Chen, Wenbin; Gao, Fang; Liu, Guobao New results on delay-dependent stability for nonlinear systems with two additive time-varying delays. (English) Zbl 07315784 Eur. J. Control 58, 123-130 (2021). MSC: 93D05 93C43 93C10 PDF BibTeX XML Cite \textit{W. Chen} et al., Eur. J. Control 58, 123--130 (2021; Zbl 07315784) Full Text: DOI
Cordoni, Francesco; Di Persio, Luca; Muradore, Riccardo Stabilization of bilateral teleoperators with asymmetric stochastic delay. (English) Zbl 07290582 Syst. Control Lett. 147, Article ID 104828, 12 p. (2021). MSC: 93C85 93E15 93C43 PDF BibTeX XML Cite \textit{F. Cordoni} et al., Syst. Control Lett. 147, Article ID 104828, 12 p. (2021; Zbl 07290582) Full Text: DOI
Yskak, T. Estimates for solutions of one class to systems of nonlinear differential equations with distributed delay. (Russian. English summary) Zbl 07308404 Sib. Èlektron. Mat. Izv. 17, 2204-2215 (2020). MSC: 34K20 34K25 34K27 PDF BibTeX XML Cite \textit{T. Yskak}, Sib. Èlektron. Mat. Izv. 17, 2204--2215 (2020; Zbl 07308404) Full Text: DOI
Kong, Fanchao; Zhu, Quanxin; Sakthivel, Rathinasamy Finite-time and fixed-time synchronization control of fuzzy Cohen-Grossberg neural networks. (English) Zbl 1452.93018 Fuzzy Sets Syst. 394, 87-109 (2020). MSC: 93C42 93C55 93A14 PDF BibTeX XML Cite \textit{F. Kong} et al., Fuzzy Sets Syst. 394, 87--109 (2020; Zbl 1452.93018) Full Text: DOI
Sun, Xin; Bai, Yadi Admissibility condition of continuous-time singular systems with distributed delay. (Chinese. English summary) Zbl 07295673 J. Shenyang Norm. Univ., Nat. Sci. 38, No. 3, 199-206 (2020). MSC: 93B03 93C43 PDF BibTeX XML Cite \textit{X. Sun} and \textit{Y. Bai}, J. Shenyang Norm. Univ., Nat. Sci. 38, No. 3, 199--206 (2020; Zbl 07295673) Full Text: DOI
Müller, Florian; Jäkel, Jens; Thomas, Ulrike Stability analysis for a passive/active human model in physical human-robot interaction with multiple users. (English) Zbl 07269502 Int. J. Control 93, No. 9, 2104-2119 (2020). MSC: 93C85 93D05 93C43 93C10 PDF BibTeX XML Cite \textit{F. Müller} et al., Int. J. Control 93, No. 9, 2104--2119 (2020; Zbl 07269502) Full Text: DOI
Matveeva, I. I. Estimates for exponential decay of solutions to one class of nonlinear systems of neutral type with periodic coefficients. (English. Russian original) Zbl 07264878 Comput. Math. Math. Phys. 60, No. 4, 601-609 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 4, 612-620 (2020). MSC: 34K40 34K25 PDF BibTeX XML Cite \textit{I. I. Matveeva}, Comput. Math. Math. Phys. 60, No. 4, 601--609 (2020; Zbl 07264878); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 4, 612--620 (2020) Full Text: DOI
Abolpour, Roozbeh; Dehghani, Maryam; Talebi, Heidar Ali Stability analysis of systems with time-varying delays using overlapped switching Lyapunov Krasovskii functional. (English) Zbl 1450.93049 J. Franklin Inst. 357, No. 15, 10844-10860 (2020). MSC: 93D23 93C43 PDF BibTeX XML Cite \textit{R. Abolpour} et al., J. Franklin Inst. 357, No. 15, 10844--10860 (2020; Zbl 1450.93049) Full Text: DOI
Halanay, A.; Safta, C. A. A critical case for stability of equilibria of delay differential equations and the study of a model for an electrohydraulic servomechanism. (English) Zbl 1451.93304 Syst. Control Lett. 142, Article ID 104722, 5 p. (2020). MSC: 93D20 93D23 93C23 93C95 PDF BibTeX XML Cite \textit{A. Halanay} and \textit{C. A. Safta}, Syst. Control Lett. 142, Article ID 104722, 5 p. (2020; Zbl 1451.93304) Full Text: DOI
Altun, Yener Improved results on the stability analysis of linear neutral systems with delay decay approach. (English) Zbl 07236843 Math. Methods Appl. Sci. 43, No. 3, 1467-1483 (2020). MSC: 34K20 34K40 34K25 34K06 PDF BibTeX XML Cite \textit{Y. Altun}, Math. Methods Appl. Sci. 43, No. 3, 1467--1483 (2020; Zbl 07236843) Full Text: DOI
Olutimo, Akinwale; Omoko, Ifeoma The problem of convergence of solutions of certain third-order nonlinear delay differential equations. (English) Zbl 1448.34138 Differ. Uravn. Protsessy Upr. 2020, No. 1, 12-29 (2020). Reviewer: Cemil Tunç (Van) MSC: 34K25 34K12 34K20 PDF BibTeX XML Cite \textit{A. Olutimo} and \textit{I. Omoko}, Differ. Uravn. Protsessy Upr. 2020, No. 1, 12--29 (2020; Zbl 1448.34138) Full Text: Link
Yigit, Abdullah; Tunc, Cemil On the stability and admissibility of a singular differential system with constant delay. (English) Zbl 1451.34095 Int. J. Math. Comput. Sci. 15, No. 2, 641-660 (2020). Reviewer: Olusola Akinyele (Bowie) MSC: 34K20 34K40 PDF BibTeX XML Cite \textit{A. Yigit} and \textit{C. Tunc}, Int. J. Math. Comput. Sci. 15, No. 2, 641--660 (2020; Zbl 1451.34095) Full Text: Link
Tunç, Osman; Korkmaz, Erdal; Atan, Özkan On the qualitative analysis of Volterra IDDEs with infinite delay. (English) Zbl 07225182 Appl. Appl. Math. 15, No. 1, 446-457 (2020). MSC: 45J05 45M10 PDF BibTeX XML Cite \textit{O. Tunç} et al., Appl. Appl. Math. 15, No. 1, 446--457 (2020; Zbl 07225182) Full Text: Link
