Weinstein, Israel Or On the pointwise Lyapunov exponent of holomorphic maps. (English) Zbl 07301047 Fundam. Math. 252, No. 1, 39-51 (2021). MSC: 37F10 37F15 37F50 PDF BibTeX XML Cite \textit{I. O. Weinstein}, Fundam. Math. 252, No. 1, 39--51 (2021; Zbl 07301047) Full Text: DOI
Wang, Juan; Cao, Yongluo; Zou, Rui The approximation of uniform hyperbolicity for \(C^1\) diffeomorphisms with hyperbolic measures. (English) Zbl 07291342 J. Differ. Equations 275, 359-390 (2021). MSC: 37D25 37D30 37C05 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Differ. Equations 275, 359--390 (2021; Zbl 07291342) Full Text: DOI
Shepelev, Igor A.; Anishchenko, V. S. Bistable labyrinth-like structures and chimera states in a 2D lattice of van der Pol oscillators. (English) Zbl 07274916 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105513, 14 p. (2021). MSC: 34C15 34C27 34E15 34D05 34C23 PDF BibTeX XML Cite \textit{I. A. Shepelev} and \textit{V. S. Anishchenko}, Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105513, 14 p. (2021; Zbl 07274916) Full Text: DOI
Butusov, Denis N.; Pesterev, Dmitriy O.; Tutueva, Aleksandra V.; Kaplun, Dmitry I.; Nepomuceno, Erivelton G. New technique to quantify chaotic dynamics based on differences between semi-implicit integration schemes. (English) Zbl 07274875 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105467, 16 p. (2021). MSC: 34C28 PDF BibTeX XML Cite \textit{D. N. Butusov} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105467, 16 p. (2021; Zbl 07274875) Full Text: DOI
Karimi, Sohrab; Ghane, F. H. Analysis of coexistence and extinction in a two-species competition model. (English) Zbl 07306781 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050248, 17 p. (2020). MSC: 92D25 39A28 PDF BibTeX XML Cite \textit{S. Karimi} and \textit{F. H. Ghane}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050248, 17 p. (2020; Zbl 07306781) Full Text: DOI
Wang, Heyuan; Li, Jia; Wang, Meiyu; Song, Siqi; Wang, Xiaofan; Cao, Tingting Dynamical behavior analysis and numerical simulation of new five-mode Lorenz-like equations. (Chinese. English summary) Zbl 07295671 J. Shenyang Norm. Univ., Nat. Sci. 38, No. 2, 164-170 (2020). MSC: 35Q30 37D45 65P40 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Shenyang Norm. Univ., Nat. Sci. 38, No. 2, 164--170 (2020; Zbl 07295671) Full Text: DOI
Gan, Shaobo; Shi, Yi Rigidity of center Lyapunov exponents and \(su\)-integrability. (English) Zbl 07282500 Comment. Math. Helv. 95, No. 3, 569-592 (2020). MSC: 37D30 37D20 37D25 PDF BibTeX XML Cite \textit{S. Gan} and \textit{Y. Shi}, Comment. Math. Helv. 95, No. 3, 569--592 (2020; Zbl 07282500) Full Text: DOI
Esbati Lavasani, Reza; Shams, Shahrokh A new dynamic stall approach for investigating bifurcation and chaos in aeroelastic response of a blade section with flap free-play section. (English) Zbl 07281764 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050200, 22 p. (2020). MSC: 74H60 74H65 74F10 74H15 70K55 PDF BibTeX XML Cite \textit{R. Esbati Lavasani} and \textit{S. Shams}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050200, 22 p. (2020; Zbl 07281764) Full Text: DOI
Mondal, Monimala; Pradhan, Parthapratim; Rahaman, Farook; Karar, Indrani Geodesic stability and quasi normal modes via Lyapunov exponent for Hayward black hole. (English) Zbl 1448.83022 Mod. Phys. Lett. A 35, No. 30, Article ID 2050249, 18 p. (2020). MSC: 83C57 37N20 83C10 PDF BibTeX XML Cite \textit{M. Mondal} et al., Mod. Phys. Lett. A 35, No. 30, Article ID 2050249, 18 p. (2020; Zbl 1448.83022) Full Text: DOI
Cong, Nguyen Dinh; Duc, Luu Hoang; Hong, Phan Thanh Lyapunov spectrum of nonautonomous linear Young differential equations. (English) Zbl 07272632 J. Dyn. Differ. Equations 32, No. 4, 1749-1777 (2020). MSC: 34A30 34A06 34F05 60J65 34D08 37C60 PDF BibTeX XML Cite \textit{N. D. Cong} et al., J. Dyn. Differ. Equations 32, No. 4, 1749--1777 (2020; Zbl 07272632) Full Text: DOI
Kubota, Naoki Continuity for the rate function of the simple random walk on supercritical percolation clusters. (English) Zbl 07268519 J. Theor. Probab. 33, No. 4, 1948-1973 (2020). MSC: 60K37 60F10 PDF BibTeX XML Cite \textit{N. Kubota}, J. Theor. Probab. 33, No. 4, 1948--1973 (2020; Zbl 07268519) Full Text: DOI
Zhang, Yong; Shu, Yonglu Analysis of a new high order Lorenz-type chaos model. (Chinese. English summary) Zbl 07267321 Math. Pract. Theory 50, No. 1, 216-222 (2020). MSC: 34C28 37D45 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Y. Shu}, Math. Pract. Theory 50, No. 1, 216--222 (2020; Zbl 07267321)
Zou, Xiaoling; Zheng, Yuting; Zhang, Liren; Lv, Jingliang Survivability and stochastic bifurcations for a stochastic Holling type II predator-prey model. (English) Zbl 07265143 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105136, 20 p. (2020). MSC: 92D25 37H20 34C23 PDF BibTeX XML Cite \textit{X. Zou} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105136, 20 p. (2020; Zbl 07265143) Full Text: DOI
