Diao, Huaian; Liu, Hongyu; Zhang, Long; Zou, Jun Unique continuation from a generalized impedance edge-corner for Maxwell’s system and applications to inverse problems. (English) Zbl 07323232 Inverse Probl. 37, No. 3, Article ID 035004, 32 p. (2021). MSC: 35Q61 35R30 PDF BibTeX XML Cite \textit{H. Diao} et al., Inverse Probl. 37, No. 3, Article ID 035004, 32 p. (2021; Zbl 07323232) Full Text: DOI
Dell’Oro, Filippo On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction. (English) Zbl 07319413 J. Differ. Equations 281, 148-198 (2021). MSC: 35B40 45K05 47D03 74D05 74F05 35B35 35L05 PDF BibTeX XML Cite \textit{F. Dell'Oro}, J. Differ. Equations 281, 148--198 (2021; Zbl 07319413) Full Text: DOI
Bigorgne, Léo Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data. (English) Zbl 07303654 Ann. Henri Poincaré 22, No. 1, 219-273 (2021). MSC: 35Q61 35Q83 82D10 76X05 78A25 83A05 35B40 PDF BibTeX XML Cite \textit{L. Bigorgne}, Ann. Henri Poincaré 22, No. 1, 219--273 (2021; Zbl 07303654) Full Text: DOI
Dinh, Doan Cong The existence of Cauchy kernels of Kravchenko-generalized Dirac operators. (English) Zbl 07300839 Adv. Appl. Clifford Algebr. 31, No. 1, Paper No. 2, 12 p. (2021). MSC: 30G35 30E20 PDF BibTeX XML Cite \textit{D. C. Dinh}, Adv. Appl. Clifford Algebr. 31, No. 1, Paper No. 2, 12 p. (2021; Zbl 07300839) Full Text: DOI
Liang, Ying; Xiang, Hua; Zhang, Shiyang; Zou, Jun Preconditioners and their analyses for edge element saddle-point systems arising from time-harmonic Maxwell’s equations. (English) Zbl 07298624 Numer. Algorithms 86, No. 1, 281-302 (2021). MSC: 65F08 65F10 65N22 65N30 PDF BibTeX XML Cite \textit{Y. Liang} et al., Numer. Algorithms 86, No. 1, 281--302 (2021; Zbl 07298624) Full Text: DOI
Fan, Jishan; Li, Fucai; Nakamura, Gen Uniform regularity of the compressible full Navier-Stokes-Maxwell system. (English) Zbl 07298440 Z. Angew. Math. Phys. 72, No. 1, Paper No. 3, 10 p. (2021). MSC: 76W05 35Q30 35Q60 PDF BibTeX XML Cite \textit{J. Fan} et al., Z. Angew. Math. Phys. 72, No. 1, Paper No. 3, 10 p. (2021; Zbl 07298440) Full Text: DOI
Matsui, Tatsuya; Nakasato, Ryosuke; Ogawa, Takayoshi Singular limit for the magnetohydrodynamics of the damped wave type in the critical Fourier-Sobolev space. (English) Zbl 1455.35201 J. Differ. Equations 271, 414-446 (2021). MSC: 35Q35 35Q60 76W05 76D05 35K05 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Matsui} et al., J. Differ. Equations 271, 414--446 (2021; Zbl 1455.35201) Full Text: DOI
Pan, Xing-Bin The general magneto-static model and Maxwell-Stokes system with topological parameters. (English) Zbl 07269199 J. Differ. Equations 270, 1079-1137 (2021). MSC: 35J61 35J62 35Q60 35Q61 78A25 PDF BibTeX XML Cite \textit{X.-B. Pan}, J. Differ. Equations 270, 1079--1137 (2021; Zbl 07269199) Full Text: DOI
Wen, Zhihong; Ye, Zhuan Regularity results for the Navier-Stokes-Maxwell system. (English) Zbl 07327452 Commun. Math. Sci. 18, No. 2, 339-358 (2020). MSC: 35Q 35B45 35B65 35Q35 76W05 PDF BibTeX XML Cite \textit{Z. Wen} and \textit{Z. Ye}, Commun. Math. Sci. 18, No. 2, 339--358 (2020; Zbl 07327452) Full Text: DOI
Weber, Jörg Confined steady states of the relativistic Vlasov-Maxwell system in an infinitely long cylinder. (English) Zbl 1453.35164 Kinet. Relat. Models 13, No. 6, 1135-1161 (2020). MSC: 35Q61 35Q83 82D10 PDF BibTeX XML Cite \textit{J. Weber}, Kinet. Relat. Models 13, No. 6, 1135--1161 (2020; Zbl 1453.35164) Full Text: DOI
Li, Yingzhe; Sun, Yajuan; Crouseilles, Nicolas Numerical simulations of one laser-plasma model based on Poisson structure. (English) Zbl 1453.65257 J. Comput. Phys. 405, Article ID 109172, 20 p. (2020). MSC: 65M08 65M70 76X05 76Y05 70G45 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Comput. Phys. 405, Article ID 109172, 20 p. (2020; Zbl 1453.65257) Full Text: DOI
Pan, Xing-Bin Maxwell-Stokes system with \(L^2\) boundary data and div-curl system with potential. (English) Zbl 1452.35204 SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 36, 55 p. (2020). MSC: 35Q61 35A15 35J20 35J47 35J50 35J57 35J61 35J62 35Q60 47J30 78A25 PDF BibTeX XML Cite \textit{X.-B. Pan}, SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 36, 55 p. (2020; Zbl 1452.35204) Full Text: DOI
Nguyen, Thanh-Nhan; Tran, Minh-Phuong An endpoint case of the renormalization property for the relativistic Vlasov-Maxwell system. (English) Zbl 1454.35368 J. Math. Phys. 61, No. 7, 071512, 10 p. (2020). MSC: 35Q60 35Q61 35Q83 35D30 81V80 82C28 82D10 76X05 PDF BibTeX XML Cite \textit{T.-N. Nguyen} and \textit{M.-P. Tran}, J. Math. Phys. 61, No. 7, 071512, 10 p. (2020; Zbl 1454.35368) Full Text: DOI