Ali, M. Syed; Vadivel, R.; Alsaedi, Ahmed; Ahmad, Bashir Extended dissipativity and event-triggered synchronization for T-S fuzzy Markovian jumping delayed stochastic neural networks with leakage delays via fault-tolerant control. (English) Zbl 1436.93004 Soft Comput. 24, No. 5, 3675-3694 (2020). MSC: 93A14 93C43 93E03 60J76 93C42 PDF BibTeX XML Cite \textit{M. S. Ali} et al., Soft Comput. 24, No. 5, 3675--3694 (2020; Zbl 1436.93004) Full Text: DOI
Saravanan, Shanmugam; Syed Ali, M.; Alsaedi, Ahmed; Ahmad, Bashir Finite-time passivity for neutral-type neural networks with time-varying delays – via auxiliary function-based integral inequalities. (English) Zbl 1444.93027 Nonlinear Anal., Model. Control 25, No. 2, 206-224 (2020). MSC: 93D40 93B70 93C23 93C43 PDF BibTeX XML Cite \textit{S. Saravanan} et al., Nonlinear Anal., Model. Control 25, No. 2, 206--224 (2020; Zbl 1444.93027) Full Text: DOI Link
Vadivel, Rajarathinam; Syed Ali, M.; Alzahrani, Faris; Cao, Jinde; Joo, Young Hoon Synchronization of decentralized event-triggered uncertain switched neural networks with two additive time-varying delays. (English) Zbl 1447.93301 Nonlinear Anal., Model. Control 25, No. 2, 183-205 (2020). MSC: 93D23 93A14 93C65 93C41 93C30 93B70 93C43 PDF BibTeX XML Cite \textit{R. Vadivel} et al., Nonlinear Anal., Model. Control 25, No. 2, 183--205 (2020; Zbl 1447.93301) Full Text: DOI
Efimov, Denis; Fridman, Emilia Converse Lyapunov-Krasovskii theorem for ISS of neutral systems in Sobolev spaces. (English) Zbl 1447.93309 Automatica 118, Article ID 109042, 7 p. (2020). MSC: 93D25 93C43 93C10 PDF BibTeX XML Cite \textit{D. Efimov} and \textit{E. Fridman}, Automatica 118, Article ID 109042, 7 p. (2020; Zbl 1447.93309) Full Text: DOI
He, Jing; Liang, Yan; Yang, Feisheng; Yang, Feng New \(H_\infty\) state estimation criteria of delayed static neural networks via the Lyapunov-Krasovskii functional with negative definite terms. (English) Zbl 1443.93130 Neural Netw. 123, 236-247 (2020). MSC: 93E10 93B36 93B70 93C43 PDF BibTeX XML Cite \textit{J. He} et al., Neural Netw. 123, 236--247 (2020; Zbl 1443.93130) Full Text: DOI
Zhang, Weihai; Xue, Ling-Rong; Liu, Zhen-Guo; Sun, Zong-Yao Global stabilisation for a class of upper-triangular nonlinear systems with unmodelled dynamics and time-delay. (English) Zbl 1443.93100 Int. J. Control 93, No. 5, 1147-1158 (2020). MSC: 93D05 93C10 93C43 PDF BibTeX XML Cite \textit{W. Zhang} et al., Int. J. Control 93, No. 5, 1147--1158 (2020; Zbl 1443.93100) Full Text: DOI
Yskak, Timur Estimates for solutions of one class of system of equations of neutral type with distributed delay. (Russian. English summary) Zbl 1443.34063 Sib. Èlektron. Mat. Izv. 17, 416-427 (2020). MSC: 34K06 34K40 34K20 34K25 PDF BibTeX XML Cite \textit{T. Yskak}, Sib. Èlektron. Mat. Izv. 17, 416--427 (2020; Zbl 1443.34063) Full Text: DOI
Ursu, Ioan; Enciu, Daniela; Tecuceanu, George Equilibrium stability of a nonlinear structural switching system with actuator delay. (English) Zbl 1441.93136 J. Franklin Inst. 357, No. 6, 3680-3701 (2020). Reviewer: Vladimir Răsvan (Craiova) MSC: 93C30 93B52 93D20 93C10 PDF BibTeX XML Cite \textit{I. Ursu} et al., J. Franklin Inst. 357, No. 6, 3680--3701 (2020; Zbl 1441.93136) Full Text: DOI
Zhang, Bao-Lin; Cheng, Luhua; Pan, Kejia; Zhang, Xian-Ming Reducing conservatism of stability criteria for linear systems with time-varying delay using an improved triple-integral inequality. (English) Zbl 07200812 Appl. Math. Comput. 380, Article ID 125254, 11 p. (2020). MSC: 93 34 PDF BibTeX XML Cite \textit{B.-L. Zhang} et al., Appl. Math. Comput. 380, Article ID 125254, 11 p. (2020; Zbl 07200812) Full Text: DOI
Xia, Yude; Wang, Jing; Meng, Bo; Chen, Xiangyong Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems. (English) Zbl 07200787 Appl. Math. Comput. 379, Article ID 125225, 14 p. (2020). MSC: 93 90 PDF BibTeX XML Cite \textit{Y. Xia} et al., Appl. Math. Comput. 379, Article ID 125225, 14 p. (2020; Zbl 07200787) Full Text: DOI
de Oliveira, Fúlvia S. S.; Souza, Fernando O. Further refinements in stability conditions for time-varying delay systems. (English) Zbl 1433.34096 Appl. Math. Comput. 369, Article ID 124866, 9 p. (2020). MSC: 34K20 34K06 93D05 93C05 PDF BibTeX XML Cite \textit{F. S. S. de Oliveira} and \textit{F. O. Souza}, Appl. Math. Comput. 369, Article ID 124866, 9 p. (2020; Zbl 1433.34096) Full Text: DOI
Ren, Chengcheng; He, Shuping Finite-time stabilization for positive Markovian jumping neural networks. (English) Zbl 1433.93148 Appl. Math. Comput. 365, Article ID 124631, 12 p. (2020). MSC: 93E15 92B20 60J28 93C05 PDF BibTeX XML Cite \textit{C. Ren} and \textit{S. He}, Appl. Math. Comput. 365, Article ID 124631, 12 p. (2020; Zbl 1433.93148) Full Text: DOI