Kanchana, C.; Su, Yongqing; Zhao, Yi Regular and chaotic Rayleigh-Bénard convective motions in methanol and water. (English) Zbl 07265137 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105129, 20 p. (2020). MSC: 76R10 80A19 37N10 PDF BibTeX XML Cite \textit{C. Kanchana} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105129, 20 p. (2020; Zbl 07265137) Full Text: DOI
Hua, Mengjiao; Lei, Youming; Du, Lin Onset of stochastic synchronization induced by diffusion processes in a generalized Duffing system. (English) Zbl 07265116 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105098, 8 p. (2020). MSC: 60J60 37D45 37N35 93D15 PDF BibTeX XML Cite \textit{M. Hua} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105098, 8 p. (2020; Zbl 07265116) Full Text: DOI
Qi, Guoyuan; Hu, Jianbing Modelling of both energy and volume conservative chaotic systems and their mechanism analyses. (English) Zbl 07261596 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105171, 15 p. (2020). MSC: 70E 37J06 PDF BibTeX XML Cite \textit{G. Qi} and \textit{J. Hu}, Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105171, 15 p. (2020; Zbl 07261596) Full Text: DOI
Ma, Li; Liu, Xianggang; Liu, Xiaotong; Zhang, Ying; Qiu, Yu; Li, Kaiyan On the correlation dimension of discrete fractional chaotic systems. (English) Zbl 1452.37080 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050174, 14 p. (2020). MSC: 37M05 37D45 37C45 39A13 39A70 26A33 PDF BibTeX XML Cite \textit{L. Ma} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050174, 14 p. (2020; Zbl 1452.37080) Full Text: DOI
Kharbanda, Harsha; Kumar, Sachin Chaos detection and optimal control in a cannibalistic prey-predator system with harvesting. (English) Zbl 1448.92208 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050171, 24 p. (2020). MSC: 92D25 91B76 34D23 34C23 34C28 PDF BibTeX XML Cite \textit{H. Kharbanda} and \textit{S. Kumar}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050171, 24 p. (2020; Zbl 1448.92208) Full Text: DOI
Berezowski, Marek Chaos predictability in a chemical reactor. (English) Zbl 1448.92398 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050221, 8 p. (2020). MSC: 92E20 37D45 PDF BibTeX XML Cite \textit{M. Berezowski}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050221, 8 p. (2020; Zbl 1448.92398) Full Text: DOI
Han, R.; Lemm, M.; Schlag, W. Effective multi-scale approach to the Schrödinger cocycle over a skew-shift base. (English) Zbl 07257152 Ergodic Theory Dyn. Syst. 40, No. 10, 2788-2853 (2020). MSC: 35J10 47B36 PDF BibTeX XML Cite \textit{R. Han} et al., Ergodic Theory Dyn. Syst. 40, No. 10, 2788--2853 (2020; Zbl 07257152) Full Text: DOI
Kaouache, Smail; Abdelouahab, Mohammed-Salah Inverse matrix projective synchronization of novel hyperchaotic system with hyperbolic sine function non-linearity. (English) Zbl 1452.34060 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 145-154 (2020). MSC: 34D06 34A34 34C28 37D45 34D20 34H05 93C55 37C25 34C14 34C05 PDF BibTeX XML Cite \textit{S. Kaouache} and \textit{M.-S. Abdelouahab}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 145--154 (2020; Zbl 1452.34060) Full Text: Link
Hannachi, F. Adaptive sliding mode control synchronization of a novel, highly chaotic 3-D system with two exponential nonlinearities. (English) Zbl 1451.37116 Nonlinear Dyn. Syst. Theory 20, No. 1, 38-50 (2020). MSC: 37N35 34D06 34D08 37D45 93C40 93D05 PDF BibTeX XML Cite \textit{F. Hannachi}, Nonlinear Dyn. Syst. Theory 20, No. 1, 38--50 (2020; Zbl 1451.37116) Full Text: Link
Anh, Pham The; Babiarz, Artur; Czornik, Adam; Niezabitowski, Michal; Siegmund, Stefan Some results on linear nabla Riemann-Liouville fractional difference equations. (English) Zbl 1448.39005 Math. Methods Appl. Sci. 43, No. 13, 7815-7824 (2020). MSC: 39A13 39A12 26A33 93D05 39A30 PDF BibTeX XML Cite \textit{P. T. Anh} et al., Math. Methods Appl. Sci. 43, No. 13, 7815--7824 (2020; Zbl 1448.39005) Full Text: DOI
Tchakui, M. V.; Woafo, P.; Skokos, Ch. Chaotic dynamics of piezoelectric MEMS based on maximum Lyapunov exponent and smaller alignment index computations. (English) Zbl 1450.37083 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030025, 17 p. (2020). MSC: 37N15 37J65 74F15 PDF BibTeX XML Cite \textit{M. V. Tchakui} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030025, 17 p. (2020; Zbl 1450.37083) Full Text: DOI
Nakazawa, Isao; Umeno, Ken Chaotic property of almost periodic frequency arrangement (APFA). (English) Zbl 07246797 JSIAM Lett. 12, 9-12 (2020). MSC: 94 93 PDF BibTeX XML Cite \textit{I. Nakazawa} and \textit{K. Umeno}, JSIAM Lett. 12, 9--12 (2020; Zbl 07246797) Full Text: DOI
