×

Rigorous steps towards holography in asymptotically flat spacetimes. (English) Zbl 1107.81040

Summary: Scalar QFT on the boundary \({\mathfrak I}^+\) at future null infinity of a general asymptotically flat 4D spacetime is constructed using the algebraic approach based on Weyl algebra associated to a BMS-invariant symplectic form. The constructed theory turns out to be invariant under a suitable strongly-continuous unitary representation of the BMS group with manifest meaning when the fields are interpreted as suitable extensions to \({\mathfrak I}^+\) of massless minimally coupled fields propagating in the bulk. The group theoretical analysis of the found unitary BMS representation proves that such a field on \({\mathfrak I}^+\) coincides with the natural wave function constructed out of the unitary BMS irreducible representation induced from the little group \(\Delta\), the semidirect product between SO(2) and the two-dimensional translations group. This wave function is massless with respect to the notion of mass for BMS representation theory. The presented result proposes a natural criterion to solve the long-standing problem of the topology of BMS group. Indeed the found natural correspondence of quantum field theories holds only if the BMS group is equipped with the nuclear topology rejecting instead the Hilbert one. Eventually, some theorems towards a holographic description on \({\mathfrak I}^+\) of QFT in the bulk are established at level of \(C^*\)-algebras of fields for asymptotically flat at null infinity spacetimes. It is proved that preservation of a certain symplectic form implies the existence of an injective \(*\)-homomorphism from the Weyl algebra of fields of the bulk into that (associated with the boundary \({\mathfrak I}^+\). Those results are, in particular, applied to 4D Minkowski spacetime where a nice interplay between Poincaré invariance in the bulk and BMS invariance on the boundary at null infinity is established at the level of QFT. It arises that, in this case, the \(*\)-homomorphism admits unitary implementation and Minkowski vacuum is mapped into the BMS invariant vacuum on \({\mathfrak I}^+\).

MSC:

81T20 Quantum field theory on curved space or space-time backgrounds
81T05 Axiomatic quantum field theory; operator algebras
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
83C47 Methods of quantum field theory in general relativity and gravitational theory
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
22D30 Induced representations for locally compact groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1103/RevModPhys.74.825 · Zbl 1205.83025 · doi:10.1103/RevModPhys.74.825
[2] DOI: 10.1016/S0370-1573(99)00083-6 · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[3] DOI: 10.1007/PL00001009 · Zbl 1024.81026 · doi:10.1007/PL00001009
[4] DOI: 10.1016/S0370-2693(00)01168-0 · doi:10.1016/S0370-2693(00)01168-0
[5] DOI: 10.1016/j.nuclphysb.2003.09.051 · Zbl 1066.83513 · doi:10.1016/j.nuclphysb.2003.09.051
[6] DOI: 10.1016/S0550-3213(03)00494-2 · Zbl 1038.83030 · doi:10.1016/S0550-3213(03)00494-2
[7] DOI: 10.1016/j.nuclphysb.2004.04.015 · Zbl 1325.81127 · doi:10.1016/j.nuclphysb.2004.04.015
[8] DOI: 10.1088/0264-9381/21/23/022 · Zbl 1065.83018 · doi:10.1088/0264-9381/21/23/022
[9] Dappiaggi C., J. High Energy Phys. 0411 pp 011–
[10] DOI: 10.1016/j.physletb.2005.04.028 · Zbl 1247.83036 · doi:10.1016/j.physletb.2005.04.028
[11] DOI: 10.1063/1.531210 · Zbl 0848.53045 · doi:10.1063/1.531210
[12] DOI: 10.1063/1.531209 · Zbl 0848.53044 · doi:10.1063/1.531209
[13] DOI: 10.1063/1.1626271 · Zbl 1070.81091 · doi:10.1063/1.1626271
[14] DOI: 10.1063/1.1629396 · Zbl 1070.81092 · doi:10.1063/1.1629396
[15] DOI: 10.1063/1.1917310 · Zbl 1110.81146 · doi:10.1063/1.1917310
[16] DOI: 10.1063/1.523556 · Zbl 0425.53036 · doi:10.1063/1.523556
[17] DOI: 10.7208/chicago/9780226870373.001.0001 · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
[18] DOI: 10.1103/PhysRevLett.10.66 · doi:10.1103/PhysRevLett.10.66
[19] R. Penrose, Group Theory in Non-Linear Problems, ed. A. O. Barut (Reidel, Dordrecht, 1974) p. 97.
[20] Geroch R., Asymptotic Structure of Spacetime (1977)
[21] DOI: 10.1098/rspa.1981.0109 · doi:10.1098/rspa.1981.0109
[22] DOI: 10.1103/PhysRev.128.2851 · Zbl 0114.21202 · doi:10.1103/PhysRev.128.2851
[23] DOI: 10.1098/rspa.1972.0157 · Zbl 0351.22012 · doi:10.1098/rspa.1972.0157
[24] DOI: 10.1098/rspa.1973.0065 · Zbl 0351.22013 · doi:10.1098/rspa.1973.0065
[25] DOI: 10.1103/PhysRevLett.33.547 · doi:10.1103/PhysRevLett.33.547
[26] DOI: 10.1103/PhysRevLett.32.565 · doi:10.1103/PhysRevLett.32.565
[27] DOI: 10.1098/rspa.1975.0083 · Zbl 0303.22011 · doi:10.1098/rspa.1975.0083
[28] DOI: 10.1017/CBO9780511524486 · doi:10.1017/CBO9780511524486
[29] DOI: 10.1103/PhysRevLett.46.573 · doi:10.1103/PhysRevLett.46.573
[30] Wald R. M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (1994) · Zbl 0842.53052
[31] Bratteli O., Operator Algebras and Quantum Statistical Mechanics 2 (1996)
[32] DOI: 10.1016/0370-1573(91)90015-E · Zbl 0861.53074 · doi:10.1016/0370-1573(91)90015-E
[33] DOI: 10.1098/rspa.1978.0003 · Zbl 0368.22011 · doi:10.1098/rspa.1978.0003
[34] DOI: 10.1098/rspa.2000.0675 · Zbl 0984.22016 · doi:10.1098/rspa.2000.0675
[35] J. Milnor, Relativity, Groups and Topology II, eds. B. S. DeWitt and R. Stora (Elsevier/Amsterdam, New Yorks, 1984) pp. 1007–1057.
[36] DOI: 10.1098/rspa.1962.0161 · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[37] Gel’fand I. M., Generalized Functions: Integral Geometry and Representation Theory 5 (1996)
[38] Gel’fand I. M., Generalized functions: Application of Harmonic Analysis 4 (1966)
[39] DOI: 10.1063/1.1665917 · Zbl 0244.22019 · doi:10.1063/1.1665917
[40] DOI: 10.1016/0034-4877(77)90067-2 · Zbl 0353.22003 · doi:10.1016/0034-4877(77)90067-2
[41] DOI: 10.1007/BFb0069914 · doi:10.1007/BFb0069914
[42] DOI: 10.1142/0352 · doi:10.1142/0352
[43] Lledo F., Ann. Henri Poincaré 5 pp 607–
[44] Mackey G. W., Unitary Group Representations in Physics, Probability and Number Theory (1989) · Zbl 0698.22001
[45] Bourbaki N., Mesure de Haar (1963)
[46] DOI: 10.1016/0034-4877(85)90040-0 · Zbl 0616.22009 · doi:10.1016/0034-4877(85)90040-0
[47] DOI: 10.1016/0034-4877(77)90068-4 · Zbl 0353.22016 · doi:10.1016/0034-4877(77)90068-4
[48] DOI: 10.1093/qmath/21.1.101 · Zbl 0217.08703 · doi:10.1093/qmath/21.1.101
[49] DOI: 10.1007/BF01645946 · Zbl 0294.55010 · doi:10.1007/BF01645946
[50] DOI: 10.1063/1.1665610 · doi:10.1063/1.1665610
[51] DOI: 10.2307/1968551 · Zbl 0020.29601 · doi:10.2307/1968551
[52] DOI: 10.1103/PhysRevD.55.1971 · doi:10.1103/PhysRevD.55.1971
[53] DOI: 10.1007/978-1-4612-1422-9_15 · doi:10.1007/978-1-4612-1422-9_15
[54] Fulling S. A., Aspects of Quantum Field Theory in Curved Space-Time (1991)
[55] Streater R. F., PCT, Spin and Statistics, and All That (2000) · Zbl 1026.81027
[56] DOI: 10.1007/978-3-642-97306-2 · doi:10.1007/978-3-642-97306-2
[57] Friedlander F. G., The Wave Equation on a Curved Space-Time (1975) · Zbl 0316.53021
[58] DOI: 10.1063/1.525613 · Zbl 0529.53047 · doi:10.1063/1.525613
[59] DOI: 10.1063/1.532705 · Zbl 0946.83012 · doi:10.1063/1.532705
[60] DOI: 10.1063/1.1829152 · Zbl 1076.83010 · doi:10.1063/1.1829152
[61] DOI: 10.1103/PhysRevD.55.669 · doi:10.1103/PhysRevD.55.669
[62] DOI: 10.1007/978-3-662-02313-6 · doi:10.1007/978-3-662-02313-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.