Zheng, Wei; Wang, Hongbin; Zhang, Zhiming; Wen, Shuhuan; Wang, Yueling Dynamic output-feedback control for chemical stirred tank reactor system with multiple time-delays: a Lyapunov-Krasovskii functional approach. (English) Zbl 07136608 Int. J. Comput. Methods 17, No. 3, Article ID 1850138, 25 p. (2020). MSC: 93 49 PDF BibTeX XML Cite \textit{W. Zheng} et al., Int. J. Comput. Methods 17, No. 3, Article ID 1850138, 25 p. (2020; Zbl 07136608) Full Text: DOI
Tian, Junkang; Ren, Zerong; Zhong, Shouming A new integral inequality and application to stability of time-delay systems. (English) Zbl 1431.34080 Appl. Math. Lett. 101, Article ID 106058, 7 p. (2020). Reviewer: Serhiy Yanchuk (Berlin) MSC: 34K20 34K06 26D10 34K08 PDF BibTeX XML Cite \textit{J. Tian} et al., Appl. Math. Lett. 101, Article ID 106058, 7 p. (2020; Zbl 1431.34080) Full Text: DOI
Zhao, Tao; Huang, Mobing; Dian, Songyi Stability and stabilization of T-S fuzzy systems with two additive time-varying delays. (English) Zbl 07284059 Inf. Sci. 494, 174-192 (2019). MSC: 93D05 93C42 93C43 PDF BibTeX XML Cite \textit{T. Zhao} et al., Inf. Sci. 494, 174--192 (2019; Zbl 07284059) Full Text: DOI
Zhang, Zhiming; Zheng, Wei; Xie, Ping; Wang, Hongbin; Wen, Shuhuan; Wang, Hongrui Stability analysis and adaptive control for nonlinear discrete-time systems with time delays and dead zone via state-feedback technique. (English) Zbl 1451.93301 Int. J. Adapt. Control Signal Process. 33, No. 11, 1619-1634 (2019). MSC: 93D15 93C40 93C10 93C43 93C55 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Int. J. Adapt. Control Signal Process. 33, No. 11, 1619--1634 (2019; Zbl 1451.93301) Full Text: DOI
Zhi, Ya-Li; He, Yong; Wu, Min; Liu, Qingping New results on dissipativity analysis of singular systems with time-varying delay. (English) Zbl 1451.93223 Inf. Sci. 479, 292-300 (2019). MSC: 93C43 93C23 93B25 93B17 PDF BibTeX XML Cite \textit{Y.-L. Zhi} et al., Inf. Sci. 479, 292--300 (2019; Zbl 1451.93223) Full Text: DOI
Skvortsova, M. A. Asymptotic properties of solutions in a predator-prey model with two delays. (Russian. English summary) Zbl 1452.34083 Din. Sist., Simferopol’ 9(37), No. 4, 367-389 (2019). MSC: 34K60 34K20 34K25 92D25 34K21 PDF BibTeX XML Cite \textit{M. A. Skvortsova}, Din. Sist., Simferopol' 9(37), No. 4, 367--389 (2019; Zbl 1452.34083)
Sun, Xin; Yu, Shanshan L-K functional for continuous singular time-delay systems. (Chinese. English summary) Zbl 1449.93174 J. Shenyang Norm. Univ., Nat. Sci. 37, No. 5, 395-400 (2019). MSC: 93C43 93C23 93D05 PDF BibTeX XML Cite \textit{X. Sun} and \textit{S. Yu}, J. Shenyang Norm. Univ., Nat. Sci. 37, No. 5, 395--400 (2019; Zbl 1449.93174) Full Text: DOI
Sun, Fengqi; Liu, Xuyao Applications of cross-term defined method in stability analysis for singularly perturbed control systems. (Chinese. English summary) Zbl 1449.93185 J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 4, 42-48 (2019). MSC: 93C70 93D05 93C43 PDF BibTeX XML Cite \textit{F. Sun} and \textit{X. Liu}, J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 4, 42--48 (2019; Zbl 1449.93185) Full Text: DOI
Mao, Kai; Yang, Shujie; Liu, Dan Analysis on the stability of the static neural networks with time-varying delays based on the convex combination. (Chinese. English summary) Zbl 1449.34247 J. Henan Univ., Nat. Sci. 49, No. 6, 731-738, 750 (2019). MSC: 34K20 92B20 PDF BibTeX XML Cite \textit{K. Mao} et al., J. Henan Univ., Nat. Sci. 49, No. 6, 731--738, 750 (2019; Zbl 1449.34247) Full Text: DOI
Aslam, Muhammad Shamrooz; Li, Qianmu Quantized dissipative filter design for Markovian switch T-S fuzzy systems with time-varying delays. (English) Zbl 1436.93137 Soft Comput. 23, No. 21, 11313-11329 (2019). MSC: 93E11 93C30 93C42 93E03 PDF BibTeX XML Cite \textit{M. S. Aslam} and \textit{Q. Li}, Soft Comput. 23, No. 21, 11313--11329 (2019; Zbl 1436.93137) Full Text: DOI
Zhao, Yongshun; Li, Xiaodi; Duan, Peiyong Observer-based sliding mode control for synchronization of delayed chaotic neural networks with unknown disturbance. (English) Zbl 1443.93040 Neural Netw. 117, 268-273 (2019). MSC: 93B12 93B53 93D20 34H10 93B70 93C43 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Neural Netw. 117, 268--273 (2019; Zbl 1443.93040) Full Text: DOI
Aleksandrov, A. Yu.; Kovaleva, N. O. Diagonal Riccati stability of a class of matrices and applications. (English) Zbl 1445.34103 Nonlinear Dyn. Syst. Theory 19, No. 4, 445-454 (2019). MSC: 34K20 15B99 PDF BibTeX XML Cite \textit{A. Yu. Aleksandrov} and \textit{N. O. Kovaleva}, Nonlinear Dyn. Syst. Theory 19, No. 4, 445--454 (2019; Zbl 1445.34103)
Liu, Yajuan; Park, Ju H.; Fang, Fang On criteria for stability of uncertain Lur’e systems of neutral type. (English) Zbl 1430.34082 Nonlinear Dyn. 98, No. 3, 2185-2194 (2019). MSC: 34K20 34K40 93D09 PDF BibTeX XML Cite \textit{Y. Liu} et al., Nonlinear Dyn. 98, No. 3, 2185--2194 (2019; Zbl 1430.34082) Full Text: DOI