Sun, Wenxiang; Young, Todd Lyapunov exponent, Liao perturbation and persistence. (English) Zbl 1451.37043 Sci. China, Math. 63, No. 9, 1913-1928 (2020). MSC: 37D25 37C40 PDF BibTeX XML Cite \textit{W. Sun} and \textit{T. Young}, Sci. China, Math. 63, No. 9, 1913--1928 (2020; Zbl 1451.37043) Full Text: DOI
Tao, Kai Non-perturbative positivity and weak Hölder continuity of Lyapunov exponent of analytic quasi-periodic Jacobi cocycles defined on a high dimension torus. (English) Zbl 1450.37050 Electron. J. Differ. Equ. 2020, Paper No. 51, 14 p. (2020). MSC: 37H15 37C55 37E30 PDF BibTeX XML Cite \textit{K. Tao}, Electron. J. Differ. Equ. 2020, Paper No. 51, 14 p. (2020; Zbl 1450.37050) Full Text: Link
Mohammadpour, Reza Zero temperature limits of equilibrium states for subadditive potentials and approximation of maximal Lyapunov exponent. (English) Zbl 1451.37079 Topol. Methods Nonlinear Anal. 55, No. 2, 697-710 (2020). Reviewer: Ivan Podvigin (Novosibirsk) MSC: 37H15 37A35 37D35 PDF BibTeX XML Cite \textit{R. Mohammadpour}, Topol. Methods Nonlinear Anal. 55, No. 2, 697--710 (2020; Zbl 1451.37079) Full Text: DOI Euclid
Yuan, Fang; Jin, Yuan; Li, Yuxia Self-reproducing chaos and bursting oscillation analysis in a meminductor-based conservative system. (English) Zbl 1447.37089 Chaos 30, No. 5, 053127, 15 p. (2020). MSC: 37N99 94C05 94C60 PDF BibTeX XML Cite \textit{F. Yuan} et al., Chaos 30, No. 5, 053127, 15 p. (2020; Zbl 1447.37089) Full Text: DOI
Joshi, Anoopa; Kumar, Atul Chaotic maps: applications to cryptography and network generation for the graph Laplacian quantum states. (English) Zbl 1446.37080 Deo, Naokant (ed.) et al., Mathematical analysis II: Optimisation, differential equations and graph theory. Proceedings of the international conference on recent advances in pure and applied mathematics 2018, ICRAPAM 2018, New Delhi, India, October 23–25, 2018. Dedicated to the memory of Prof. Niranjan Singh. Singapore: Springer. Springer Proc. Math. Stat. 307, 155-164 (2020). MSC: 37N20 37E05 37H12 94A60 81P40 PDF BibTeX XML Cite \textit{A. Joshi} and \textit{A. Kumar}, Springer Proc. Math. Stat. 307, 155--164 (2020; Zbl 1446.37080) Full Text: DOI
Lampart, Marek; Martinovič, Tomáš CML-tent model chaotic behavior with respect to the state and coupling parameterse. (English) Zbl 1446.37039 Stavrinides, Stavros G. (ed.) et al., Chaos and complex systems. Proceedings of the 5th international interdisciplinary chaos symposium on chaos and complex systems, CCS 2019, Antalya, Turkey, May 9–12, 2019. Cham: Springer. Springer Proc. Complex., 15-27 (2020). MSC: 37E05 37L60 37D45 PDF BibTeX XML Cite \textit{M. Lampart} and \textit{T. Martinovič}, in: Chaos and complex systems. Proceedings of the 5th international interdisciplinary chaos symposium on chaos and complex systems, CCS 2019, Antalya, Turkey, May 9--12, 2019. Cham: Springer. 15--27 (2020; Zbl 1446.37039) Full Text: DOI
Fu, Linlin; Xu, Jiahao; Wu, Fan New proof of continuity of Lyapunov exponents for a class of smooth Schrödinger cocycles with weak Liouville frequencies. (English) Zbl 1446.37003 Front. Math. China 15, No. 3, 467-489 (2020). MSC: 37A20 37H15 PDF BibTeX XML Cite \textit{L. Fu} et al., Front. Math. China 15, No. 3, 467--489 (2020; Zbl 1446.37003) Full Text: DOI
Gaikwad, Adwait; Joshi, Lata Kh; Mandal, Gautam; Wadia, Spenta R. Holographic dual to charged SYK from 3D gravity and Chern-Simons. (English) Zbl 1435.83149 J. High Energy Phys. 2020, No. 2, Paper No. 33, 36 p. (2020). MSC: 83E05 83C80 58J28 81T35 83C57 83C45 83E15 37D25 PDF BibTeX XML Cite \textit{A. Gaikwad} et al., J. High Energy Phys. 2020, No. 2, Paper No. 33, 36 p. (2020; Zbl 1435.83149) Full Text: DOI arXiv
Li, Jiu; Zang, Hongyan; Wei, Xinyuan On the construction of one-dimensional discrete chaos theory based on the improved version of Marotto’s theorem. (English) Zbl 1445.37032 J. Comput. Appl. Math. 380, Article ID 112952, 14 p. (2020). MSC: 37E10 39A33 PDF BibTeX XML Cite \textit{J. Li} et al., J. Comput. Appl. Math. 380, Article ID 112952, 14 p. (2020; Zbl 1445.37032) Full Text: DOI
Omane-Adjepong, Maurice; Alagidede, Imhotep Paul High- and low-level chaos in the time and frequency market returns of leading cryptocurrencies and emerging assets. (English) Zbl 1434.91048 Chaos Solitons Fractals 132, Article ID 109563, 7 p. (2020). MSC: 91B84 37N40 PDF BibTeX XML Cite \textit{M. Omane-Adjepong} and \textit{I. P. Alagidede}, Chaos Solitons Fractals 132, Article ID 109563, 7 p. (2020; Zbl 1434.91048) Full Text: DOI
Devraj, Adithya; Kontoyiannis, Ioannis; Meyn, Sean Geometric ergodicity in a weighted Sobolev space. (English) Zbl 07206762 Ann. Probab. 48, No. 1, 380-403 (2020). MSC: 60J05 60J35 37A30 47A35 47H20 PDF BibTeX XML Cite \textit{A. Devraj} et al., Ann. Probab. 48, No. 1, 380--403 (2020; Zbl 07206762) Full Text: DOI Euclid
