×

Fully-implicit simulation of vertical-equilibrium models with hysteresis and capillary fringe. (English) Zbl 1392.86020

Summary: Geological carbon storage represents a new and substantial challenge for the subsurface geosciences. To increase understanding and make good engineering decisions, containment processes and large-scale storage operations must be simulated in a thousand year perspective. A hierarchy of models of increasing computational complexity for analysis and simulation of large-scale CO\(_2\) storage has been implemented as a separate module of the open-source Matlab Reservoir Simulation Toolbox (MRST). This paper describes a general family of two-scale models available in this module. The models consist of two-dimensional flow equations formulated in terms of effective quantities obtained from hydrostatic reconstructions of vertical pressure and saturation distributions. The corresponding formulation is fully implicit and is the first to give a mass-conservative treatment and include general (non-linearized) CO\(_2\) properties. In particular, the models account for compressibility, dissolution, and hysteresis effects in the fine-scale capillary and relative permeability functions and can be used to accurately and efficiently study the combined large-scale and long-term effects of structural, residual, and solubility trapping.

MSC:

86-08 Computational methods for problems pertaining to geophysics
76S05 Flows in porous media; filtration; seepage
86A20 Potentials, prospecting
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eiken, O; Ringrose, P; Hermanrud, C; Nazarian, B; Torp, TA; Høier, L, Lessons learned from 14 years of {CCS} operations: sleipner, in salah and snøhvit, Energy Procedia, 4, 5541-5548, (2011) · doi:10.1016/j.egypro.2011.02.541
[2] SINTEF ICT: The MATLAB reservoir simulation toolbox: numerical CO_{2} laboratory (2014). http://www.sintef.no/co2lab
[3] The MATLAB Reservoir Simulation Toolbox: version 2015a. http://www.sintef.no/MRST/ (2015)
[4] Lie, K-A; Krogstad, S; Ligaarden, IS; Natvig, JR; Nilsen, H; Skaflestad, B; Open-source, MATLAB, Implementation of consistent discretisations on complex grids, Comput. Geosci., 16, 297-322, (2012) · Zbl 1348.86002 · doi:10.1007/s10596-011-9244-4
[5] Krogstad, S., Lie, K.-A., Møyner, O., Nilsen, H. M., Raynaud, X., Skaflestad B.: MRST-AD—an open-source framework for rapid prototyping and evaluation of reservoir simulation problems (2015)
[6] Lie, K.-A.: An introduction to reservoir simulation using MATLAB: User guide for the Matlab reservoir simulation toolbox (MRST), SINTEF ICT. http://www.sintef.no/Projectweb/MRST/publications. 1st Edition (2014)
[7] Nilsen, H. M., Lie, K.-A., Møyner, O., Andersen, O.: Spill-point analysis and structural trapping capacity in saline aquifers using MRST-co2lab. Computers & Geoscience 75, 33-43 (2015). doi:10.1016/j.cageo.2014.11.002
[8] Nilsen, H.M., Lie, K.-A., Andersen, O.: Robust simulation of sharp-interface models for fast estimation of CO_{2} trapping capacity in large-scale aquifer systems. Comput. Geosci. to appear · Zbl 1392.86021
[9] Nilsen, HM; Lie, K-A; Andersen, O, Analysis of trapping capacities in the Norwegian north sea using MRST-co2lab, Computers & Geoscience, 79, 15-26, (2015) · doi:10.1016/j.cageo.2015.03.001
[10] Lie, K.-A., Nilsen, H. M., Andersen, O., Møyner, O.: A simulation workflow for large-scale CO_{2} storage in the Norwegian North Sea, Computational Geosciences · Zbl 1392.86015
