 19, No. 1, 213--223 (2012; Zbl 1242.46019) Full Text: Link
Faried, N.; Bakery, A. A. On \(k\)-nearly uniformly convex property in Nakano difference sequence space. (English) Zbl 1262.46010 Indian J. Math. 53, No. 3, 407-417 (2011). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{N. Faried} and \textit{A. A. Bakery}, Indian J. Math. 53, No. 3, 407--417 (2011; Zbl 1262.46010)
Liu, Chunyan; Shi, Zhongrui Property \(U\) of Orlicz space. (Chinese. English summary) Zbl 1240.46028 Acta Math. Sci., Ser. A, Chin. Ed. 31, No. 2, 328-334 (2011). MSC: 46B20 46E30 PDF BibTeX XML Cite \textit{C. Liu} and \textit{Z. Shi}, Acta Math. Sci., Ser. A, Chin. Ed. 31, No. 2, 328--334 (2011; Zbl 1240.46028)
Bang, Ha Huy; Van Hoang, Nguyen; Huy, Vu Nhat Some properties of Orlicz-Lorentz spaces. (English) Zbl 1243.46017 Acta Math. Vietnam. 36, No. 2, 145-167 (2011). Reviewer: Julian Musielak (Poznań) MSC: 46E30 PDF BibTeX XML Cite \textit{H. H. Bang} et al., Acta Math. Vietnam. 36, No. 2, 145--167 (2011; Zbl 1243.46017) Full Text: Link
Ha Huy Bang; Nguyen Van Hoang; Vu Nhat Huy Best constants for the inequalities between equivalent norms in Orlicz spaces. (English) Zbl 1239.46024 Bull. Pol. Acad. Sci., Math. 59, No. 2, 165-174 (2011). Reviewer: Julian Musielak (Poznań) MSC: 46E30 PDF BibTeX XML Cite \textit{Ha Huy Bang} et al., Bull. Pol. Acad. Sci., Math. 59, No. 2, 165--174 (2011; Zbl 1239.46024) Full Text: DOI
Shang, Shaoqiang; Cui, Yunan; Fu, Yongqiang Nonsquareness and locally uniform nonsquareness in Orlicz-Bochner function spaces endowed with Luxemburg norm. (English) Zbl 1225.46010 J. Inequal. Appl. 2011, Article ID 875649, 15 p. (2011). Reviewer: Anna Kamińska (Memphis) MSC: 46B20 46E40 PDF BibTeX XML Cite \textit{S. Shang} et al., J. Inequal. Appl. 2011, Article ID 875649, 15 p. (2011; Zbl 1225.46010) Full Text: DOI EuDML
Faried, N.; Bakery, A. A. On k-nearly uniformly convex property in generalized Cesàro difference sequence space defined by weighted means. (English) Zbl 1235.46029 Int. J. Contemp. Math. Sci. 5, No. 49-52, 2495-2504 (2010). MSC: 46B45 46B20 PDF BibTeX XML Cite \textit{N. Faried} and \textit{A. A. Bakery}, Int. J. Contemp. Math. Sci. 5, No. 49--52, 2495--2504 (2010; Zbl 1235.46029) Full Text: Link
Liu, Chunyan; Shi, Zhongrui Notes on \(k\)-smoothness in Orlicz sequence spaces. (English) Zbl 1240.46060 J. Shanghai Univ. 14, No. 6, 420-423 (2010). MSC: 46E30 PDF BibTeX XML Cite \textit{C. Liu} and \textit{Z. Shi}, J. Shanghai Univ. 14, No. 6, 420--423 (2010; Zbl 1240.46060) Full Text: DOI
Khan, V. A. Some geometric properties of Riesz-Musielak-Orlicz sequence spaces. (English) Zbl 1221.46008 Thai J. Math. 8, No. 3, 565-574 (2010). MSC: 46A45 46A80 PDF BibTeX XML Cite \textit{V. A. Khan}, Thai J. Math. 8, No. 3, 565--574 (2010; Zbl 1221.46008) Full Text: Link
Zhang, Dawei; Shi, Zhongrui Nonsquare Orlicz-Bochner spaces. (Chinese. English summary) Zbl 1224.46029 J. Shanghai Univ., Nat. Sci. 16, No. 1, 48-52 (2010). MSC: 46B20 46E30 PDF BibTeX XML Cite \textit{D. Zhang} and \textit{Z. Shi}, J. Shanghai Univ., Nat. Sci. 16, No. 1, 48--52 (2010; Zbl 1224.46029)
