×

Non linear adjustments with external conditions. (English) Zbl 1244.92072

Summary: A new non linear adjustment algorithm is proposed that includes the possibility to satisfy conditions involving non linear analytical functions of the adjustment parameters. It is based on the Levenberg-Marquardt algorithm and makes use of Lagrange multipliers to fulfill external conditions. As an application, the method is used to derive a modified Morse potential to represent the potential energy function of the \(^{2}\Pi _{1/2}\) ground state of nitric oxide (NO), while having both an acceptable description of the equilibrium bond length, the vibrational overtone spectrum to up to the 6th overtone, the energy and the dispersion coefficient at dissociation NO \(\rightarrow \) N + O.

MSC:

92E99 Chemistry
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
65C20 Probabilistic models, generic numerical methods in probability and statistics

Software:

MOLPRO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Levenberg K.: Quart. Appl. Math. 2, 164–168 (1944)
[2] Marquardt D.W.: J. Soc. Ind. Appl. Math. 11, 431–441 (1963) · Zbl 0112.10505 · doi:10.1137/0111030
[3] Dübal H.-R., Quack M.: J. Chem. Phys. 81, 3779–3791 (1984) · doi:10.1063/1.448178
[4] Rule K.L., Ebbett V.R., Vikesland P.J.: Environ. Sci. Technol. 39, 3176–3185 (2005) · doi:10.1021/es048943+
[5] Zhang X., Andrews J.N., Pedersen S.E.: Anal. Biochem. 361, 153–161 (2007) · doi:10.1016/j.ab.2006.11.033
[6] Cazallas R., Citores M., Etxebarria N., Fernández L., Madariaga J.: Talanta 41, 1637–1644 (1994) · doi:10.1016/0039-9140(94)E0089-A
[7] Marquardt R., Quack M.: J. Chem. Phys. 109, 10628–10643 (1998) · doi:10.1063/1.476513
[8] Marquardt R., Quack M.: J. Phys. Chem. A 108, 3166–3181 (2004) · doi:10.1021/jp037305v
[9] Marquardt R., Quack M., Thanopoulos I., Luckhaus D.: J. Chem. Phys. 119, 10724–10732 (2003) · doi:10.1063/1.1617272
[10] K.K. Albert, S. Albert, M. Quack, in Molecular vibrational-rotational spectra, ed. by M. Quack, F. Merkt Handbook of High Resolution Spectroscopy (John Wiley, Chichester, 2011)
[11] R. Marquardt, M. Quack, in Global analytical potential energy surfaces for high-resolution molecular spectroscopy and reaction dynamics, ed. by M. Quack, F. Merkt Handbook of High Resolution Spectroscopy (John Wiley, Chichester, 2011)
[12] J. Noonan, E. Laderman, in IEEE International Symposium on Circuits and Systems, 1989. vol. 2, pp. 1280–1282 (1989)
[13] Hanke M.: Inverse Probl. 13, 79–95 (1997) · Zbl 0873.65057 · doi:10.1088/0266-5611/13/1/007
[14] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in Fortran 77. Cambridge University Press, Cambridge (1986) · Zbl 0587.65005
[15] R.D. Amos, A. Bernhardsson, A. Berning, P. Celani, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P.J. Knowles, T.Korona, R. Lindh, A.W. Lloyd, S.J. McNicholas, F.R. Manby, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, H.-J. Werner, Molpro, A package of ab initio programs designed by H.-J. Werner and P.J. Knowles, version 2009.1, (2009)
[16] Morse P.M.: Phys. Rev. 34, 57–64 (1929) · JFM 55.0539.02 · doi:10.1103/PhysRev.34.57
[17] Marquardt R., Sagui K., Klopper W., Quack M.: J. Phys. Chem. B 109, 8439–8451 (2005) · doi:10.1021/jp0507243
[18] Marquardt R., Cuvelier F., Olsen R.A., Baerends E.J., Tremblay J.C., Saalfrank P.: J. Chem. Phys. 132, 074108 (2010) · doi:10.1063/1.3308481
[19] Stone A.J.: The Theory of Intermolecular Forces. Clarendon Press, Oxford (2002)
[20] Meyer R.: J. Chem. Phys. 52, 2053–2059 (1970) · doi:10.1063/1.1673259
[21] Tajti A., Szalay P.G., Császár A.G., Kállay M., Gauss J., Valeev E.F., Flowers B.A., Vazquez J., Stanton J.F.: J. Chem. Phys. 121, 11599–11613 (2004) · doi:10.1063/1.1811608
[22] G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, reprint(1989) edition (Van Nostrand Reinhold Co., New York, 1945)
[23] Kang Y.K., Jhon M.S.: Theor. Chim. Acta 61, 41–48 (1982) · doi:10.1007/BF00573863
[24] Amrein A., Quack M., Schmitt U.: J. Phys. Chem. 92, 5455–5466 (1988) · doi:10.1021/j100330a025
[25] Mandin J.Y., Dana V., Régalia L., Barbe A., der Heyden P.V.: J. Mol. Spec. 187, 200–205 (1998) · doi:10.1006/jmsp.1997.7492
[26] Lee Y.-P., Cheah S.-L., Ogilvie J.F.: Infrared Phys. Techn. 47, 227–239 (2006) · doi:10.1016/j.infrared.2005.01.002
[27] Bood J., McIlroy A., Osborn D.L.: J. Chem. Phys. 124, 084311 (2006) · doi:10.1063/1.2170090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.