[11] Andersen, O., Lie, K.-A., Nilsen, H. M.: An open-source toolchain for simulation and optimization of aquifer-wide co2 storage, Energy Procedia
[12] Halland, E. K., Mujezinović, J., Riis, F. (eds.): CO_{2} Storage Atlas: Norwegian Continental Shelf, Norwegian Petroleum Directorate, P.O. Box 600, NO-4003 Stavanger, Norway (2014) http://www.npd.no/en/Publications/Reports/Compiled-CO2-atlas/
[13] Class, H; Ebigbo, A; Helmig, R; Dahle, HK; Nordbotten, JM; Celia, MA; Audigane, P; Darcis, M; Ennis-King, J; Fan, Y; Flemisch, B; Gasda, SE; Jin, M; Krug, S; Labregere, D; Beni, AN; Pawar, RJ; Sbai, A; Thomas, SG; Trenty, L; Wei, L, A benchmark study on problems related to CO2 storage in geologic formations, Comput Geosci, 13, 409-434, (2009) · Zbl 1190.86011 · doi:10.1007/s10596-009-9146-x
[14] Nordbotten, JM; Flemisch, B; Gasda, SE; Nilsen, HM; Fan, Y; Pickup, GE; Wiese, B; Celia, MA; Dahle, HK; Eigestad, GT; Pruess, K, Uncertainties in practical simulation of CO2 storage, Int. J. Greenh. Gas Control., 9, 234-242, (2012) · doi:10.1016/j.ijggc.2012.03.007
[15] Nordbotten, J. M., Celia, M. A.: Geological storage of CO2: Modeling approaches for large-scale simulation. Wiley , Hoboken (2012)
[16] Bear, J.: Dynamics of fluids in porous media, Dover books on physics and chemistry, Dover publications, Incorporated (1988). http://books.google.no/books?id=lurrmlFGhTEC
[17] Martin, JC, Some mathematical aspects of two phase flow with application to flooding and gravity segregation, Prod. Monthly, 22, 22-35, (1958)
[18] Coats, K. H., Nielsen, R. L., Terune, M. H., Weber, A. G.: Simulation of three-dimensional, two-phase flow in oil and gas reservoirs. Soc. Pet. Eng. J. Dec., 377-388 (1967)
[19] Martin, J. C.: Partial integration of equation of multiphase flow. Soc. Pet. Eng. J. Dec, 370-380 (1968)
[20] Coats, K. H., Dempsey, J. R., Henderson, J. H.: The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir preformance. Soc. Pet. Eng. J. Mar, 68-71 (1971)
[21] Yortsos, Y, A theoretical analysis of vertical flow equilibrium, Transp. Porous Media, 18, 107-129, (1995) · doi:10.1007/BF01064674
[22] Court, B; Bandilla, KW; Celia, MA; Janzen, A; Dobossy, M; Nordbotten, JM, Applicability of vertical-equilibrium and sharp-interface assumptions in CO2 sequestration modeling, Int. J. Greenh. Gas Control, 10, 134-147, (2012) · doi:10.1016/j.ijggc.2012.04.015
[23] Nilsen, HM; Herrera, PA; Ashraf, M; Ligaarden, I; Iding, M; Hermanrud, C; Lie, K-A; Nordbotten, JM; Dahle, HK; Keilegavlen, E, Field-case simulation of CO2-plume migration using vertical-equilibrium models, Energy Procedia, 4, 3801-3808, (2011) · doi:10.1016/j.egypro.2011.02.315
[24] Gasda, SE; Nordbotten, JM; Celia, MA, Application of simplified models to CO2 migration and immobilization in large-scale geological systems, Int. J. Greenh. Gas Control, 9, 72-84, (2012) · doi:10.1016/j.ijggc.2012.03.001
[25] Andersen, O; Gasda, S; Nilsen, HM, Vertically averaged equations with variable density for CO2 flow in porous media, Transp. Porous Media, 107, 95-127, (2015) · doi:10.1007/s11242-014-0427-z
[26] Gasda, S. E., Nordbotten, J. M., Celia, M. A.: Vertically-averaged approaches to CO2 injection with solubility trapping. Water Resour. Res. 47, W05528 (2011). doi:10.1029/2010WR009075
[27] Nordbotten, J. M., Dahle, H. K.: Impact of the capillary fringe in vertically integrated models for CO_{2} storage. Water Resour. Res. 47(2), W02537 (2011). doi:10.1029/2009WR008958