Wang, Yongzhao Exponential stability and \({L_2}\) gain analysis for a class of nonlinear switched systems. (Chinese. English summary) Zbl 1449.93230 J. Chongqing Norm. Univ., Nat. Sci. 36, No. 3, 85-90 (2019). MSC: 93D23 93C10 93C30 93C43 PDF BibTeX XML Cite \textit{Y. Wang}, J. Chongqing Norm. Univ., Nat. Sci. 36, No. 3, 85--90 (2019; Zbl 1449.93230) Full Text: DOI
Liu, Libin; You, Xingxing; Gao, Xiaoping Global synchronization control of quaternion-valued neural networks with mixed delays. (Chinese. English summary) Zbl 1449.93211 Control Theory Appl. 36, No. 8, 1360-1368 (2019). MSC: 93D05 93B70 93C43 PDF BibTeX XML Cite \textit{L. Liu} et al., Control Theory Appl. 36, No. 8, 1360--1368 (2019; Zbl 1449.93211) Full Text: DOI
Demidenko, G. V.; Matveeva, I. I.; Skvortsova, M. A. Estimates for solutions to neutral differential equations with periodic coefficients of linear terms. (English. Russian original) Zbl 1440.34075 Sib. Math. J. 60, No. 5, 828-841 (2019); translation from Sib. Mat. Zh. 60, No. 5, 1063-1079 (2019). Reviewer: Zhanyuan Hou (London) MSC: 34K20 34K40 34K25 PDF BibTeX XML Cite \textit{G. V. Demidenko} et al., Sib. Math. J. 60, No. 5, 828--841 (2019; Zbl 1440.34075); translation from Sib. Mat. Zh. 60, No. 5, 1063--1079 (2019) Full Text: DOI
Alexandrova, Irina V.; Zhabko, Alexey P. Stability of neutral type delay systems: a joint Lyapunov-Krasovskii and Razumikhin approach. (English) Zbl 1429.93263 Automatica 106, 83-90 (2019). MSC: 93D05 93C23 93C43 93C05 PDF BibTeX XML Cite \textit{I. V. Alexandrova} and \textit{A. P. Zhabko}, Automatica 106, 83--90 (2019; Zbl 1429.93263) Full Text: DOI
Dong, Yali; Chen, Laijun; Mei, Shengwei Functional observers design for nonlinear discrete-time systems with interval time-varying delays. (English) Zbl 1449.93071 Kybernetika 55, No. 2, 367-384 (2019). MSC: 93B53 93C35 93C55 93C43 93C10 93D23 PDF BibTeX XML Cite \textit{Y. Dong} et al., Kybernetika 55, No. 2, 367--384 (2019; Zbl 1449.93071) Full Text: DOI
Li, Zhao-Yan; Shang, Shengnan; Lam, James On stability of neutral-type linear stochastic time-delay systems with three different delays. (English) Zbl 1428.93119 Appl. Math. Comput. 360, 147-166 (2019). MSC: 93E15 34K20 34K40 34K50 60H10 PDF BibTeX XML Cite \textit{Z.-Y. Li} et al., Appl. Math. Comput. 360, 147--166 (2019; Zbl 1428.93119) Full Text: DOI
Altun, Yener; Tunç, Cemil On exponential stability of solutions of nonlinear neutral differential systems with discrete and distributed variable lags. (English) Zbl 1430.34080 Nonlinear Stud. 26, No. 2, 455-466 (2019). MSC: 34K20 34K40 PDF BibTeX XML Cite \textit{Y. Altun} and \textit{C. Tunç}, Nonlinear Stud. 26, No. 2, 455--466 (2019; Zbl 1430.34080) Full Text: Link
Yskak, Timur On the stability of systems of linear differential equations of neutral type with distributed delay. (Russian, English) Zbl 1438.34259 Sib. Zh. Ind. Mat. 22, No. 3, 118-127 (2019); translation in J. Appl. Ind. Math. 13, No. 3, 575-583 (2019). MSC: 34K20 34K40 34K06 34K27 34K25 PDF BibTeX XML Cite \textit{T. Yskak}, Sib. Zh. Ind. Mat. 22, No. 3, 118--127 (2019; Zbl 1438.34259); translation in J. Appl. Ind. Math. 13, No. 3, 575--583 (2019) Full Text: DOI
Matveeva, I. I. Estimates of the exponential decay of solutions to linear systems of neutral type with periodic coefficients. (Russian, English) Zbl 1438.34269 Sib. Zh. Ind. Mat. 22, No. 3, 96-103 (2019); translation in J. Appl. Ind. Math. 13, No. 3, 511-518 (2019). MSC: 34K25 34K20 34K40 34K06 PDF BibTeX XML Cite \textit{I. I. Matveeva}, Sib. Zh. Ind. Mat. 22, No. 3, 96--103 (2019; Zbl 1438.34269); translation in J. Appl. Ind. Math. 13, No. 3, 511--518 (2019) Full Text: DOI
Long, Fei; Jiang, Lin; He, Yong; Wu, Min Stability analysis of systems with time-varying delay via novel augmented Lyapunov-Krasovskii functionals and an improved integral inequality. (English) Zbl 1428.34103 Appl. Math. Comput. 357, 325-337 (2019). MSC: 34K20 26D15 93D05 PDF BibTeX XML Cite \textit{F. Long} et al., Appl. Math. Comput. 357, 325--337 (2019; Zbl 1428.34103) Full Text: DOI
Gao, Zhen-Man; He, Yong; Wu, Min Improved stability criteria for the neural networks with time-varying delay via new augmented Lyapunov-Krasovskii functional. (English) Zbl 1428.34101 Appl. Math. Comput. 349, 258-269 (2019). MSC: 34K20 65L03 92B20 PDF BibTeX XML Cite \textit{Z.-M. Gao} et al., Appl. Math. Comput. 349, 258--269 (2019; Zbl 1428.34101) Full Text: DOI
Ge, Chao; Shi, Yanpen; Park, Ju H.; Hua, Changchun Robust \(\mathcal{H}_\infty\) stabilization for T-S fuzzy systems with time-varying delays and memory sampled-data control. (English) Zbl 1428.93063 Appl. Math. Comput. 346, 500-512 (2019). MSC: 93C42 93D21 93B36 93C57 PDF BibTeX XML Cite \textit{C. Ge} et al., Appl. Math. Comput. 346, 500--512 (2019; Zbl 1428.93063) Full Text: DOI