San Martin, Luiz A. B. Semigroups and moment Lyapunov exponents. (English) Zbl 1440.22028 J. Lie Theory 30, No. 2, 587-616 (2020). MSC: 22E46 34D08 22F30 PDF BibTeX XML Cite \textit{L. A. B. San Martin}, J. Lie Theory 30, No. 2, 587--616 (2020; Zbl 1440.22028) Full Text: Link
Damanik, David; Gan, Zheng; Krüger, Helge Limit-periodic Schrödinger operators with a discontinuous Lyapunov exponent. (English) Zbl 1448.35343 J. Funct. Anal. 279, No. 4, Article ID 108565, 15 p. (2020). MSC: 35P05 47B36 37D25 47A10 47A35 PDF BibTeX XML Cite \textit{D. Damanik} et al., J. Funct. Anal. 279, No. 4, Article ID 108565, 15 p. (2020; Zbl 1448.35343) Full Text: DOI
Berger, Pierre Complexities of differentiable dynamical systems. (English) Zbl 1435.37043 J. Math. Phys. 61, No. 3, 032702, 12 p. (2020). MSC: 37C35 37A35 37C20 82B30 PDF BibTeX XML Cite \textit{P. Berger}, J. Math. Phys. 61, No. 3, 032702, 12 p. (2020; Zbl 1435.37043) Full Text: DOI
Li, Jing Reducibility for Schrödinger operator with finite smooth and time-quasi-periodic potential. (English) Zbl 1440.35222 Chin. Ann. Math., Ser. B 41, No. 3, 419-440 (2020). Reviewer: Michael Perelmuter (Kyïv) MSC: 35P05 37K55 81Q15 PDF BibTeX XML Cite \textit{J. Li}, Chin. Ann. Math., Ser. B 41, No. 3, 419--440 (2020; Zbl 1440.35222) Full Text: DOI
Wang, Xiaodong; Zhang, Jinhua Ergodic measures with multi-zero Lyapunov exponents inside homoclinic classes. (English) Zbl 1442.37035 J. Dyn. Differ. Equations 32, No. 2, 631-664 (2020). MSC: 37C20 37C40 37D25 37A25 37C27 PDF BibTeX XML Cite \textit{X. Wang} and \textit{J. Zhang}, J. Dyn. Differ. Equations 32, No. 2, 631--664 (2020; Zbl 1442.37035) Full Text: DOI
Milici, Constantin; Machado, José Tenreiro; Drăgănescu, Gheorghe Application of the Euler and Runge-Kutta generalized methods for FDE and symbolic packages in the analysis of some fractional attractors. (English) Zbl 07201330 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 159-170 (2020). MSC: 65 34 PDF BibTeX XML Cite \textit{C. Milici} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 159--170 (2020; Zbl 07201330) Full Text: DOI
Zhu, Minghao; Wang, Chunhua A novel parallel chaotic system with greatly improved Lyapunov exponent and chaotic range. (English) Zbl 1434.37021 Int. J. Mod. Phys. B 34, No. 7, Article ID 2050048, 14 p. (2020). MSC: 37D45 94A60 PDF BibTeX XML Cite \textit{M. Zhu} and \textit{C. Wang}, Int. J. Mod. Phys. B 34, No. 7, Article ID 2050048, 14 p. (2020; Zbl 1434.37021) Full Text: DOI
Figueras, Jordi-Lluís; Timoudas, Thomas Ohlson Sharp \(\frac{1}{2}\)-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. (English) Zbl 07196481 Discrete Contin. Dyn. Syst. 40, No. 7, 4519-4531 (2020). Reviewer: Sergei Yu. Pilyugin (St. Petersburg) MSC: 37D25 37D20 37H15 37C55 PDF BibTeX XML Cite \textit{J.-L. Figueras} and \textit{T. O. Timoudas}, Discrete Contin. Dyn. Syst. 40, No. 7, 4519--4531 (2020; Zbl 07196481) Full Text: DOI
Li, Jing Reducibility, Lyapunov exponent, pure point spectra property for quasi-periodic wave operator. (English) Zbl 1440.37069 Taiwanese J. Math. 24, No. 2, 377-411 (2020). MSC: 37K55 35P05 35L05 81Q15 PDF BibTeX XML Cite \textit{J. Li}, Taiwanese J. Math. 24, No. 2, 377--411 (2020; Zbl 1440.37069) Full Text: DOI Euclid
Zhu, Hailong; Chen, Li Nonuniform mean-square exponential dichotomies and mean-square exponential stability. (English) Zbl 1436.60060 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111806, 28 p. (2020). MSC: 60H10 34D08 34D09 PDF BibTeX XML Cite \textit{H. Zhu} and \textit{L. Chen}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111806, 28 p. (2020; Zbl 1436.60060) Full Text: DOI
Hossain, Mainul; Pal, Nikhil; Samanta, Sudip; Chattopadhyay, Joydev Fear induced stabilization in an intraguild predation model. (English) Zbl 1446.34064 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 4, Article ID 2050053, 32 p. (2020). MSC: 34C60 92D25 34C05 34D20 34C28 34D08 34C23 34D05 PDF BibTeX XML Cite \textit{M. Hossain} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 4, Article ID 2050053, 32 p. (2020; Zbl 1446.34064) Full Text: DOI
Buczolich, Zoltán; Keszthelyi, Gabriella Isentropes and Lyapunov exponents. (English) Zbl 1442.37053 Discrete Contin. Dyn. Syst. 40, No. 4, 1989-2009 (2020). Reviewer: Steve Pederson (Atlanta) MSC: 37E05 37B25 28D20 37B40 PDF BibTeX XML Cite \textit{Z. Buczolich} and \textit{G. Keszthelyi}, Discrete Contin. Dyn. Syst. 40, No. 4, 1989--2009 (2020; Zbl 1442.37053) Full Text: DOI
Nath, Binayak; Das, Krishna Pada Harvesting in tri-trophic food chain stabilises the chaotic dynamics-conclusion drawn from Hastings and Powell model. (English) Zbl 1441.37098 Int. J. Dyn. Syst. Differ. Equ. 10, No. 2, 95-115 (2020). MSC: 37N25 92D25 34D20 37D45 34K23 34C23 PDF BibTeX XML Cite \textit{B. Nath} and \textit{K. P. Das}, Int. J. Dyn. Syst. Differ. Equ. 10, No. 2, 95--115 (2020; Zbl 1441.37098) Full Text: DOI