Cui, Yunan; Hudzik, Henryk; Li, Jingjing Some fundamental properties for duals of Orlicz spaces. (English) Zbl 1211.46010 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 8, 2353-2360 (2010). Reviewer: Anna Kamińska (Memphis) MSC: 46B20 46B04 46E30 46A80 PDF BibTeX XML Cite \textit{Y. Cui} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 8, 2353--2360 (2010; Zbl 1211.46010) Full Text: DOI
Şimşek, Necip; Karakaya, Vatan On some geometrical properties of certain vector-valued sequence spaces. (English) Zbl 1202.46022 Far East J. Math. Sci. (FJMS) 40, No. 2, 189-200 (2010). MSC: 46B45 46E40 46B20 PDF BibTeX XML Cite \textit{N. Şimşek} and \textit{V. Karakaya}, Far East J. Math. Sci. (FJMS) 40, No. 2, 189--200 (2010; Zbl 1202.46022) Full Text: Link
Gong, Wanzhong; Shi, Zhongrui Points of monotonicity in Orlicz-Lorentz function spaces. (English) Zbl 1201.46021 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 5, 1300-1317 (2010). MSC: 46B20 46E30 PDF BibTeX XML Cite \textit{W. Gong} and \textit{Z. Shi}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 5, 1300--1317 (2010; Zbl 1201.46021) Full Text: DOI
Şimşek, Necip; Savaş, Ekrem; Karakaya, Vatan Some geometric and topological properties of a new sequence space defined by de la Vallée-Poussin mean. (English) Zbl 1200.46006 J. Comput. Anal. Appl. 12, No. 4, 768-779 (2010). MSC: 46A45 46B20 46B45 PDF BibTeX XML Cite \textit{N. Şimşek} et al., J. Comput. Anal. Appl. 12, No. 4, 768--779 (2010; Zbl 1200.46006)
Yu, Xiao; Chen, Jie Cheng Endpoint estimates for commutators of multilinear fractional integral operators. (English) Zbl 1190.42004 Acta Math. Sin., Engl. Ser. 26, No. 3, 433-444 (2010). MSC: 42B20 PDF BibTeX XML Cite \textit{X. Yu} and \textit{J. C. Chen}, Acta Math. Sin., Engl. Ser. 26, No. 3, 433--444 (2010; Zbl 1190.42004) Full Text: DOI
Foralewski, Paweł; Hudzik, Henryk; Płuciennik, Ryszard Orlicz spaces without extreme points. (English) Zbl 1194.46011 J. Math. Anal. Appl. 361, No. 2, 506-519 (2010). MSC: 46B04 46B20 PDF BibTeX XML Cite \textit{P. Foralewski} et al., J. Math. Anal. Appl. 361, No. 2, 506--519 (2010; Zbl 1194.46011) Full Text: DOI
Dong, Ge; Wei, Wenzhan Noncreasy Orlicz-Bochner function spaces with Luxemburg norm. (Chinese. English summary) Zbl 1212.46029 Acta Math. Sci., Ser. A, Chin. Ed. 29, No. 2, 416-422 (2009). MSC: 46B20 46E40 PDF BibTeX XML Cite \textit{G. Dong} and \textit{W. Wei}, Acta Math. Sci., Ser. A, Chin. Ed. 29, No. 2, 416--422 (2009; Zbl 1212.46029)
Zhang, Shubin; Shi, Zhongrui Smoothness of Orlicz-Bochner sequence spaces. (Chinese. English summary) Zbl 1212.46043 J. Shanghai Univ., Nat. Sci. 15, No. 3, 254-258 (2009). MSC: 46B45 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{Z. Shi}, J. Shanghai Univ., Nat. Sci. 15, No. 3, 254--258 (2009; Zbl 1212.46043)