Chen, Li; Li, Xin; Pickl, Peter; Yin, Qitao Combined mean field limit and non-relativistic limit of Vlasov-Maxwell particle system to Vlasov-Poisson system. (English) Zbl 1452.82023 J. Math. Phys. 61, No. 6, 061903, 21 p. (2020). MSC: 82D10 78A25 35Q83 35Q60 81V70 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Math. Phys. 61, No. 6, 061903, 21 p. (2020; Zbl 1452.82023) Full Text: DOI
Khmelnytskaya, K. V.; Kravchenko, V. V.; Torba, S. M. Time-dependent one-dimensional electromagnetic wave propagation in inhomogeneous media: exact solution in terms of transmutations and Neumann series of Bessel functions. (English) Zbl 1450.78003 Lobachevskii J. Math. 41, No. 5, 785-796 (2020). MSC: 78A25 78A40 33C10 30G20 37K35 35Q60 PDF BibTeX XML Cite \textit{K. V. Khmelnytskaya} et al., Lobachevskii J. Math. 41, No. 5, 785--796 (2020; Zbl 1450.78003) Full Text: DOI
Zhou, Shuang; Yang, Yongfu Global stability of large steady-states to a non-isentropic Euler-Maxwell system in \(\mathbb{R}^3\). (English) Zbl 07266917 J. Nanjing Norm. Univ., Nat. Sci. Ed. 43, No. 1, 23-30 (2020). MSC: 35B35 35L45 PDF BibTeX XML Cite \textit{S. Zhou} and \textit{Y. Yang}, J. Nanjing Norm. Univ., Nat. Sci. Ed. 43, No. 1, 23--30 (2020; Zbl 07266917) Full Text: DOI
Kalinin, A. V.; Tyukhtina, A. A. Darwin approximation for the system of Maxwell’s equations in inhomogeneous conducting media. (English. Russian original) Zbl 1450.35248 Comput. Math. Math. Phys. 60, No. 8, 1361-1374 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1408-1421 (2020). MSC: 35Q61 78A35 35A01 35A02 PDF BibTeX XML Cite \textit{A. V. Kalinin} and \textit{A. A. Tyukhtina}, Comput. Math. Math. Phys. 60, No. 8, 1361--1374 (2020; Zbl 1450.35248); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1408--1421 (2020) Full Text: DOI
Plamenevskiĭ, Boris A.; Poretskiĭ, Aleksandr S.; Sarafanov, Oleg V. A method for approximate computation of waveguide scattering matrices. (English. Russian original) Zbl 1450.78007 Russ. Math. Surv. 75, No. 3, 509-568 (2020); translation from Usp. Mat. Nauk 75, No. 3, 123-182 (2020). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 78A50 78A45 78A25 35J05 35Q60 74J20 74B10 81U20 82D77 PDF BibTeX XML Cite \textit{B. A. Plamenevskiĭ} et al., Russ. Math. Surv. 75, No. 3, 509--568 (2020; Zbl 1450.78007); translation from Usp. Mat. Nauk 75, No. 3, 123--182 (2020) Full Text: DOI
Lei, Yuanjie; Zhao, Huijiang The Vlasov-Maxwell-Boltzmann system near Maxwellians with strong background magnetic field. (English) Zbl 1442.35290 Kinet. Relat. Models 13, No. 3, 599-621 (2020). MSC: 35Q20 82C31 76P05 83C40 PDF BibTeX XML Cite \textit{Y. Lei} and \textit{H. Zhao}, Kinet. Relat. Models 13, No. 3, 599--621 (2020; Zbl 1442.35290) Full Text: DOI
Noumo, Marcelin Kenmogne; Noutchegueme, Norbert; Wafo, Roger Tagne Global dynamics for a charged and colliding plasma in presence of a massive scalar field on the Robertson-Walker spacetime. (English) Zbl 1446.35004 Monatsh. Math. 193, No. 2, 383-439 (2020). MSC: 35A01 35L60 35Q20 83C22 PDF BibTeX XML Cite \textit{M. K. Noumo} et al., Monatsh. Math. 193, No. 2, 383--439 (2020; Zbl 1446.35004) Full Text: DOI
Elskens, Y.; Kiessling, M. K.-H. Microscopic foundations of kinetic plasma theory: the relativistic Vlasov-Maxwell equations and their radiation-reaction-corrected generalization. (English) Zbl 1448.82038 J. Stat. Phys. 180, No. 1-6, 749-772 (2020). MSC: 82D10 82C40 82C22 82C10 35Q83 35Q61 35Q20 81V70 83A05 83C22 83C50 PDF BibTeX XML Cite \textit{Y. Elskens} and \textit{M. K. H. Kiessling}, J. Stat. Phys. 180, No. 1--6, 749--772 (2020; Zbl 1448.82038) Full Text: DOI
Huang, Kaiyin; Shi, Shaoyun; Li, Wenlei First integrals of the Maxwell-Bloch system. (English. French summary) Zbl 1452.34022 C. R., Math., Acad. Sci. Paris 358, No. 1, 3-11 (2020). Reviewer: Klaus R. Schneider (Berlin) MSC: 34A34 34A05 78A60 PDF BibTeX XML Cite \textit{K. Huang} et al., C. R., Math., Acad. Sci. Paris 358, No. 1, 3--11 (2020; Zbl 1452.34022) Full Text: DOI
Weber, Jörg Hot plasma in a container – an optimal control problem. (English) Zbl 1448.35499 SIAM J. Math. Anal. 52, No. 3, 2895-2929 (2020). Reviewer: Eric Stachura (Marietta) MSC: 35Q61 35Q83 49J20 82D10 82D75 PDF BibTeX XML Cite \textit{J. Weber}, SIAM J. Math. Anal. 52, No. 3, 2895--2929 (2020; Zbl 1448.35499) Full Text: DOI
Bigorgne, Léo Sharp asymptotic behavior of solutions of the \(3d\) Vlasov-Maxwell system with small data. (English) Zbl 1439.82045 Commun. Math. Phys. 376, No. 2, 893-992 (2020). MSC: 82D10 76X05 78A25 83A05 35B40 35Q83 35Q60 35Q76 PDF BibTeX XML Cite \textit{L. Bigorgne}, Commun. Math. Phys. 376, No. 2, 893--992 (2020; Zbl 1439.82045) Full Text: DOI
Liu, Shuangqian; Ma, Xuan The relativistic Vlasov-Maxwell-Fokker-Planck system in the whole space. (English) Zbl 1435.76102 Nonlinearity 33, No. 4, 1789-1811 (2020). MSC: 76X05 82D10 35B40 35Q84 PDF BibTeX XML Cite \textit{S. Liu} and \textit{X. Ma}, Nonlinearity 33, No. 4, 1789--1811 (2020; Zbl 1435.76102) Full Text: DOI