Asik, Lale; Chen, Ming; Peace, Angela The effects of excess food nutrient content on a tritrophic food chain model in the aquatic ecosystem. (English) Zbl 07185527 J. Theor. Biol. 491, Article ID 110183, 10 p. (2020). MSC: 92 PDF BibTeX XML Cite \textit{L. Asik} et al., J. Theor. Biol. 491, Article ID 110183, 10 p. (2020; Zbl 07185527) Full Text: DOI
Rosa, Lucas A. S.; Prebianca, Flavio; Hoff, Anderson; Manchein, Cesar; Albuquerque, Holokx A. Characterizing the dynamics of the watt governor system under harmonic perturbation and Gaussian noise. (English) Zbl 1432.70050 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2030001, 12 p. (2020). MSC: 70Q05 70K40 70L05 34D08 70K55 PDF BibTeX XML Cite \textit{L. A. S. Rosa} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2030001, 12 p. (2020; Zbl 1432.70050) Full Text: DOI
Wang, Wentao; Chen, Wei Stochastic Nicholson-type delay system with regime switching. (English) Zbl 1433.93128 Syst. Control Lett. 136, Article ID 104603, 5 p. (2020). MSC: 93E03 93C43 93C73 PDF BibTeX XML Cite \textit{W. Wang} and \textit{W. Chen}, Syst. Control Lett. 136, Article ID 104603, 5 p. (2020; Zbl 1433.93128) Full Text: DOI
Hening, Alexandru; Nguyen, Dang H. The competitive exclusion principle in stochastic environments. (English) Zbl 1435.92092 J. Math. Biol. 80, No. 5, 1323-1351 (2020). Reviewer: Fatima T. Adylova (Tashkent) MSC: 92D40 92D25 37H15 60H10 PDF BibTeX XML Cite \textit{A. Hening} and \textit{D. H. Nguyen}, J. Math. Biol. 80, No. 5, 1323--1351 (2020; Zbl 1435.92092) Full Text: DOI
Kwaśniewski, Bartosz Kosma; Lebedev, Andrei Variational principles for spectral radius of weighted endomorphisms of \(C(X,D)\). (English) Zbl 1442.47029 Trans. Am. Math. Soc. 373, No. 4, 2659-2698 (2020). Reviewer: Takahiro Sudo (Nishihara) MSC: 47B48 37A99 37H15 47A10 47B35 47A35 PDF BibTeX XML Cite \textit{B. K. Kwaśniewski} and \textit{A. Lebedev}, Trans. Am. Math. Soc. 373, No. 4, 2659--2698 (2020; Zbl 1442.47029) Full Text: DOI
Altschuler, Jason M.; Parrilo, Pablo A. Lyapunov exponent of rank-one matrices: ergodic formula and inapproximability of the optimal distribution. (English) Zbl 1451.93408 SIAM J. Control Optim. 58, No. 1, 510-528 (2020). Reviewer: Alexandra Rodkina (College Station) MSC: 93E15 93D20 PDF BibTeX XML Cite \textit{J. M. Altschuler} and \textit{P. A. Parrilo}, SIAM J. Control Optim. 58, No. 1, 510--528 (2020; Zbl 1451.93408) Full Text: DOI Link
Liang, Jinhao Positive Lyapunov exponent for a class of quasi-periodic cocycles. (English) Zbl 1432.37006 Discrete Contin. Dyn. Syst. 40, No. 3, 1361-1387 (2020). MSC: 37A20 37A30 37D25 PDF BibTeX XML Cite \textit{J. Liang}, Discrete Contin. Dyn. Syst. 40, No. 3, 1361--1387 (2020; Zbl 1432.37006) Full Text: DOI
You, Guoqiao; Leung, Shingyu Fast construction of forward flow maps using Eulerian based interpolation schemes. (English) Zbl 07161489 J. Sci. Comput. 82, No. 2, Paper No. 32, 31 p. (2020). MSC: 76R 76F PDF BibTeX XML Cite \textit{G. You} and \textit{S. Leung}, J. Sci. Comput. 82, No. 2, Paper No. 32, 31 p. (2020; Zbl 07161489) Full Text: DOI
Siddheshwar, P. G.; Shivakumar, B. N.; Zhao, Yi; Kanchana, C. Rayleigh-Bénard convection in a Newtonian liquid bounded by rigid isothermal boundaries. (English) Zbl 1433.76156 Appl. Math. Comput. 371, Article ID 124942, 15 p. (2020). MSC: 76R05 37N10 76E15 80A19 76R10 PDF BibTeX XML Cite \textit{P. G. Siddheshwar} et al., Appl. Math. Comput. 371, Article ID 124942, 15 p. (2020; Zbl 1433.76156) Full Text: DOI
Li, Xiaodi; Yang, Xueyan Lyapunov stability analysis for nonlinear systems with state-dependent state delay. (English) Zbl 1430.93159 Automatica 112, Article ID 108674, 6 p. (2020). MSC: 93D05 93D23 93C43 93C10 PDF BibTeX XML Cite \textit{X. Li} and \textit{X. Yang}, Automatica 112, Article ID 108674, 6 p. (2020; Zbl 1430.93159) Full Text: DOI
Oregón-Reyes, Eduardo A new inequality about matrix products and a Berger-Wang formula. (Une nouvelle inégalité sur LES produits de matrices et une formule de Berger-Wang.) (English. French summary) Zbl 1437.15030 J. Éc. Polytech., Math. 7, 185-200 (2020). Reviewer: Tin Yau Tam (Reno) MSC: 15A60 15A45 37H15 47A30 PDF BibTeX XML Cite \textit{E. Oregón-Reyes}, J. Éc. Polytech., Math. 7, 185--200 (2020; Zbl 1437.15030) Full Text: DOI arXiv
Dai, Liming; Xia, Dandan; Chen, Changping An algorithm for diagnosing nonlinear characteristics of dynamic systems with the integrated periodicity ratio and Lyapunov exponent methods. (English) Zbl 07264773 Commun. Nonlinear Sci. Numer. Simul. 73, 92-109 (2019). MSC: 65P 34D PDF BibTeX XML Cite \textit{L. Dai} et al., Commun. Nonlinear Sci. Numer. Simul. 73, 92--109 (2019; Zbl 07264773) Full Text: DOI