Jain, Pankaj; Upreti, Priti Certain properties of generalized Orlicz spaces. (English) Zbl 1168.26305 JIPAM, J. Inequal. Pure Appl. Math. 10, No. 2, Paper No. 37, 10 p. (2009). MSC: 26D10 26D15 46E35 PDF BibTeX XML Cite \textit{P. Jain} and \textit{P. Upreti}, JIPAM, J. Inequal. Pure Appl. Math. 10, No. 2, Paper No. 37, 10 p. (2009; Zbl 1168.26305) Full Text: EMIS EuDML
Hudzik, Henryk; Kaczmarek, Radosław Moduli and characteristics of monotonicity in general Banach lattices and in Orlicz spaces in particular. (English) Zbl 1173.46004 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 9, 3407-3423 (2009). MSC: 46B20 46E30 PDF BibTeX XML Cite \textit{H. Hudzik} and \textit{R. Kaczmarek}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 9, 3407--3423 (2009; Zbl 1173.46004) Full Text: DOI
Shi, Zhongrui; Ge, Shuangyin Bochner–Orlicz sequence spaces with \(\lambda\) property. (English) Zbl 1174.46309 J. Shanghai Univ. 12, No. 2, 95-96 (2008). MSC: 46B20 46B45 46E40 PDF BibTeX XML Cite \textit{Z. Shi} and \textit{S. Ge}, J. Shanghai Univ. 12, No. 2, 95--96 (2008; Zbl 1174.46309) Full Text: DOI
Zlatanov, B. On weak uniform normal structure in weighted Orlicz sequence spaces. (English) Zbl 1148.46014 J. Math. Anal. Appl. 341, No. 2, 1042-1054 (2008). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{B. Zlatanov}, J. Math. Anal. Appl. 341, No. 2, 1042--1054 (2008; Zbl 1148.46014) Full Text: DOI
Kalyabin, G. A. A nondensity criterion for \(L^\infty(\mathbb R^n)\) in \(L^{p(\cdot)}(\mathbb R^n)\). (English. Russian original) Zbl 1219.46028 Math. Notes 82, No. 2, 277-278 (2007); translation from Mat. Zametki 82, No. 2, 315-316 (2007). MSC: 46E30 PDF BibTeX XML Cite \textit{G. A. Kalyabin}, Math. Notes 82, No. 2, 277--278 (2007; Zbl 1219.46028); translation from Mat. Zametki 82, No. 2, 315--316 (2007) Full Text: DOI
Jain, P.; Persson, L. E.; Upreti, P. Inequalites and properties of some generalized Orlicz classes and spaces. (English) Zbl 1164.26016 Acta Math. Hung. 117, No. 1-2, 161-174 (2007). Reviewer: Gheorghe Toader (Cluj-Napoca) MSC: 26D10 26D15 46E35 PDF BibTeX XML Cite \textit{P. Jain} et al., Acta Math. Hung. 117, No. 1--2, 161--174 (2007; Zbl 1164.26016) Full Text: DOI
Cui, Yunan; Hudzik, Henryk; Zuo, Mingxia On \(S\)-points of Musielak-Orlicz sequence spaces. (Chinese. English summary) Zbl 1141.46309 Acta Math. Sin., Chin. Ser. 50, No. 5, 1117-1128 (2007). MSC: 46B45 46B20 PDF BibTeX XML Cite \textit{Y. Cui} et al., Acta Math. Sin., Chin. Ser. 50, No. 5, 1117--1128 (2007; Zbl 1141.46309)
Khan, Vakeel A. On Riesz-Musielak-Orlicz sequence spaces. (English) Zbl 1126.46012 Numer. Funct. Anal. Optimization 28, No. 7-8, 883-895 (2007). MSC: 46B45 46B20 PDF BibTeX XML Cite \textit{V. A. Khan}, Numer. Funct. Anal. Optim. 28, No. 7--8, 883--895 (2007; Zbl 1126.46012) Full Text: DOI
Fan, Xian Ling Amemiya norm equals Orlicz norm in Musielak–Orlicz spaces. (English) Zbl 1129.46020 Acta Math. Sin., Engl. Ser. 23, No. 2, 281-288 (2007). Reviewer: Anna Kaminska (Memphis) MSC: 46E30 26D07 PDF BibTeX XML Cite \textit{X. L. Fan}, Acta Math. Sin., Engl. Ser. 23, No. 2, 281--288 (2007; Zbl 1129.46020) Full Text: DOI