Boccardo, Lucio; Orsina, Luigi Existence results for a system of Kirchhoff-Schrödinger-Maxwell equations. (English) Zbl 1441.35118 Mediterr. J. Math. 17, No. 3, Paper No. 82, 22 p. (2020). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 35J47 35J50 PDF BibTeX XML Cite \textit{L. Boccardo} and \textit{L. Orsina}, Mediterr. J. Math. 17, No. 3, Paper No. 82, 22 p. (2020; Zbl 1441.35118) Full Text: DOI
Liu, Yang; Wada, Takeshi Long range scattering for the Maxwell-Schrödinger system in the Lorenz gauge without any restriction on the size of data. (English) Zbl 1434.35214 J. Differ. Equations 269, No. 4, 2798-2852 (2020). MSC: 35Q61 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{T. Wada}, J. Differ. Equations 269, No. 4, 2798--2852 (2020; Zbl 1434.35214) Full Text: DOI
Anwasia, B.; Bisi, M.; Salvarani, F.; Soares, A. J. On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting. (English) Zbl 1434.82067 Kinet. Relat. Models 13, No. 1, 63-95 (2020). MSC: 82C40 35K57 76R50 76P05 80A30 PDF BibTeX XML Cite \textit{B. Anwasia} et al., Kinet. Relat. Models 13, No. 1, 63--95 (2020; Zbl 1434.82067) Full Text: DOI
Tang, Xianhua; Wen, Lixi; Chen, Sitong On critical Klein-Gordon-Maxwell systems with super-linear nonlinearities. (English) Zbl 1436.35143 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111771, 21 p. (2020). MSC: 35J47 35J61 35Q55 35A01 PDF BibTeX XML Cite \textit{X. Tang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111771, 21 p. (2020; Zbl 1436.35143) Full Text: DOI
Jiang, Ning; Luo, Yi-Long; Tang, Shaojun Convergence from two-fluid incompressible Navier-Stokes-Maxwell system with Ohm’s law to solenoidal Ohm’s law: classical solutions. (English) Zbl 1437.35538 J. Differ. Equations 269, No. 1, 349-376 (2020). MSC: 35Q30 35B25 35A09 35Q35 76D09 76W05 PDF BibTeX XML Cite \textit{N. Jiang} et al., J. Differ. Equations 269, No. 1, 349--376 (2020; Zbl 1437.35538) Full Text: DOI
Qin, Zengyun Harmonic fields and Maxwell equations on perforated domains. (English) Zbl 1436.35016 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111663, 26 p. (2020). MSC: 35A27 35J20 35J25 35J50 35J57 35Q61 35B40 PDF BibTeX XML Cite \textit{Z. Qin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111663, 26 p. (2020; Zbl 1436.35016) Full Text: DOI
Hu, Die; Zhang, Qi Existence of multiple solutions for a class of Schrödinger-Maxwell system. (English) Zbl 1436.35140 Appl. Math. Lett. 105, Article ID 106337, 6 p. (2020). MSC: 35J47 35J10 35J05 PDF BibTeX XML Cite \textit{D. Hu} and \textit{Q. Zhang}, Appl. Math. Lett. 105, Article ID 106337, 6 p. (2020; Zbl 1436.35140) Full Text: DOI
Guo, Rui; Jia, Rong-Rong Rogue wave solutions for the \((2+1)\)-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch system. (English) Zbl 1439.35427 Appl. Math. Lett. 105, Article ID 106284, 6 p. (2020). MSC: 35Q53 35Q60 78A60 37K35 37K40 PDF BibTeX XML Cite \textit{R. Guo} and \textit{R.-R. Jia}, Appl. Math. Lett. 105, Article ID 106284, 6 p. (2020; Zbl 1439.35427) Full Text: DOI
Cheverry, Christophe; Ibrahim, Slim The relativistic Vlasov-Maxwell equations for strongly magnetized plasmas. (English) Zbl 1439.35475 Commun. Math. Sci. 18, No. 1, 123-162 (2020). MSC: 35Q83 35Q61 82D10 82C40 76Y05 35B65 35B35 35A09 35A01 35A02 76X05 PDF BibTeX XML Cite \textit{C. Cheverry} and \textit{S. Ibrahim}, Commun. Math. Sci. 18, No. 1, 123--162 (2020; Zbl 1439.35475) Full Text: DOI
Pan, Xing-Bin Variational and operator methods for Maxwell-Stokes system. (English) Zbl 1435.35368 Discrete Contin. Dyn. Syst. 40, No. 6, 3909-3955 (2020). MSC: 35Q60 35Q35 78A30 78M34 76D07 35A15 35J62 35K59 35J20 35J47 35J50 35J57 35J61 58A12 47J30 PDF BibTeX XML Cite \textit{X.-B. Pan}, Discrete Contin. Dyn. Syst. 40, No. 6, 3909--3955 (2020; Zbl 1435.35368) Full Text: DOI
Peña Pérez, Yudier; Abreu Blaya, Ricardo; Bosch, Paul; Bory Reyes, Juan Dirichlet type problem for 2D quaternionic time-harmonic Maxwell system in fractal domains. (English) Zbl 1435.78003 Adv. Math. Phys. 2020, Article ID 4735357, 8 p. (2020). MSC: 78A25 35Q61 35Q41 28A80 46S10 PDF BibTeX XML Cite \textit{Y. Peña Pérez} et al., Adv. Math. Phys. 2020, Article ID 4735357, 8 p. (2020; Zbl 1435.78003) Full Text: DOI
Bahrouni, Anouar A note on the existence results for Schrödinger-Maxwell system with super-critical nonlinearity. (A note on the existence results for Schrödinger-Maxwell system with super-critical nonlinearitie.) (English) Zbl 1435.35151 Acta Appl. Math. 166, No. 1, 215-221 (2020). MSC: 35J47 35A01 PDF BibTeX XML Cite \textit{A. Bahrouni}, Acta Appl. Math. 166, No. 1, 215--221 (2020; Zbl 1435.35151) Full Text: DOI