Shepelev, Igor A.; Vadivasova, T. E. Variety of spatio-temporal regimes in a 2D lattice of coupled bistable FitzHugh-Nagumo oscillators. Formation mechanisms of spiral and double-well chimeras. (English) Zbl 07264552 Commun. Nonlinear Sci. Numer. Simul. 79, Article ID 104925, 16 p. (2019). MSC: 35Q 37N 92E 35K 92B PDF BibTeX XML Cite \textit{I. A. Shepelev} and \textit{T. E. Vadivasova}, Commun. Nonlinear Sci. Numer. Simul. 79, Article ID 104925, 16 p. (2019; Zbl 07264552) Full Text: DOI
Li, Gaolei; Yue, Yuan; Xie, Jianhua; Grebogi, Celso Strange nonchaotic attractors in a nonsmooth dynamical system. (English) Zbl 07264487 Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104858, 10 p. (2019). MSC: 37C PDF BibTeX XML Cite \textit{G. Li} et al., Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104858, 10 p. (2019; Zbl 07264487) Full Text: DOI
Gondelach, David J.; Armellin, Roberto; Wittig, Alexander On the predictability and robustness of Galileo disposal orbits. (English) Zbl 1451.70044 Celest. Mech. Dyn. Astron. 131, No. 12, Paper No. 60, 30 p. (2019). MSC: 70M20 PDF BibTeX XML Cite \textit{D. J. Gondelach} et al., Celest. Mech. Dyn. Astron. 131, No. 12, Paper No. 60, 30 p. (2019; Zbl 1451.70044) Full Text: DOI
Shomberg, Joseph L. Regular global attractors for wave equations with degenerate memory. (English) Zbl 1451.37094 Ural Math. J. 5, No. 1, 59-82 (2019). MSC: 37L30 35L05 35B41 35Q74 PDF BibTeX XML Cite \textit{J. L. Shomberg}, Ural Math. J. 5, No. 1, 59--82 (2019; Zbl 1451.37094) Full Text: DOI MNR
Li, Changzhao; Zhang, Juan Stochastic bifurcation analysis in Brusselator system with white noise. (English) Zbl 07254399 Adv. Difference Equ. 2019, Paper No. 385, 16 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{C. Li} and \textit{J. Zhang}, Adv. Difference Equ. 2019, Paper No. 385, 16 p. (2019; Zbl 07254399) Full Text: DOI
Wei, Qiang; Bai, Yulong; Duan, Jikai; Chang, Mingheng; Fan, Manhong Design and synchronization control of a new chaotic circuit. (Chinese. English summary) Zbl 1449.94086 J. Lanzhou Univ., Nat. Sci. 55, No. 2, 244-249 (2019). MSC: 94C05 93C10 37D45 PDF BibTeX XML Cite \textit{Q. Wei} et al., J. Lanzhou Univ., Nat. Sci. 55, No. 2, 244--249 (2019; Zbl 1449.94086) Full Text: DOI
Sha, Amar; Samanta, Sudip; Martcheva, Maia; Chattopadhyay, Joydev Backward bifurcation, oscillations and chaos in an eco-epidemiological model with fear effect. (English) Zbl 1447.92474 J. Biol. Dyn. 13, No. 1, 301-327 (2019). MSC: 92D30 92D25 92D40 34C23 PDF BibTeX XML Cite \textit{A. Sha} et al., J. Biol. Dyn. 13, No. 1, 301--327 (2019; Zbl 1447.92474) Full Text: DOI
Gurina, Tat’yana Alekseevna Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid. (Russian. English summary) Zbl 1448.34079 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 29, No. 1, 3-18 (2019). Reviewer: Eduard Musafirov (Grodno) MSC: 34C23 34C15 34C25 34C28 34D45 34C37 70K55 PDF BibTeX XML Cite \textit{T. A. Gurina}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 29, No. 1, 3--18 (2019; Zbl 1448.34079) Full Text: DOI MNR
Danieli, Carlo; Manda, Bertin Many; Mithun, Thudiyangal; Skokos, Charalampos Computational efficiency of numerical integration methods for the tangent dynamics of many-body Hamiltonian systems in one and two spatial dimensions. (English) Zbl 1435.82050 Math. Eng. (Springfield) 1, No. 3, 447-488 (2019). MSC: 82M37 65P10 81V70 82B44 65L06 65K10 35Q55 34D08 PDF BibTeX XML Cite \textit{C. Danieli} et al., Math. Eng. (Springfield) 1, No. 3, 447--488 (2019; Zbl 1435.82050) Full Text: DOI
Xu, Yanli; Yue, Baozeng; Yang, Zhengmao; Zhao, Liangyu; Yang, Shuxing Study on the chaotic dynamics in yaw-pitch-roll coupling of asymmetric rolling projectiles with nonlinear aerodynamics. (English) Zbl 1430.76339 Nonlinear Dyn. 97, No. 4, 2739-2756 (2019). MSC: 76G25 70K50 70B05 PDF BibTeX XML Cite \textit{Y. Xu} et al., Nonlinear Dyn. 97, No. 4, 2739--2756 (2019; Zbl 1430.76339) Full Text: DOI
Carbajal-Gómez, V. H.; Sánchez-López, C. Determining accurate Lyapunov exponents of a multiscroll chaotic attractor based on SNFS. (English) Zbl 1430.37041 Nonlinear Dyn. 98, No. 3, 2389-2402 (2019). MSC: 37D45 65P20 70K55 PDF BibTeX XML Cite \textit{V. H. Carbajal-Gómez} and \textit{C. Sánchez-López}, Nonlinear Dyn. 98, No. 3, 2389--2402 (2019; Zbl 1430.37041) Full Text: DOI
Zhou, Yong; Sun, Wen; Song, Yinfang; Zheng, Zhigang; Lu, Jinhu; Chen, Shihua Hopf bifurcation analysis of a predator-prey model with Holling-II type functional response and a prey refuge. (English) Zbl 1430.37121 Nonlinear Dyn. 97, No. 2, 1439-1450 (2019). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Nonlinear Dyn. 97, No. 2, 1439--1450 (2019; Zbl 1430.37121) Full Text: DOI
Roy, Prodip; Das, Krishna Pada; Karmakar, Partha; Sarkar (Mondal), Seema Role of harvesting in controlling chaos and disease propagation in predator-prey system with disease in prey. (English) Zbl 1441.92039 Int. J. Dyn. Syst. Differ. Equ. 9, No. 3, 234-261 (2019). MSC: 92D25 92D30 37D45 37N25 34H10 34D08 91B76 PDF BibTeX XML Cite \textit{P. Roy} et al., Int. J. Dyn. Syst. Differ. Equ. 9, No. 3, 234--261 (2019; Zbl 1441.92039) Full Text: DOI