Zhang, Xianfu; Lu, Xiaodong On stability analysis of nonlinear time-delay systems on time scales. (English) Zbl 1425.93222 Syst. Control Lett. 131, Article ID 104498, 7 p. (2019). MSC: 93D05 93D20 93C23 93C10 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{X. Lu}, Syst. Control Lett. 131, Article ID 104498, 7 p. (2019; Zbl 1425.93222) Full Text: DOI
Liu, Yan; Yu, Chuan; Huang, Yongming; Xiong, Jingjing; Liu, Jing Delay-dependent stability criteria for continuous neural networks with time-varying delay. (Chinese. English summary) Zbl 1438.34253 J. Yangzhou Univ., Nat. Sci. Ed. 22, No. 1, 17-22 (2019). MSC: 34K20 92B20 92C20 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Yangzhou Univ., Nat. Sci. Ed. 22, No. 1, 17--22 (2019; Zbl 1438.34253) Full Text: DOI
Glizer, Valery Y. Uniform stabilizability of parameter-dependent systems with state and control delays by smooth-gain controls. (English) Zbl 1431.34083 J. Optim. Theory Appl. 183, No. 1, 50-65 (2019). MSC: 34K35 34K06 93C23 93D15 PDF BibTeX XML Cite \textit{V. Y. Glizer}, J. Optim. Theory Appl. 183, No. 1, 50--65 (2019; Zbl 1431.34083) Full Text: DOI
Wang, Meng; Qiu, Jianbin; Feng, Gang Event-triggered state estimation for T-S fuzzy affine systems based on piecewise Lyapunov-Krasovskii functionals. (English) Zbl 1438.93153 Control Theory Technol. 17, No. 1, 99-111 (2019). MSC: 93C65 93C42 93B36 93D20 93B53 PDF BibTeX XML Cite \textit{M. Wang} et al., Control Theory Technol. 17, No. 1, 99--111 (2019; Zbl 1438.93153) Full Text: DOI
Wang, Xuhuan; Xiang, Zhengrong Global stabilisation of nonlinear time-delay systems by partial-state feedback. (English) Zbl 1421.93117 Int. J. Control 92, No. 8, 1805-1814 (2019). MSC: 93D15 93C15 93C23 93C10 PDF BibTeX XML Cite \textit{X. Wang} and \textit{Z. Xiang}, Int. J. Control 92, No. 8, 1805--1814 (2019; Zbl 1421.93117) Full Text: DOI
Zeng, Hong-Bing; Liu, Xiao-Gui; Wang, Wei; Xiao, Shen-Ping New results on stability analysis of systems with time-varying delays using a generalized free-matrix-based inequality. (English) Zbl 1418.93240 J. Franklin Inst. 356, No. 13, 7312-7321 (2019). MSC: 93D20 93C23 93C05 PDF BibTeX XML Cite \textit{H.-B. Zeng} et al., J. Franklin Inst. 356, No. 13, 7312--7321 (2019; Zbl 1418.93240) Full Text: DOI
Hu, Jian-Bing; Wei, Hua; Feng, Ye-Feng; Yang, Xiao-Bo Synchronization of fractional chaotic complex networks with delays. (English) Zbl 1449.34254 Kybernetika 55, No. 1, 203-215 (2019). MSC: 34K24 34K37 92B20 PDF BibTeX XML Cite \textit{J.-B. Hu} et al., Kybernetika 55, No. 1, 203--215 (2019; Zbl 1449.34254) Full Text: DOI
Wu, Tao; Xiong, Lianglin; Cao, Jinde; Zhang, Haiyang Stochastic stability and extended dissipativity analysis for uncertain neutral systems with semi-Markovian jumping parameters via novel free matrix-based integral inequality. (English) Zbl 1418.93276 Int. J. Robust Nonlinear Control 29, No. 9, 2525-2545 (2019). MSC: 93E15 93C41 PDF BibTeX XML Cite \textit{T. Wu} et al., Int. J. Robust Nonlinear Control 29, No. 9, 2525--2545 (2019; Zbl 1418.93276) Full Text: DOI
Ghaemi, Sehraneh; Sabahi, Kamel; Badamchizadeh, Mohammad Ali Lyapunov-Krasovskii stable T2FNN controller for a class of nonlinear time-delay systems. (English) Zbl 1415.93157 Soft Comput. 23, No. 4, 1407-1419 (2019). MSC: 93C42 93C40 93B40 93C20 93C10 93D05 PDF BibTeX XML Cite \textit{S. Ghaemi} et al., Soft Comput. 23, No. 4, 1407--1419 (2019; Zbl 1415.93157) Full Text: DOI
Pandiselvi, S.; Raja, R.; Cao, Jinde; Li, Xiaodi; Rajchakit, G. Impulsive discrete-time GRNs with probabilistic time delays, distributed and leakage delays: an asymptotic stability issue. (English) Zbl 1417.92057 IMA J. Math. Control Inf. 36, No. 1, 79-100 (2019). MSC: 92C42 92C40 93D20 PDF BibTeX XML Cite \textit{S. Pandiselvi} et al., IMA J. Math. Control Inf. 36, No. 1, 79--100 (2019; Zbl 1417.92057) Full Text: DOI
Jia, Xianglei; Zhou, Shaosheng Global adaptive regulation for high-order feedforward systems with uncertain growth rate and unknown delay. (English) Zbl 1417.93170 IMA J. Math. Control Inf. 36, No. 1, 41-56 (2019). MSC: 93C40 93B52 93C41 93C10 PDF BibTeX XML Cite \textit{X. Jia} and \textit{S. Zhou}, IMA J. Math. Control Inf. 36, No. 1, 41--56 (2019; Zbl 1417.93170) Full Text: DOI Link
Qian, Wei; Gao, Yanshan; Wang, Lei; Fei, Shumin Consensus of multiagent systems with nonlinear dynamics and time-varying communication delays. (English) Zbl 1416.93170 Int. J. Robust Nonlinear Control 29, No. 6, 1926-1940 (2019). MSC: 93D20 93A14 68T42 PDF BibTeX XML Cite \textit{W. Qian} et al., Int. J. Robust Nonlinear Control 29, No. 6, 1926--1940 (2019; Zbl 1416.93170) Full Text: DOI
Mukdasai, Kanit; Kaewbanjak, Narongrit On delay-interval-dependent robust stability of LPD discrete-time system with mixed time-varying delays and nonlinear uncertainties. (English) Zbl 07072654 Adv. Difference Equ. 2019, Paper No. 242, 18 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{K. Mukdasai} and \textit{N. Kaewbanjak}, Adv. Difference Equ. 2019, Paper No. 242, 18 p. (2019; Zbl 07072654) Full Text: DOI