Jiang, Peng Global existence and large time behavior of classical solutions to the Euler-Maxwell-Vlasov-Fokker-Planck system. (English) Zbl 1435.35384 J. Differ. Equations 268, No. 12, 7715-7740 (2020). MSC: 35Q83 35Q84 35Q31 35Q61 35A01 41A25 76W05 35B40 35A09 76N10 76T99 PDF BibTeX XML Cite \textit{P. Jiang}, J. Differ. Equations 268, No. 12, 7715--7740 (2020; Zbl 1435.35384) Full Text: DOI
Hu, Tingxi; Lu, Lu Asymptotic properties of standing waves for Maxwell-Schrödinger-Poisson system. (English) Zbl 1435.35346 J. Math. Anal. Appl. 486, No. 1, Article ID 123835, 12 p. (2020). MSC: 35Q55 35Q40 35Q60 35B40 35B44 49J35 PDF BibTeX XML Cite \textit{T. Hu} and \textit{L. Lu}, J. Math. Anal. Appl. 486, No. 1, Article ID 123835, 12 p. (2020; Zbl 1435.35346) Full Text: DOI
Bardos, Claude; Besse, Nicolas; Nguyen, Toan T. Onsager-type conjecture and renormalized solutions for the relativistic Vlasov-Maxwell system. (English) Zbl 1431.35189 Q. Appl. Math. 78, No. 2, 193-217 (2020). MSC: 35Q60 35Q61 35Q83 PDF BibTeX XML Cite \textit{C. Bardos} et al., Q. Appl. Math. 78, No. 2, 193--217 (2020; Zbl 1431.35189) Full Text: DOI
Aramaki, Junichi Applications of a version of the de Rham lemma to the existence theory of a weak solution to the Maxwell-Stokes type equation. (English) Zbl 1437.35268 Arab. J. Math. 9, No. 1, 9-18 (2020). MSC: 35J50 35A15 35A01 PDF BibTeX XML Cite \textit{J. Aramaki}, Arab. J. Math. 9, No. 1, 9--18 (2020; Zbl 1437.35268) Full Text: DOI
Deng, Youjun; Li, Jinhong; Liu, Hongyu On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model. (English) Zbl 1434.35243 Arch. Ration. Mech. Anal. 235, No. 1, 691-721 (2020). MSC: 35Q86 35Q35 76W05 86A25 86A22 35R30 78A25 PDF BibTeX XML Cite \textit{Y. Deng} et al., Arch. Ration. Mech. Anal. 235, No. 1, 691--721 (2020; Zbl 1434.35243) Full Text: DOI
Griffin-Pickering, Megan; Iacobelli, Mikaela Singular limits for plasmas with thermalised electrons. (English. French summary) Zbl 1434.35232 J. Math. Pures Appl. (9) 135, 199-255 (2020). MSC: 35Q83 82B40 82D10 35Q82 35Q61 35Q20 35Q31 PDF BibTeX XML Cite \textit{M. Griffin-Pickering} and \textit{M. Iacobelli}, J. Math. Pures Appl. (9) 135, 199--255 (2020; Zbl 1434.35232) Full Text: DOI
Yue, Gaocheng Global solutions to 3-D Navier-Stokes-Maxwell system slowly varying in one direction. (English) Zbl 1433.35246 Nonlinear Anal., Real World Appl. 53, Article ID 103071, 25 p. (2020). MSC: 35Q30 76W05 42B25 76D05 76D03 PDF BibTeX XML Cite \textit{G. Yue}, Nonlinear Anal., Real World Appl. 53, Article ID 103071, 25 p. (2020; Zbl 1433.35246) Full Text: DOI
Smirnov, Yury; Smolkin, Eugene Eigenwaves in a lossy metal-dielectric waveguide. (English) Zbl 1433.78032 Appl. Anal. 99, No. 1, 1-12 (2020). MSC: 78M30 47A10 78A50 35P10 PDF BibTeX XML Cite \textit{Y. Smirnov} and \textit{E. Smolkin}, Appl. Anal. 99, No. 1, 1--12 (2020; Zbl 1433.78032) Full Text: DOI
Korikov, D. V. Asymptotics of eigenvalues of the Maxwell system in a domain with small cavities. (English. Russian original) Zbl 07140256 St. Petersbg. Math. J. 31, No. 1, 13-51 (2020); translation from Algebra Anal. 31, No. 1, 18-71 (2019). MSC: 35Q61 35B40 35P20 PDF BibTeX XML Cite \textit{D. V. Korikov}, St. Petersbg. Math. J. 31, No. 1, 13--51 (2020; Zbl 07140256); translation from Algebra Anal. 31, No. 1, 18--71 (2019) Full Text: DOI
Li, Yingzhe; He, Yang; Sun, Yajuan; Niesen, Jitse; Qin, Hong; Liu, Jian Solving the Vlasov-Maxwell equations using Hamiltonian splitting. (English) Zbl 1452.65394 J. Comput. Phys. 396, 381-399 (2019). MSC: 65P10 35Q83 35B06 76X05 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Comput. Phys. 396, 381--399 (2019; Zbl 1452.65394) Full Text: DOI
Zhang, Luyu Infinitely many sign-changing solutions for the nonlinear Klein-Gordon-Maxwell system. (Chinese. English summary) Zbl 07266335 Acta Math. Appl. Sin. 42, No. 6, 779-792 (2019). MSC: 35Q53 35Q61 PDF BibTeX XML Cite \textit{L. Zhang}, Acta Math. Appl. Sin. 42, No. 6, 779--792 (2019; Zbl 07266335)
Duan, Yu; Sun, Xin; An, Yucheng Multiplicity of solutions for Klein-Gordon-Maxwell systems with sign-changing potential. (Chinese. English summary) Zbl 1449.35376 Math. Pract. Theory 49, No. 17, 219-226 (2019). MSC: 35Q53 35Q61 35A15 PDF BibTeX XML Cite \textit{Y. Duan} et al., Math. Pract. Theory 49, No. 17, 219--226 (2019; Zbl 1449.35376)
Fu, Yaoyao; Cao, Liqun The multiscale algorithms for the Maxwell-Dirac system in matrix form with quadratic correction. (Chinese. English summary) Zbl 1449.65178 Math. Numer. Sin. 41, No. 4, 419-439 (2019). MSC: 65M06 65M60 35C20 78M20 78M40 78M35 35Q41 35Q61 35R05 PDF BibTeX XML Cite \textit{Y. Fu} and \textit{L. Cao}, Math. Numer. Sin. 41, No. 4, 419--439 (2019; Zbl 1449.65178)