Yu, Wenhui; Gao, Shilong Chaotic characteristics of two dimensional random coupled Logistic map. (Chinese. English summary) Zbl 07156360 J. Sichuan Univ., Nat. Sci. Ed. 56, No. 4, 581-587 (2019). MSC: 39 37D45 PDF BibTeX XML Cite \textit{W. Yu} and \textit{S. Gao}, J. Sichuan Univ., Nat. Sci. Ed. 56, No. 4, 581--587 (2019; Zbl 07156360) Full Text: DOI
Shen, Yunzhu; Zhang, Fanhui; Dong, Guangxia Strange nonchaotic attractors in quasiperiodically piecewise logistic system. (Chinese. English summary) Zbl 1449.37028 J. Hebei Norm. Univ., Nat. Sci. Ed. 43, No. 3, 207-212 (2019). MSC: 37D45 37C70 PDF BibTeX XML Cite \textit{Y. Shen} et al., J. Hebei Norm. Univ., Nat. Sci. Ed. 43, No. 3, 207--212 (2019; Zbl 1449.37028) Full Text: DOI
Li, Wangshu; Yan, Wenhao; Zhang, Ruoxun; Wang, Chuanfu; Ding, Qun A new 3D discrete hyperchaotic system and its application in secure transmission. (English) Zbl 1429.37022 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950206, 14 p. (2019). MSC: 37D45 37D25 37B40 94A60 PDF BibTeX XML Cite \textit{W. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950206, 14 p. (2019; Zbl 1429.37022) Full Text: DOI
Yang, Jiaopeng; Liu, Zhengrong A novel simple hyperchaotic system with two coexisting attractors. (English) Zbl 1434.34024 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950203, 18 p. (2019). MSC: 34A34 34C28 34C23 37D45 34D45 34D08 PDF BibTeX XML Cite \textit{J. Yang} and \textit{Z. Liu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950203, 18 p. (2019; Zbl 1434.34024) Full Text: DOI
Kumar, Ankit; Dubey, Balram Modeling the effect of fear in a prey-predator system with prey refuge and gestation delay. (English) Zbl 1439.34076 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950195, 25 p. (2019). MSC: 34K60 92D25 34K21 34K18 34K13 34K20 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{B. Dubey}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950195, 25 p. (2019; Zbl 1439.34076) Full Text: DOI
Hu, Rongchun; Dong, Hao; Gu, Xudong; Deng, Zichen Feedback stabilization of multi-DOF nonlinear stochastic Markovian jump systems. (English) Zbl 1430.93165 Int. J. Robust Nonlinear Control 29, No. 16, 5654-5667 (2019). MSC: 93D15 93E15 93C10 93D20 60J76 PDF BibTeX XML Cite \textit{R. Hu} et al., Int. J. Robust Nonlinear Control 29, No. 16, 5654--5667 (2019; Zbl 1430.93165) Full Text: DOI
Zhang, Yi; Li, Na; Zhang, Jianyu Stochastic stability and Hopf bifurcation analysis of a singular bio-economic model with stochastic fluctuations. (English) Zbl 1430.92134 Int. J. Biomath. 12, No. 8, Article ID 1950083, 16 p. (2019). MSC: 92D40 91B76 34C23 93E15 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Int. J. Biomath. 12, No. 8, Article ID 1950083, 16 p. (2019; Zbl 1430.92134) Full Text: DOI
El-Sayed, A. M. A.; Salman, S. M. Dynamical analysis of a complex logistic-type map. (English) Zbl 1428.37035 Indian J. Pure Appl. Math. 50, No. 2, 427-450 (2019). MSC: 37D45 37M20 37M05 37M21 39A33 93B52 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} and \textit{S. M. Salman}, Indian J. Pure Appl. Math. 50, No. 2, 427--450 (2019; Zbl 1428.37035) Full Text: DOI
Yu. Protasov, Vladimir Comprehensive Lyapunov functions for linear switching systems. (English) Zbl 1429.93317 Automatica 109, Article ID 108526, 7 p. (2019). MSC: 93D30 93C30 93C05 PDF BibTeX XML Cite \textit{V. Yu. Protasov}, Automatica 109, Article ID 108526, 7 p. (2019; Zbl 1429.93317) Full Text: DOI
Alberti, T.; Consolini, G.; Carbone, V. A discrete dynamical system: the poor man’s magnetohydrodynamic (PMMHD) equations. (English) Zbl 1426.37031 Chaos 29, No. 10, 103107, 9 p. (2019). MSC: 37D45 37N20 76W05 76E25 82D10 PDF BibTeX XML Cite \textit{T. Alberti} et al., Chaos 29, No. 10, 103107, 9 p. (2019; Zbl 1426.37031) Full Text: DOI
Reddy, Nanda Kishore Equality of Lyapunov and stability exponents for products of isotropic random matrices. (English) Zbl 1439.15014 Int. Math. Res. Not. 2019, No. 2, 606-624 (2019). Reviewer: Dominique Lépingle (Orléans) MSC: 15B52 60B20 37H15 PDF BibTeX XML Cite \textit{N. K. Reddy}, Int. Math. Res. Not. 2019, No. 2, 606--624 (2019; Zbl 1439.15014) Full Text: DOI arXiv
Benoist, Yves; Bruère, Caroline Recurrence on affine Grassmannians. (English) Zbl 1433.37029 Ergodic Theory Dyn. Syst. 39, No. 12, 3207-3223 (2019). MSC: 37C85 37D40 22F10 PDF BibTeX XML Cite \textit{Y. Benoist} and \textit{C. Bruère}, Ergodic Theory Dyn. Syst. 39, No. 12, 3207--3223 (2019; Zbl 1433.37029) Full Text: DOI
Josiński, Henryk; Świtoński, Adam; Michalczuk, Agnieszka; Grabiec, Piotr; Pawlyta, Magdalena; Wojciechowski, Konrad Assessment of local dynamic stability in gait based on univariate and multivariate time series. (English) Zbl 1423.92013 Comput. Math. Methods Med. 2019, Article ID 6917658, 13 p. (2019). MSC: 92C10 62P10 PDF BibTeX XML Cite \textit{H. Josiński} et al., Comput. Math. Methods Med. 2019, Article ID 6917658, 13 p. (2019; Zbl 1423.92013) Full Text: DOI