Chazottes, J.-R.; Collet, P.; Külske, C.; Redig, F. Concentration inequalities for random fields via coupling. (English) Zbl 1111.60070 Probab. Theory Relat. Fields 137, No. 1-2, 201-225 (2007). MSC: 60K35 82C22 60E15 PDF BibTeX XML Cite \textit{J. R. Chazottes} et al., Probab. Theory Relat. Fields 137, No. 1--2, 201--225 (2007; Zbl 1111.60070) Full Text: DOI
Wang, Jun Ming; Liu, Xin Bo; Cui, Yun An Local uniform rotundity in Musielak-Orlicz sequence space equipped with the Luxemburg norm. (English) Zbl 1186.46018 Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 46, No. 1, 131-139 (2006). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{J. M. Wang} et al., Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 46, No. 1, 131--139 (2006; Zbl 1186.46018)
Wu, Jiongqi On \(\Psi\)-modulus and \(\Psi\)-capacities equalities in metric measure spaces. (English) Zbl 1117.31003 Wang, Yuefei (ed.) et al., Complex analysis and applications. Proceedings of the 13th international conference on finite or infinite dimensional complex analysis and applications, Shantou University, Shantou, China, August 8–12, 2005. Hackensack, NJ: World Scientific (ISBN 981-256-868-9/hbk). 267-275 (2006). Reviewer: Matti Vuorinen (Turku) MSC: 31C15 30C62 46E30 PDF BibTeX XML Cite \textit{J. Wu}, in: Complex analysis and applications. Proceedings of the 13th international conference on finite or infinite dimensional complex analysis and applications, Shantou University, Shantou, China, August 8--12, 2005. Hackensack, NJ: World Scientific. 267--275 (2006; Zbl 1117.31003)
Väth, Martin Some measurability results and applications to spaces with mixed family-norm. (English) Zbl 1120.46013 Positivity 10, No. 4, 737-753 (2006). Reviewer: Vladimir Kadets (Murcia) MSC: 46E30 28A20 28A35 PDF BibTeX XML Cite \textit{M. Väth}, Positivity 10, No. 4, 737--753 (2006; Zbl 1120.46013) Full Text: DOI
Hudzik, Henryk; Kowalewski, Wojciech; Lewicki, Grzegorz Approximative compactness and full rotundity in Musielak–Orlicz spaces and Lorentz–Orlicz spaces. (English) Zbl 1108.46016 Z. Anal. Anwend. 25, No. 2, 163-192 (2006). Reviewer: Joe Howard (Portales) MSC: 46B20 46E30 46B40 46B42 46B45 PDF BibTeX XML Cite \textit{H. Hudzik} et al., Z. Anal. Anwend. 25, No. 2, 163--192 (2006; Zbl 1108.46016) Full Text: DOI
Damas, A.; Marano, M.; Quesada, J. M. Uniqueness of best approximation from the set of generalized \(n\)-convex functions. (English) Zbl 1137.41001 East J. Approx. 11, No. 3, 269-290 (2005). Reviewer: Lozko B. Milev (Sofia) MSC: 41A52 PDF BibTeX XML Cite \textit{A. Damas} et al., East J. Approx. 11, No. 3, 269--290 (2005; Zbl 1137.41001)
Duan, Lifen Annotation on norms of Orlicz spaces. (Chinese. English summary) Zbl 1105.46301 J. Hainan Norm. Univ., Nat. Sci. 18, No. 2, 123-124, 129 (2005). MSC: 46B45 PDF BibTeX XML Cite \textit{L. Duan}, J. Hainan Norm. Univ., Nat. Sci. 18, No. 2, 123--124, 129 (2005; Zbl 1105.46301)