Aliseyko, A. N. Lyapunov matrices for a class of time-delay systems with piecewise-constant kernel. (English) Zbl 1416.93166 Int. J. Control 92, No. 6, 1298-1305 (2019). MSC: 93D20 93C15 93C05 PDF BibTeX XML Cite \textit{A. N. Aliseyko}, Int. J. Control 92, No. 6, 1298--1305 (2019; Zbl 1416.93166) Full Text: DOI
Zhang, Xian; Zhao, Ning; Shi, Peng Necessary conditions of exponential stability for a class of linear neutral-type time-delay systems. (English) Zbl 1416.93174 Int. J. Control 92, No. 6, 1289-1297 (2019). MSC: 93D20 93C05 PDF BibTeX XML Cite \textit{X. Zhang} et al., Int. J. Control 92, No. 6, 1289--1297 (2019; Zbl 1416.93174) Full Text: DOI
Ali, M. Syed; Vadivel, R.; Saravanakumar, R. Event-triggered state estimation for Markovian jumping impulsive neural networks with interval time-varying delays. (English) Zbl 1414.93179 Int. J. Control 92, No. 2, 270-290 (2019). MSC: 93E10 93C65 93E15 68T05 PDF BibTeX XML Cite \textit{M. S. Ali} et al., Int. J. Control 92, No. 2, 270--290 (2019; Zbl 1414.93179) Full Text: DOI
Krishnasamy, R.; George, Raju K. Stochastic stability of mode-dependent Markovian jump inertial neural networks. (English) Zbl 1414.34064 J. Anal. 27, No. 1, 179-196 (2019). MSC: 34K50 34K20 93E15 92B20 PDF BibTeX XML Cite \textit{R. Krishnasamy} and \textit{R. K. George}, J. Anal. 27, No. 1, 179--196 (2019; Zbl 1414.34064) Full Text: DOI
Nirmala, V. J.; Saravanakumar, T.; Zhu, Quanxin Dissipative criteria for Takagi-Sugeno fuzzy Markovian jumping neural networks with impulsive perturbations using delay partitioning approach. (English) Zbl 07048551 Adv. Difference Equ. 2019, Paper No. 140, 26 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{V. J. Nirmala} et al., Adv. Difference Equ. 2019, Paper No. 140, 26 p. (2019; Zbl 07048551) Full Text: DOI
Liao, Daixi; Zhong, Shouming; Cheng, Jun; Zhao, Can; Zhang, Xiaojun; Yu, Yongbin A new result on stability analysis for discrete system with interval time-varying delays. (English) Zbl 07048535 Adv. Difference Equ. 2019, Paper No. 123, 12 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{D. Liao} et al., Adv. Difference Equ. 2019, Paper No. 123, 12 p. (2019; Zbl 07048535) Full Text: DOI
Liu, Meng; He, Yong; Wu, Min; Shen, Jianhua Stability analysis of systems with two additive time-varying delay components via an improved delay interconnection Lyapunov-Krasovskii functional. (English) Zbl 1411.93133 J. Franklin Inst. 356, No. 6, 3457-3473 (2019). MSC: 93D05 93C15 PDF BibTeX XML Cite \textit{M. Liu} et al., J. Franklin Inst. 356, No. 6, 3457--3473 (2019; Zbl 1411.93133) Full Text: DOI
Thuan, Mai Viet Robust finite-time guaranteed cost control for positive systems with multiple time delays. (English) Zbl 1411.93060 J. Syst. Sci. Complex. 32, No. 2, 496-509 (2019). MSC: 93B35 93B52 93D05 PDF BibTeX XML Cite \textit{M. V. Thuan}, J. Syst. Sci. Complex. 32, No. 2, 496--509 (2019; Zbl 1411.93060) Full Text: DOI
Liu, Dan; Yang, Guang-hong Dynamic event-triggered control for linear time-invariant systems with \(\mathcal{L}_2\)-gain performance. (English) Zbl 1411.93116 Int. J. Robust Nonlinear Control 29, No. 2, 507-518 (2019). MSC: 93C65 93C05 93D20 93D05 PDF BibTeX XML Cite \textit{D. Liu} and \textit{G.-h. Yang}, Int. J. Robust Nonlinear Control 29, No. 2, 507--518 (2019; Zbl 1411.93116) Full Text: DOI
Li, Zhao-yan; Lam, James; Fang, Ru Mean square stability of linear stochastic neutral-type time-delay systems with multiple delays. (English) Zbl 1411.93184 Int. J. Robust Nonlinear Control 29, No. 2, 451-472 (2019). MSC: 93E15 93C05 93E03 93D20 93D30 PDF BibTeX XML Cite \textit{Z.-y. Li} et al., Int. J. Robust Nonlinear Control 29, No. 2, 451--472 (2019; Zbl 1411.93184) Full Text: DOI
Ren, Wei; Xiong, Junlin Krasovskii and Razumikhin stability theorems for stochastic switched nonlinear time-delay systems. (English) Zbl 1410.34246 SIAM J. Control Optim. 57, No. 2, 1043-1067 (2019). MSC: 34K50 34K20 34K34 93E15 34A36 PDF BibTeX XML Cite \textit{W. Ren} and \textit{J. Xiong}, SIAM J. Control Optim. 57, No. 2, 1043--1067 (2019; Zbl 1410.34246) Full Text: DOI
Yang, Cuiping; Xiong, Zuoliang; Yang, Tianqing Dissipativity analysis of neutral-type memristive neural network with two additive time-varying and leakage delays. (English) Zbl 07012074 Adv. Difference Equ. 2019, Paper No. 6, 22 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{C. Yang} et al., Adv. Difference Equ. 2019, Paper No. 6, 22 p. (2019; Zbl 07012074) Full Text: DOI
Altun, Yener; Tunç, Cemil On the estimates for solutions of a nonlinear neutral differential system with periodic coefficients and time-varying lag. (English) Zbl 1408.34053 Palest. J. Math. 8, No. 1, 105-120 (2019). MSC: 34K25 34K40 34K12 PDF BibTeX XML Cite \textit{Y. Altun} and \textit{C. Tunç}, Palest. J. Math. 8, No. 1, 105--120 (2019; Zbl 1408.34053) Full Text: Link