Sergeev, I. N. Perron stability and its study at the first approximation. (English. Russian original) Zbl 1443.34053 Dokl. Math. 99, No. 3, 252-254 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 486, No. 1, 20-23 (2019). Reviewer: Oleg Anashkin (Simferopol) MSC: 34D20 34D08 PDF BibTeX XML Cite \textit{I. N. Sergeev}, Dokl. Math. 99, No. 3, 252--254 (2019; Zbl 1443.34053); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 486, No. 1, 20--23 (2019) Full Text: DOI
Jurga, Natalia; Morris, Ian Effective estimates on the top Lyapunov exponents for random matrix products. (English) Zbl 1431.37048 Nonlinearity 32, No. 11, 4117-4146 (2019). Reviewer: Armand Azonnahin (São Paulo) MSC: 37H15 37A30 37D35 15B52 37C30 PDF BibTeX XML Cite \textit{N. Jurga} and \textit{I. Morris}, Nonlinearity 32, No. 11, 4117--4146 (2019; Zbl 1431.37048) Full Text: DOI
Hatvani, László Aleksandr Lyapunov, the man who created the modern theory of stability. (English) Zbl 1438.01002 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 26, 9 p. (2019). MSC: 01A55 01A70 34-03 PDF BibTeX XML Cite \textit{L. Hatvani}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 26, 9 p. (2019; Zbl 1438.01002) Full Text: DOI
Samardzic, Biljana; Zlatkovic, Bojana M. Probability calculation of spatial chaos appearance in MIMO cascade nonlinear systems using Monte Carlo method. (English) Zbl 1431.65007 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 11, Article ID 1950149, 11 p. (2019). MSC: 65C05 37D45 37D25 PDF BibTeX XML Cite \textit{B. Samardzic} and \textit{B. M. Zlatkovic}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 11, Article ID 1950149, 11 p. (2019; Zbl 1431.65007) Full Text: DOI
Kowalski, Zbigniew S. Bernoulli property of smooth extensions of Bernoulli shifts. (English) Zbl 1426.37023 Appl. Math. 46, No. 2, 275-282 (2019). MSC: 37C40 37A50 PDF BibTeX XML Cite \textit{Z. S. Kowalski}, Appl. Math. 46, No. 2, 275--282 (2019; Zbl 1426.37023) Full Text: DOI
Bochi, Jairo; Garibaldi, Eduardo Extremal norms for fiber-bunched cocycles. (Normes extrémales pour des cocycles à fibres resserrées.) (English. French summary) Zbl 1441.37059 J. Éc. Polytech., Math. 6, 947-1004 (2019). MSC: 37H15 37D20 37D30 15A60 PDF BibTeX XML Cite \textit{J. Bochi} and \textit{E. Garibaldi}, J. Éc. Polytech., Math. 6, 947--1004 (2019; Zbl 1441.37059) Full Text: DOI arXiv
Mao, Tomoyuki; Okutomi, Hidetoshi; Umeno, Ken Investigation of the difference between chaos degree and Lyapunov exponent for asymmetric tent maps. (English) Zbl 1423.37036 JSIAM Lett. 11, 61-64 (2019). MSC: 37D45 PDF BibTeX XML Cite \textit{T. Mao} et al., JSIAM Lett. 11, 61--64 (2019; Zbl 1423.37036) Full Text: DOI
Fu, Jingchao; Zhou, Jianbo; Sun, Jing The study of adaptive backstepping control and \({H_\infty}\) state feedback control on a class of Sprott-O chaotic system. (Chinese. English summary) Zbl 1438.93058 Math. Pract. Theory 49, No. 3, 228-236 (2019). MSC: 93B36 93B52 93C40 PDF BibTeX XML Cite \textit{J. Fu} et al., Math. Pract. Theory 49, No. 3, 228--236 (2019; Zbl 1438.93058)
Zhu, Xiangzhe; Tong, Ying; Gao, He Study on the chaotic dynamic properties of viscous fluid in four-screw extruders. (Chinese. English summary) Zbl 1438.37049 Chin. J. Comput. Mech. 36, No. 1, 83-89 (2019). MSC: 37N10 76D03 76D50 PDF BibTeX XML Cite \textit{X. Zhu} et al., Chin. J. Comput. Mech. 36, No. 1, 83--89 (2019; Zbl 1438.37049) Full Text: DOI
Balan, Raluca M.; Song, Jian Second order Lyapunov exponents for parabolic and hyperbolic Anderson models. (English) Zbl 1428.62408 Bernoulli 25, No. 4A, 3069-3089 (2019). MSC: 60H15 PDF BibTeX XML Cite \textit{R. M. Balan} and \textit{J. Song}, Bernoulli 25, No. 4A, 3069--3089 (2019; Zbl 1428.62408) Full Text: DOI Euclid arXiv
Ma, Jinzhong; Xu, Yong; Li, Yongge; Tian, Ruilan; Kurths, Jürgen Predicting noise-induced critical transitions in bistable systems. (English) Zbl 1427.37043 Chaos 29, No. 8, 081102, 10 p. (2019). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 37H20 60H30 34F05 94A17 PDF BibTeX XML Cite \textit{J. Ma} et al., Chaos 29, No. 8, 081102, 10 p. (2019; Zbl 1427.37043) Full Text: DOI
Bucur, Maria-Liliana Dynamical processes. Stability and chaos. (English) Zbl 1420.37008 Differ. Geom. Dyn. Syst. 21, 47-51 (2019). MSC: 37B20 37B25 37B55 PDF BibTeX XML Cite \textit{M.-L. Bucur}, Differ. Geom. Dyn. Syst. 21, 47--51 (2019; Zbl 1420.37008) Full Text: Link
Rangamani, Nishant Singular-unbounded random Jacobi matrices. (English) Zbl 1426.82032 J. Math. Phys. 60, No. 8, 081904, 11 p. (2019). MSC: 82B44 37H15 47B80 47N50 47B36 15B52 PDF BibTeX XML Cite \textit{N. Rangamani}, J. Math. Phys. 60, No. 8, 081904, 11 p. (2019; Zbl 1426.82032) Full Text: DOI