Schappacher, Gudrun A notion of Orlicz spaces for vector valued functions. (English) Zbl 1099.46021 Appl. Math., Praha 50, No. 4, 355-386 (2005). MSC: 46E30 46E40 46B10 PDF BibTeX XML Cite \textit{G. Schappacher}, Appl. Math., Praha 50, No. 4, 355--386 (2005; Zbl 1099.46021) Full Text: DOI EuDML
Denkowska, Anna Strong law of large numbers for optimal points. (English) Zbl 1124.60029 Zesz. Nauk. Uniw. Jagiell. 1285, Univ. Iagell. Acta Math. 43, 45-60 (2005). Reviewer: Anatolij M. Plichko (Krakow) MSC: 60F15 46A80 46E30 60B12 PDF BibTeX XML Cite \textit{A. Denkowska}, Zesz. Nauk. Uniw. Jagiell., Univ. Iagell. Acta Math. 1285(43), 45--60 (2005; Zbl 1124.60029) Full Text: EuDML
Dinu, Teodora-Liliana On a nonlinear eigenvalue problem in Sobolev spaces with variable exponent. (English) Zbl 1108.35055 Sib. Èlektron. Mat. Izv. 2, 208-217 (2005). MSC: 35J60 35A05 35B50 PDF BibTeX XML Cite \textit{T.-L. Dinu}, Sib. Èlektron. Mat. Izv. 2, 208--217 (2005; Zbl 1108.35055) Full Text: EuDML arXiv
Cui, Yunan; Hudzik, Henryk; Petrot, Narin; Suantai, Suthep; Szymaskiewicz, Alicja Basic topological and geometric properties of Cesàro-Orlicz spaces. (English) Zbl 1093.46013 Proc. Indian Acad. Sci., Math. Sci. 115, No. 4, 461-476 (2005). MSC: 46B45 46B20 PDF BibTeX XML Cite \textit{Y. Cui} et al., Proc. Indian Acad. Sci., Math. Sci. 115, No. 4, 461--476 (2005; Zbl 1093.46013) Full Text: DOI arXiv
Petrot, Narin; Suantai, Suthep Uniform Opial properties in generalized Cesàro sequence spaces. (English) Zbl 1102.46012 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 63, No. 8, 1116-1125 (2005). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{N. Petrot} and \textit{S. Suantai}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 63, No. 8, 1116--1125 (2005; Zbl 1102.46012) Full Text: DOI
Liu, Xinbo; Wang, Tingfu; Yu, Feifei Extreme points and strongly extreme points of Musielak–Orlicz sequences spaces. (English) Zbl 1094.46015 Acta Math. Sin., Engl. Ser. 21, No. 2, 267-278 (2005). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{X. Liu} et al., Acta Math. Sin., Engl. Ser. 21, No. 2, 267--278 (2005; Zbl 1094.46015) Full Text: DOI
Hudzik, Henryk; Kowalewski, Wojciech On some global and local geometric properties of Musielak-Orlicz spaces. (English) Zbl 1089.46020 Publ. Math. 67, No. 1-2, 41-64 (2005). MSC: 46E30 46B25 46E40 46B20 PDF BibTeX XML Cite \textit{H. Hudzik} and \textit{W. Kowalewski}, Publ. Math. 67, No. 1--2, 41--64 (2005; Zbl 1089.46020)
Tang, Xiaowen; Ji, Donghai; Wang, Shuxin Pointwise nonsquare constant in normed space. (English) Zbl 1108.46303 Acta Anal. Funct. Appl. 6, No. 1, 10-15 (2004). MSC: 46B20 PDF BibTeX XML Cite \textit{X. Tang} et al., Acta Anal. Funct. Appl. 6, No. 1, 10--15 (2004; Zbl 1108.46303)
Fang, Liu Li; Fu, Wang Ting; Hudzik, Henryk Uniform Gateaux differentiability and weak uniform rotundity of Musielak-Orlicz function spaces. (English) Zbl 1115.46010 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 56, No. 8, 1133-1149 (2004). MSC: 46B20 46E30 46G05 PDF BibTeX XML Cite \textit{L. L. Fang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 56, No. 8, 1133--1149 (2004; Zbl 1115.46010) Full Text: DOI