Ali, M. Syed; Yogambigai, J.; Saravanan, S.; Elakkia, S. Stochastic stability of neutral-type Markovian-jumping BAM neural networks with time varying delays. (English) Zbl 1406.34095 J. Comput. Appl. Math. 349, 142-156 (2019). MSC: 34K50 34K20 34K40 92B20 PDF BibTeX XML Cite \textit{M. S. Ali} et al., J. Comput. Appl. Math. 349, 142--156 (2019; Zbl 1406.34095) Full Text: DOI
Zhang, Dawei; Zhou, Zhiyong; Jia, Xinchun Networked fuzzy output feedback control for discrete-time Takagi-Sugeno fuzzy systems with sensor saturation and measurement noise. (English) Zbl 1448.93182 Inf. Sci. 457-458, 182-194 (2018). MSC: 93C42 93B70 93B52 93C55 PDF BibTeX XML Cite \textit{D. Zhang} et al., Inf. Sci. 457--458, 182--194 (2018; Zbl 1448.93182) Full Text: DOI
Yang, Bin; Wang, Juan; Hao, Mengnan; Zeng, Hongbing Further results on passivity analysis for uncertain neural networks with discrete and distributed delays. (English) Zbl 1447.93192 Inf. Sci. 430-431, 77-86 (2018). MSC: 93C41 93B70 93C43 PDF BibTeX XML Cite \textit{B. Yang} et al., Inf. Sci. 430--431, 77--86 (2018; Zbl 1447.93192) Full Text: DOI
Lin, Wen-Juan; He, Yong; Wu, Min; Liu, Qingping Reachable set estimation for Markovian jump neural networks with time-varying delay. (English) Zbl 1441.93019 Neural Netw. 108, 527-532 (2018). MSC: 93B03 93B70 93C43 PDF BibTeX XML Cite \textit{W.-J. Lin} et al., Neural Netw. 108, 527--532 (2018; Zbl 1441.93019) Full Text: DOI
Chen, Yonggang; Wang, Zidong; Liu, Yurong; Alsaadi, Fuad E. Stochastic stability for distributed delay neural networks via augmented Lyapunov-Krasovskii functionals. (English) Zbl 1427.93256 Appl. Math. Comput. 338, 869-881 (2018). MSC: 93E15 34K20 34K50 60H10 92B20 PDF BibTeX XML Cite \textit{Y. Chen} et al., Appl. Math. Comput. 338, 869--881 (2018; Zbl 1427.93256) Full Text: DOI
Wang, Yongzhao; Li, Tianrui; Liu, Qian Exponential stabilization for a class of nonlinear switched systems with time-varying delay under asynchronous switching. (Chinese. English summary) Zbl 1438.93201 Math. Pract. Theory 48, No. 24, 279-287 (2018). MSC: 93D23 93C10 93C30 93C43 PDF BibTeX XML Cite \textit{Y. Wang} et al., Math. Pract. Theory 48, No. 24, 279--287 (2018; Zbl 1438.93201)
Sun, Xin; Gao, Yue L-K functional for time-varying delay systems. (Chinese. English summary) Zbl 1438.93149 J. Shenyang Norm. Univ., Nat. Sci. 36, No. 6, 510-515 (2018). MSC: 93C43 93C23 93D05 PDF BibTeX XML Cite \textit{X. Sun} and \textit{Y. Gao}, J. Shenyang Norm. Univ., Nat. Sci. 36, No. 6, 510--515 (2018; Zbl 1438.93149) Full Text: DOI
Matveeva, I. I. On the robust stability of solutions to periodic systems of neutral type. (Russian, English) Zbl 1438.34256 Sib. Zh. Ind. Mat. 21, No. 4, 86-95 (2018); translation in J. Appl. Ind. Math. 12, No. 4, 684-693 (2018). MSC: 34K20 34K25 34K06 93D09 34K40 34K27 PDF BibTeX XML Cite \textit{I. I. Matveeva}, Sib. Zh. Ind. Mat. 21, No. 4, 86--95 (2018; Zbl 1438.34256); translation in J. Appl. Ind. Math. 12, No. 4, 684--693 (2018) Full Text: DOI
Maharajan, C.; Raja, R.; Cao, Jinde; Rajchakit, G.; Alsaedi, Ahmed Novel results on passivity and exponential passivity for multiple discrete delayed neutral-type neural networks with leakage and distributed time-delays. (English) Zbl 1416.34053 Chaos Solitons Fractals 115, 268-282 (2018). MSC: 34K20 93C23 34K60 PDF BibTeX XML Cite \textit{C. Maharajan} et al., Chaos Solitons Fractals 115, 268--282 (2018; Zbl 1416.34053) Full Text: DOI
Kharrat, Dhouha; Gassara, Hamdi; El Hajjaji, Ahmed; Chaabane, Mohamed Adaptive fuzzy observer-based fault-tolerant control for Takagi-Sugeno descriptor nonlinear systems with time delay. (English) Zbl 1418.93146 Circuits Syst. Signal Process. 37, No. 4, 1542-1561 (2018). MSC: 93C42 93C40 93D05 93C15 93C05 93C55 PDF BibTeX XML Cite \textit{D. Kharrat} et al., Circuits Syst. Signal Process. 37, No. 4, 1542--1561 (2018; Zbl 1418.93146) Full Text: DOI
Thuan, Mai Viet; Huong, Dinh Cong New results on exponential stability and passivity analysis of delayed switched systems with nonlinear perturbations. (English) Zbl 1418.93235 Circuits Syst. Signal Process. 37, No. 2, 569-592 (2018). MSC: 93D20 93C30 93C23 93C73 PDF BibTeX XML Cite \textit{M. V. Thuan} and \textit{D. C. Huong}, Circuits Syst. Signal Process. 37, No. 2, 569--592 (2018; Zbl 1418.93235) Full Text: DOI
Rajavel, Sathasivam; Samidurai, Rajendran; Kilbert, Sebastiyan Anthuvan Jerome; Cao, Jinde; Alsaedi, Ahmed Non-fragile mixed \(H_\infty\) and passivity control for neural networks with successive time-varying delay components. (English) Zbl 1416.93070 Nonlinear Anal., Model. Control 23, No. 2, 159-181 (2018). MSC: 93B36 93C23 93D20 PDF BibTeX XML Cite \textit{S. Rajavel} et al., Nonlinear Anal., Model. Control 23, No. 2, 159--181 (2018; Zbl 1416.93070) Full Text: DOI