Chen, Lizhen; Li, Anran; Li, Gang Existence and multiplicity of solutions to a class of Klein-Gordon-Maxwell system. (Chinese. English summary) Zbl 1449.35409 Chin. J. Eng. Math. 36, No. 6, 647-657 (2019). MSC: 35Q61 35A01 35A15 PDF BibTeX XML Cite \textit{L. Chen} et al., Chin. J. Eng. Math. 36, No. 6, 647--657 (2019; Zbl 1449.35409) Full Text: DOI
Schoenmaker, Wim; Brachtendorf, Hans-Georg; Bittner, Kai; Tischendorf, Caren; Strohm, Christian Discretizations. (English) Zbl 1442.37091 ter Maten, E. Jan W. (ed.) et al., Nanoelectronic coupled problems solutions. Cham: Springer. Math. Ind. 29, 69-91 (2019). MSC: 37M15 65P10 PDF BibTeX XML Cite \textit{W. Schoenmaker} et al., Math. Ind. 29, 69--91 (2019; Zbl 1442.37091) Full Text: DOI
Tiutiunnik, A. A.; Divakov, D. V.; Malykh, M. D.; Sevastianov, L. A. Symbolic-numeric implementation of the four potential method for calculating normal modes: an example of square electromagnetic waveguide with rectangular insert. (English) Zbl 1437.65200 England, Matthew (ed.) et al., Computer algebra in scientific computing. 21st international workshop, CASC 2019, Moscow, Russia, August 26–30, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11661, 412-429 (2019). MSC: 65N30 78A50 78A30 68W30 65N12 PDF BibTeX XML Cite \textit{A. A. Tiutiunnik} et al., Lect. Notes Comput. Sci. 11661, 412--429 (2019; Zbl 1437.65200) Full Text: DOI
Stepin, S. A.; Tarasov, A. G. Stationary-phase method for Hankel transform of order zero. (English) Zbl 1447.82030 Russ. J. Math. Phys. 26, No. 4, 501-516 (2019). Reviewer: Vladimir Čadež (Beograd) MSC: 82D10 82C40 35A35 35Q75 35Q83 35Q60 78A40 83A05 44A15 PDF BibTeX XML Cite \textit{S. A. Stepin} and \textit{A. G. Tarasov}, Russ. J. Math. Phys. 26, No. 4, 501--516 (2019; Zbl 1447.82030) Full Text: DOI
Fagnola, Franco; Mora, Carlos M. Basic properties of a mean field laser equation. (English) Zbl 07177216 Open Syst. Inf. Dyn. 26, No. 3, Article ID 1950015, 30 p. (2019). MSC: 81S22 78A60 81V80 PDF BibTeX XML Cite \textit{F. Fagnola} and \textit{C. M. Mora}, Open Syst. Inf. Dyn. 26, No. 3, Article ID 1950015, 30 p. (2019; Zbl 07177216) Full Text: DOI
Akimzhanova, Sh. A.; Sakabekov, A. Macroscopic boundary conditions on a solid surface in rarefied gas flow for a one-dimensional nonlinear nonstationary 12-moment system of Boltzmann equations. (English. Russian original) Zbl 1441.76107 Comput. Math. Math. Phys. 59, No. 10, 1710-1719 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 10, 1769-1778 (2019). MSC: 76P05 35Q20 PDF BibTeX XML Cite \textit{Sh. A. Akimzhanova} and \textit{A. Sakabekov}, Comput. Math. Math. Phys. 59, No. 10, 1710--1719 (2019; Zbl 1441.76107); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 10, 1769--1778 (2019) Full Text: DOI
Aramaki, Junichi Existence and regularity of a weak solution to the Maxwell-Stokes type system containing \(p\)-curlcurl equation. (English) Zbl 1434.35204 Commun. Math. Anal. 22, No. 1, 34-50 (2019). MSC: 35Q60 35A15 35B65 35H30 35Q35 35D30 35A01 PDF BibTeX XML Cite \textit{J. Aramaki}, Commun. Math. Anal. 22, No. 1, 34--50 (2019; Zbl 1434.35204) Full Text: Euclid
Fu, Yaoyao; Cao, Liqun; Ma, Chupeng The multiscale algorithms for the Maxwell-Dirac system with rapidly oscillating discontinuous coefficients in a bounded convex Lipschitz domain under the Weyl gauge. (Chinese. English summary) Zbl 1449.35160 J. Numer. Methods Comput. Appl. 40, No. 2, 111-129 (2019). MSC: 35C20 35Q41 65M99 PDF BibTeX XML Cite \textit{Y. Fu} et al., J. Numer. Methods Comput. Appl. 40, No. 2, 111--129 (2019; Zbl 1449.35160)
Liu, Cunming; Guo, Zuji; Peng, Yue-Jun Global stability of large steady-states for an isentropic Euler-Maxwell system in \(\mathbb{R}^3\). (English) Zbl 1433.35383 Commun. Math. Sci. 17, No. 7, 1841-1860 (2019). MSC: 35Q60 35B40 35Q35 35B65 76L05 35A15 35A01 35A02 PDF BibTeX XML Cite \textit{C. Liu} et al., Commun. Math. Sci. 17, No. 7, 1841--1860 (2019; Zbl 1433.35383) Full Text: DOI
Suslina, T. A. On the homogenization of the stationary periodic Maxwell system in a bounded domain. (English. Russian original) Zbl 1431.35193 Funct. Anal. Appl. 53, No. 1, 69-73 (2019); translation from Funkts. Anal. Prilozh. 53, No. 1, 88-92 (2019). MSC: 35Q61 35B27 78M40 47B40 PDF BibTeX XML Cite \textit{T. A. Suslina}, Funct. Anal. Appl. 53, No. 1, 69--73 (2019; Zbl 1431.35193); translation from Funkts. Anal. Prilozh. 53, No. 1, 88--92 (2019) Full Text: DOI
Neshchadim, M. V.; Simonov, A. A. Functionally invariant solutions to Maxwell’s system: dependence on time. (Russian, English) Zbl 1438.35404 Sib. Zh. Ind. Mat. 22, No. 2, 49-61 (2019); translation in J. Appl. Ind. Math. 13, No. 2, 290-301 (2019). MSC: 35Q61 35A30 PDF BibTeX XML Cite \textit{M. V. Neshchadim} and \textit{A. A. Simonov}, Sib. Zh. Ind. Mat. 22, No. 2, 49--61 (2019; Zbl 1438.35404); translation in J. Appl. Ind. Math. 13, No. 2, 290--301 (2019) Full Text: DOI