[28] Nilsen, H. M., Syversveen, A. R., Lie, K.-A., Tveranger, J., Nordbotten, J. M.: Impact of top-surface morphology on CO2 storage capacity. Int. J. Greenh. Gas Control 11(0), 221-235 (2012). doi: 10.1016/j.ijggc.2012.08.012
[29] Gasda, S. E., Nilsen, H. M., Dahle, H. K., Gray, W. G.: Effective models for CO_{2} migration in geological systems with varying topography. Water Resour. Res. 48 (10). doi:10.1029/2012WR012264
[30] Gasda, SE; Nilsen, HM; Dahle, HK, Impact of structural heterogeneity on upscaled models for large-scale CO2 migration and trapping in saline aquifers, Adv. Water Resour., 62, 520-532, (2013) · doi:10.1016/j.advwatres.2013.05.003
[31] Gasda, S. E., du Plessis, E., Dahle, H. K.: Upscaled models for modeling CO2 injection and migration in geological systems. In: Bastian, P., Kraus, J., Scheichl, R., Wheeler, M. (eds.) Simulation of Flow in Porous Media, Vol. 12 of Radon Series on Computational and Applied Mathematics, De Gruyter, pp 1-38. Berlin, Boston (2013), doi:10.1515/9783110282245.1 · Zbl 1302.76175
[32] Doster, F., Nordbotten, J. M., Celia, M. A.: Hysteretic upscaled constitutive relationships for vertically integrated porous media flow. Comput. Visual. Sci. 15, 147-161 (2012). doi:10.1007/s00791-013-0206-3 · Zbl 1388.76358
[33] Ligaarden, I. S., Nilsen, H. M.: Numerical aspects of using vertical equilibrium models for simulating CO_{2} sequestration. In: Proceedings of ECMOR XII-12th European Conference on the Mathematics of Oil Recovery, EAGE, Oxford, UK, p 2010 · Zbl 1190.86011
[34] Seternes, G.: Simulations of co2 migration with a fully-integrated ve model on the gpu, Master’s thesis, Norwegian University of Science and Technology. https://daim.idi.ntnu.no/masteroppgave?id=12404 (2015)
[35] Singh, V., Cavanagh, A., Hansen, H., Nazarian, B., Iding, M., Ringrose, P.: Reservoir modeling of CO_{2} plume behavior calibrated against monitoring data from Sleipner, Norway. In: SPE Annual Technical Conference and Exhibition, 19-22 September 2010, Florence, Italy, 2010, SPE 134891-MS, doi:10.2118/134891-MS
[36] Bandilla, K. W., Celia, M. A., Leister, E.: Impact of model complexity on CO_{2} plume modeling at sleipner. Energy Procedia 63, 3405-3415 (2014). doi:10.1016/j.egypro.2014.11.369. 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12
[37] Gasda, SE; Nordbotten, JM; Celia, MA, Vertical equilibrium with sub-scale analytical methods for geological C02 sequestration, Comput. Geosci, 13, 469-481, (2009) · Zbl 1190.86013 · doi:10.1007/s10596-009-9138-x
[38] Andersen, O., Nilsen, H. M., Lie, K.-A.: Reexamining CO_{2} storage capacity and utilization of the Utsira Formation. In: ECMOR XIV -14\^{}{th} European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014, EAGE (2014), doi:10.3997/2214-4609.20141809
[39] Lie, K.-A., Nilsen, H. M., Andersen, O., Møyner, O.: A simulation workflow for large-scale CO_{2} storage in the Norwegian North Sea. In: ECMOR XIV- 14\^{}{th} European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014, EAGE (2014), doi:10.3997/2214-4609.20141877 · Zbl 1392.86015
[40] Juanes, R., Spiteri, E. J., Orr Jr., F. M., Blunt, M. J.: Impact of relative permeability hysteresis on geological CO_{2} storage. Water Resour. Res. 42, W12418. doi:10.1029/2005WR004806
[41] Span, R; Wagner, W, A new equation of state for carbon dioxide covering the fluid region from triple-point temperature to 1100 K at pressures up to 800 mpa, J. Phys. Chem. Ref. Data, 25, 1509-1597, (1996) · doi:10.1063/1.555991
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.