Wang, Yongzhao Exponential stabilization for a class of nonlinear neutral switched systems with interval time-varying delay. (Chinese. English summary) Zbl 1424.93176 J. Anhui Norm. Univ., Nat. Sci. 41, No. 4, 319-324 (2018). MSC: 93D20 93C30 93C10 PDF BibTeX XML Cite \textit{Y. Wang}, J. Anhui Norm. Univ., Nat. Sci. 41, No. 4, 319--324 (2018; Zbl 1424.93176) Full Text: DOI
Maharajan, C.; Raja, R.; Cao, Jinde; Rajchakit, G.; Tu, Zhengwen; Alsaedi, Ahmed LMI-based results on exponential stability of BAM-type neural networks with leakage and both time-varying delays: a non-fragile state estimation approach. (English) Zbl 1426.93238 Appl. Math. Comput. 326, 33-55 (2018). MSC: 93D05 PDF BibTeX XML Cite \textit{C. Maharajan} et al., Appl. Math. Comput. 326, 33--55 (2018; Zbl 1426.93238) Full Text: DOI
Subramanian, K.; Muthukumar, P.; Lakshmanan, S. State feedback synchronization control of impulsive neural networks with mixed delays and linear fractional uncertainties. (English) Zbl 1426.34104 Appl. Math. Comput. 321, 267-281 (2018). MSC: 34K20 93B36 92B20 PDF BibTeX XML Cite \textit{K. Subramanian} et al., Appl. Math. Comput. 321, 267--281 (2018; Zbl 1426.34104) Full Text: DOI
Skvortsova, Mariya Aleksandrovna On estimates of solutions in a predator-prey model with two delays. (Russian. English summary) Zbl 1415.34129 Sib. Èlektron. Mat. Izv. 15, 1697-1718 (2018). MSC: 34K60 34K20 92D25 34K21 34K25 PDF BibTeX XML Cite \textit{M. A. Skvortsova}, Sib. Èlektron. Mat. Izv. 15, 1697--1718 (2018; Zbl 1415.34129) Full Text: DOI
Yurchenko, I. V.; Yasynskyy, V. K. Existence of Lyapunov-Krasovskii functionals for stochastic functional differential Ito-Skorokhod equations under the condition of solutions’ stability on probability with finite aftereffect. (English. Russian original) Zbl 1411.34111 Cybern. Syst. Anal. 54, No. 6, 957-970 (2018); translation from Kibern. Sist. Anal. 2018, No. 6, 119-133 (2018). MSC: 34K50 34K20 PDF BibTeX XML Cite \textit{I. V. Yurchenko} and \textit{V. K. Yasynskyy}, Cybern. Syst. Anal. 54, No. 6, 957--970 (2018; Zbl 1411.34111); translation from Kibern. Sist. Anal. 2018, No. 6, 119--133 (2018) Full Text: DOI
Aleksandrov, A. Yu. Construction of the Lyapunov-Krasovskii functionals for some classes of positive delay systems. (English. Russian original) Zbl 1411.93092 Sib. Math. J. 59, No. 5, 753-762 (2018); translation from Sib. Mat. Zh. 59, No. 5, 957-969 (2018). MSC: 93C23 93C30 93D09 93D30 93C05 34K20 PDF BibTeX XML Cite \textit{A. Yu. Aleksandrov}, Sib. Math. J. 59, No. 5, 753--762 (2018; Zbl 1411.93092); translation from Sib. Mat. Zh. 59, No. 5, 957--969 (2018) Full Text: DOI
Zeng, Deqiang; Shi, Yongguo; Zhang, Ruimei; Zhong, Shouming Improved results on stability analysis for a networked control system with two additive input delays. (Chinese. English summary) Zbl 1424.93178 J. Sichuan Univ., Nat. Sci. Ed. 55, No. 3, 462-468 (2018). MSC: 93D20 PDF BibTeX XML Cite \textit{D. Zeng} et al., J. Sichuan Univ., Nat. Sci. Ed. 55, No. 3, 462--468 (2018; Zbl 1424.93178) Full Text: DOI
Ren, Yong; He, Qian; Gu, Yuanfang; Sakthivel, R. Mean-square stability of delayed stochastic neural networks with impulsive effects driven by \(G\)-Brownian motion. (English) Zbl 1406.60100 Stat. Probab. Lett. 143, 56-66 (2018). MSC: 60H30 60H10 PDF BibTeX XML Cite \textit{Y. Ren} et al., Stat. Probab. Lett. 143, 56--66 (2018; Zbl 1406.60100) Full Text: DOI
Wang, Haiyan; Wu, Baowei; Wang, Yue-E Stability analysis and \(L_2\)-gain of switched neutral systems with all unstable subsystems. (English) Zbl 1407.93318 Asian J. Control 20, No. 6, 2281-2289 (2018). MSC: 93D05 93D20 93C30 93C55 PDF BibTeX XML Cite \textit{H. Wang} et al., Asian J. Control 20, No. 6, 2281--2289 (2018; Zbl 1407.93318) Full Text: DOI
Yskak, Timur Kaĭratuly On the stability of solutions of neutral differential equations with distributed delay. (Russian. English summary) Zbl 1409.34060 Izv. Irkutsk. Gos. Univ., Ser. Mat. 25, 159-169 (2018). MSC: 34K20 34K40 PDF BibTeX XML Cite \textit{T. K. Yskak}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 25, 159--169 (2018; Zbl 1409.34060) Full Text: DOI Link
Skvortsova, Mariya Aleksandrovna Estimates for solutions in a predator-prey model with delay. (Russian. English summary) Zbl 1409.92213 Izv. Irkutsk. Gos. Univ., Ser. Mat. 25, 109-125 (2018). MSC: 92D25 34K20 PDF BibTeX XML Cite \textit{M. A. Skvortsova}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 25, 109--125 (2018; Zbl 1409.92213) Full Text: DOI Link
Rao, Ruofeng; Zhong, Shouming Boundedness and robust analysis of dynamics of nonlinear diffusion high-order Markovian jump time-delay system. (English) Zbl 1448.60169 Adv. Difference Equ. 2018, Paper No. 434, 29 p. (2018). MSC: 60J74 92B20 93D05 35K57 PDF BibTeX XML Cite \textit{R. Rao} and \textit{S. Zhong}, Adv. Difference Equ. 2018, Paper No. 434, 29 p. (2018; Zbl 1448.60169) Full Text: DOI