Zhang, Katherine Zhiyuan Linear stability analysis of the relativistic Vlasov-Maxwell system in an axisymmetric domain. (English) Zbl 1427.82046 SIAM J. Math. Anal. 51, No. 6, 4683-4723 (2019). MSC: 82D10 35B35 35Q60 35Q83 35B07 PDF BibTeX XML Cite \textit{K. Z. Zhang}, SIAM J. Math. Anal. 51, No. 6, 4683--4723 (2019; Zbl 1427.82046) Full Text: DOI arXiv
Valls, Claudia Invariant algebraic surfaces and algebraic first integrals of the Maxwell-Bloch system. (English) Zbl 07123962 J. Geom. Phys. 146, Article ID 103516, 8 p. (2019). Reviewer: Klaus R. Schneider (Berlin) MSC: 34C60 78A60 34A05 34C45 PDF BibTeX XML Cite \textit{C. Valls}, J. Geom. Phys. 146, Article ID 103516, 8 p. (2019; Zbl 07123962) Full Text: DOI
Wang, Lixia Two solutions for a nonhomogeneous Klein-Gordon-Maxwell system. (English) Zbl 1438.35124 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 40, 12 p. (2019). MSC: 35J47 35B33 35J50 PDF BibTeX XML Cite \textit{L. Wang}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 40, 12 p. (2019; Zbl 1438.35124) Full Text: DOI
Yamazaki, Kazuo On the global regularity issue of the two-dimensional magnetohydrodynamics system with magnetic diffusion weaker than a Laplacian. (English) Zbl 1428.35405 Zheng, Shijun (ed.) et al., Nonlinear dispersive waves and fluids. AMS special sessions on spectral calculus and quasilinear partial differential equations, and PDE analysis on fluid flows, Atlanta, GA, USA, January 5–7, 2017. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 725, 251-264 (2019). MSC: 35Q35 35B65 35Q61 76W05 35R11 42A38 35B44 35A01 35A02 PDF BibTeX XML Cite \textit{K. Yamazaki}, Contemp. Math. 725, 251--264 (2019; Zbl 1428.35405) Full Text: DOI
Bai, Haifeng; Li, Li Global existence of solutions of the Navier-Stokes-Maxwell system in Besov spaces. (English) Zbl 1438.76012 J. Math. Study 52, No. 1, 98-110 (2019). MSC: 76D03 76D05 35Q30 76W05 PDF BibTeX XML Cite \textit{H. Bai} and \textit{L. Li}, J. Math. Study 52, No. 1, 98--110 (2019; Zbl 1438.76012) Full Text: DOI
Colin, Mathieu; Watanabe, Tatsuya A refined stability result for standing waves of the Schrödinger-Maxwell system. (English) Zbl 1423.35095 Nonlinearity 32, No. 10, 3695-3714 (2019). MSC: 35J20 35B35 35Q55 PDF BibTeX XML Cite \textit{M. Colin} and \textit{T. Watanabe}, Nonlinearity 32, No. 10, 3695--3714 (2019; Zbl 1423.35095) Full Text: DOI
Thaller, Maximilian Existence of static solutions of the Einstein-Vlasov-Maxwell system and the thin shell limit. (English) Zbl 1429.83006 SIAM J. Math. Anal. 51, No. 3, 2231-2260 (2019). Reviewer: Alex B. Gaina (Chisinau) MSC: 83C05 83C20 83C50 35Q83 76Y05 83C22 83C75 83C55 PDF BibTeX XML Cite \textit{M. Thaller}, SIAM J. Math. Anal. 51, No. 3, 2231--2260 (2019; Zbl 1429.83006) Full Text: DOI
Hernández-Herrera, Ariel Higher dimensional transmission problems for Dirac operators on Lipschitz domains. (English) Zbl 1420.35074 J. Math. Anal. Appl. 478, No. 2, 499-525 (2019). MSC: 35G45 35Q61 35Q41 35J05 15A66 PDF BibTeX XML Cite \textit{A. Hernández-Herrera}, J. Math. Anal. Appl. 478, No. 2, 499--525 (2019; Zbl 1420.35074) Full Text: DOI
Pan, Xing-Bin; Zhang, Zhibing Existence and regularity of weak solutions for a thermoelectric model. (English) Zbl 1421.35354 Nonlinearity 32, No. 9, 3342-3366 (2019). MSC: 35Q60 35Q61 35J57 35J60 35B65 35A01 35D30 PDF BibTeX XML Cite \textit{X.-B. Pan} and \textit{Z. Zhang}, Nonlinearity 32, No. 9, 3342--3366 (2019; Zbl 1421.35354) Full Text: DOI
Yamazaki, Kazuo Two examples on the property of the noise in the systems of equations of fluid mechanics. (English) Zbl 1427.35215 J. Comput. Appl. Math. 362, 460-470 (2019). MSC: 35Q35 35B65 76W05 35Q61 35Q30 35Q53 PDF BibTeX XML Cite \textit{K. Yamazaki}, J. Comput. Appl. Math. 362, 460--470 (2019; Zbl 1427.35215) Full Text: DOI
Ben-Artzi, Jonathan; Calogero, Simone; Pankavich, Stephen Concentrating solutions of the relativistic Vlasov-Maxwell system. (English) Zbl 1421.35367 Commun. Math. Sci. 17, No. 2, 377-392 (2019). MSC: 35Q83 35L60 82C22 82D10 35Q60 PDF BibTeX XML Cite \textit{J. Ben-Artzi} et al., Commun. Math. Sci. 17, No. 2, 377--392 (2019; Zbl 1421.35367) Full Text: DOI arXiv
Wang, Xianchao; Song, Minghui; Guo, Yukun; Li, Hongjie; Liu, Hongyu Fourier method for identifying electromagnetic sources with multi-frequency far-field data. (English) Zbl 1415.35292 J. Comput. Appl. Math. 358, 279-292 (2019). MSC: 35R30 35P25 78A46 35Q60 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Comput. Appl. Math. 358, 279--292 (2019; Zbl 1415.35292) Full Text: DOI arXiv
Delgado, Briceyda B.; Kravchenko, Vladislav V. A right inverse operator for \(\operatorname{curl}+\lambda \) and applications. (English) Zbl 1418.30047 Adv. Appl. Clifford Algebr. 29, No. 3, Paper No. 40, 15 p. (2019). MSC: 30G35 35Q60 PDF BibTeX XML Cite \textit{B. B. Delgado} and \textit{V. V. Kravchenko}, Adv. Appl. Clifford Algebr. 29, No. 3, Paper No. 40, 15 p. (2019; Zbl 1418.30047) Full Text: DOI arXiv
Clapp, Mónica; Ghimenti, Marco; Micheletti, Anna Maria Boundary layers to a singularly perturbed Klein-Gordon-Maxwell-Proca system on a compact Riemannian manifold with boundary. (English) Zbl 1419.35019 Adv. Nonlinear Anal. 8, 559-582 (2019). MSC: 35J25 58J05 PDF BibTeX XML Cite \textit{M. Clapp} et al., Adv. Nonlinear Anal. 8, 559--582 (2019; Zbl 1419.35019) Full Text: DOI
Li, Lin; Albuquerque, Francisco S. B. A nonlinear Klein-Gordon-Maxwell system in \(\mathbb{R}^{2}\) involving singular and vanishing potentials. (English) Zbl 1419.35062 Z. Anal. Anwend. 38, No. 2, 231-247 (2019). MSC: 35J91 35J50 35A01 PDF BibTeX XML Cite \textit{L. Li} and \textit{F. S. B. Albuquerque}, Z. Anal. Anwend. 38, No. 2, 231--247 (2019; Zbl 1419.35062) Full Text: DOI
Wu, Yuhu; Ge, Bin; Miyagaki, Olímpio H. Existence results for the Klein-Gordon-Maxwell system in rotationally symmetric bounded domains. (English) Zbl 1419.35069 Z. Anal. Anwend. 38, No. 2, 209-229 (2019). MSC: 35J91 35J25 35J50 PDF BibTeX XML Cite \textit{Y. Wu} et al., Z. Anal. Anwend. 38, No. 2, 209--229 (2019; Zbl 1419.35069) Full Text: DOI
Deng, Youjun; Liu, Hongyu; Uhlmann, Gunther On an inverse boundary problem arising in brain imaging. (English) Zbl 1416.35254 J. Differ. Equations 267, No. 4, 2471-2502 (2019). MSC: 35Q60 31B10 35R30 78A40 92C55 PDF BibTeX XML Cite \textit{Y. Deng} et al., J. Differ. Equations 267, No. 4, 2471--2502 (2019; Zbl 1416.35254) Full Text: DOI arXiv
Deng, Youjun; Liu, Hongyu; Liu, Xiaodong Recovery of an embedded obstacle and the surrounding medium for Maxwell’s system. (English) Zbl 1416.35253 J. Differ. Equations 267, No. 4, 2192-2209 (2019). MSC: 35Q60 35J05 31B10 35R30 78A40 78A46 PDF BibTeX XML Cite \textit{Y. Deng} et al., J. Differ. Equations 267, No. 4, 2192--2209 (2019; Zbl 1416.35253) Full Text: DOI arXiv
Candy, Timothy; Kauffman, Christopher; Lindblad, Hans Asymptotic behavior of the Maxwell-Klein-Gordon system. (English) Zbl 1420.35272 Commun. Math. Phys. 367, No. 2, 683-716 (2019). Reviewer: Denis Borisov (Ufa) MSC: 35Q40 81Q05 81T13 83C22 35B40 PDF BibTeX XML Cite \textit{T. Candy} et al., Commun. Math. Phys. 367, No. 2, 683--716 (2019; Zbl 1420.35272) Full Text: DOI
Ma, Chupeng; Cao, Liqun; Lin, Yanping Multiscale algorithms and computations for the time-dependent Maxwell-Schrödinger system in heterogeneous nanostructures. (English) Zbl 1411.65051 SIAM J. Sci. Comput. 41, No. 2, A1091-A1120 (2019). MSC: 65F10 78M05 PDF BibTeX XML Cite \textit{C. Ma} et al., SIAM J. Sci. Comput. 41, No. 2, A1091--A1120 (2019; Zbl 1411.65051) Full Text: DOI
Arsénio, Diogo; Saint-Raymond, Laure From the Vlasov-Maxwell-Boltzmann system to incompressible viscous electro-magneto-hydrodynamics. Volume 1. (English) Zbl 1427.76001 EMS Monographs in Mathematics. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-193-4/hbk; 978-3-03719-693-9/ebook). xii, 406 p. (2019). Reviewer: Alain Brillard (Riedisheim) MSC: 76-02 76P05 76W05 82C40 35Q35 35Q83 35Q20 35Q61 PDF BibTeX XML Cite \textit{D. Arsénio} and \textit{L. Saint-Raymond}, From the Vlasov-Maxwell-Boltzmann system to incompressible viscous electro-magneto-hydrodynamics. Volume 1. Zürich: European Mathematical Society (EMS) (2019; Zbl 1427.76001) Full Text: DOI
Makki, Ahmad; Miranville, Alain; Sadaka, Georges On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials. (English) Zbl 1409.35109 Discrete Contin. Dyn. Syst., Ser. B 24, No. 3, 1341-1365 (2019). MSC: 35K55 35B45 35Q79 80M10 35L15 PDF BibTeX XML Cite \textit{A. Makki} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 3, 1341--1365 (2019; Zbl 1409.35109) Full Text: DOI
Wei, Chongqing; Li, Anran Existence and multiplicity of solutions for Klein-Gordon-Maxwell systems with sign-changing potentials. (English) Zbl 1410.35028 Adv. Difference Equ. 2019, Paper No. 72, 11 p. (2019). MSC: 35J47 35J50 35J91 35J60 35J65 PDF BibTeX XML Cite \textit{C. Wei} and \textit{A. Li}, Adv. Difference Equ. 2019, Paper No. 72, 11 p. (2019; Zbl 1410.35028) Full Text: DOI
Yang, Yong-Fu; Hu, Hui-Fang Uniform global convergence of non-isentropic Euler-Maxwell systems with dissipation. (English) Zbl 1412.35270 Nonlinear Anal., Real World Appl. 47, 332-347 (2019). MSC: 35Q35 76W05 35B65 35Q31 35Q60 78A25 PDF BibTeX XML Cite \textit{Y.-F. Yang} and \textit{H.-F. Hu}, Nonlinear Anal., Real World Appl. 47, 332--347 (2019; Zbl 1412.35270) Full Text: DOI
Asadzadeh, Mohammad; Kowalczyk, Piotr; Standar, Christoffer On \(hp\)-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system. (English) Zbl 1410.65346 Kinet. Relat. Models 12, No. 1, 105-131 (2019). MSC: 65M12 65M15 65M60 35L50 35Q83 35Q61 65M06 PDF BibTeX XML Cite \textit{M. Asadzadeh} et al., Kinet. Relat. Models 12, No. 1, 105--131 (2019; Zbl 1410.65346) Full Text: DOI arXiv
Chen, Zhi; Tang, Xianhua; Qin, Lei; Qin, Dongdong Improved results for Klein-Gorden-Maxwell systems with critical growth. (English) Zbl 1411.35080 Appl. Math. Lett. 91, 158-164 (2019). MSC: 35J05 35J47 PDF BibTeX XML Cite \textit{Z. Chen} et al., Appl. Math. Lett. 91, 158--164 (2019; Zbl 1411.35080) Full Text: DOI
Chen, Sitong; Tang, Xianhua Geometrically distinct solutions for Klein-Gordon-Maxwell systems with super-linear nonlinearities. (English) Zbl 1411.35105 Appl. Math. Lett. 90, 188-193 (2019). MSC: 35J47 PDF BibTeX XML Cite \textit{S. Chen} and \textit{X. Tang}, Appl. Math. Lett. 90, 188--193 (2019; Zbl 1411.35105) Full Text: DOI
Liu, Xiao-Qi; Chen, Shang-Jie; Tang, Chun-Lei Ground state solutions for Klein-Gordon-Maxwell system with steep potential well. (English) Zbl 1411.35086 Appl. Math. Lett. 90, 175-180 (2019). MSC: 35J05 35J47 PDF BibTeX XML Cite \textit{X.-Q. Liu} et al., Appl. Math. Lett. 90, 175--180 (2019; Zbl 1411.35086) Full Text: DOI
Spitz, Martin Local wellposedness of nonlinear Maxwell equations with perfectly conducting boundary conditions. (English) Zbl 1410.35232 J. Differ. Equations 266, No. 8, 5012-5063 (2019). MSC: 35Q61 35L50 35L60 35B30 35B44 78A25 PDF BibTeX XML Cite \textit{M. Spitz}, J. Differ. Equations 266, No. 8, 5012--5063 (2019; Zbl 1410.35232) Full Text: DOI arXiv
McKeague, Ian W.; Peköz, Erol A.; Swan, Yvik Stein’s method and approximating the quantum harmonic oscillator. (English) Zbl 1442.60102 Bernoulli 25, No. 1, 89-111 (2019). MSC: 60K35 60F05 60F17 81Q65 PDF BibTeX XML Cite \textit{I. W. McKeague} et al., Bernoulli 25, No. 1, 89--111 (2019; Zbl 1442.60102) Full Text: DOI Euclid
Wei, Jiao; Wang, Xin; Geng, Xianguo Periodic and rational solutions of the reduced Maxwell-Bloch equations. (English) Zbl 07263324 Commun. Nonlinear Sci. Numer. Simul. 59, 1-14 (2018). MSC: 00 PDF BibTeX XML Cite \textit{J. Wei} et al., Commun. Nonlinear Sci. Numer. Simul. 59, 1--14 (2018; Zbl 07263324) Full Text: DOI
Mingalev, O. V.; Mingalev, I. V.; Mel’nik, M. N.; Akhmetov, O. I.; Suvorova, Z. V. Reformulation of Vlasov-Maxwell system and a new method for its numerical solution. (Russian. English summary) Zbl 1441.78030 Mat. Model. 30, No. 10, 21-43 (2018). MSC: 78M20 65M06 65Y10 78A25 35Q61 35Q83 35Q35 76X05 PDF BibTeX XML Cite \textit{O. V. Mingalev} et al., Mat. Model. 30, No. 10, 21--43 (2018; Zbl 1441.78030) Full Text: MNR
Azreg-Aïnou, Mustapha; Ahmed, Ayyesha K.; Jamil, Mubasher Spherical accretion by normal and phantom Einstein-Maxwell-dilaton black holes. (English) Zbl 1431.83027 Classical Quantum Gravity 35, No. 23, Article ID 235001, 15 p. (2018). MSC: 83C22 83C57 83C56 85A15 83C55 76W05 PDF BibTeX XML Cite \textit{M. Azreg-Aïnou} et al., Classical Quantum Gravity 35, No. 23, Article ID 235001, 15 p. (2018; Zbl 1431.83027) Full Text: DOI
Aramaki, Junichi Coupled variational problem associated with the bean critical-state model in type II superconductors with thermal effect. (English) Zbl 1427.35265 Adv. Differ. Equ. Control Process. 19, No. 2, 101-126 (2018). MSC: 35Q61 35J65 35J20 35H30 35Q60 PDF BibTeX XML Cite \textit{J. Aramaki}, Adv. Differ. Equ. Control Process. 19, No. 2, 101--126 (2018; Zbl 1427.35265) Full Text: DOI
Besse, Nicolas; Bechouche, Philippe Regularity of weak solutions for the relativistic Vlasov-Maxwell system. (English) Zbl 1428.35596 J. Hyperbolic Differ. Equ. 15, No. 4, 693-719 (2018). MSC: 35Q83 35Q61 35L05 35B65 35D30 PDF BibTeX XML Cite \textit{N. Besse} and \textit{P. Bechouche}, J. Hyperbolic Differ. Equ. 15, No. 4, 693--719 (2018; Zbl 1428.35596) Full Text: DOI
Colin, Mathieu; Watanabe, Tatsuya On the existence of ground states for a nonlinear Klein-Gordon-Maxwell type system. (English) Zbl 1427.35068 Funkc. Ekvacioj, Ser. Int. 61, No. 1, 1-14 (2018). MSC: 35J61 35J47 35Q60 35Q61 35J50 PDF BibTeX XML Cite \textit{M. Colin} and \textit{T. Watanabe}, Funkc. Ekvacioj, Ser. Int. 61, No. 1, 1--14 (2018; Zbl 1427.35068) Full Text: DOI
Miranville, Alain; Wehbe, Charbel Attractors for a Caginalp phase-field model with singular potential. (English) Zbl 1438.35057 J. Math. Study 51, No. 4, 337-376 (2018). MSC: 35B41 35K05 35K51 PDF BibTeX XML Cite \textit{A. Miranville} and \textit{C. Wehbe}, J. Math. Study 51, No. 4, 337--376 (2018; Zbl 1438.35057) Full Text: DOI
Huang, Yongting; Liu, Hongxia Stability of rarefaction wave for a macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. (English) Zbl 1438.35407 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 3, 857-888 (2018). MSC: 35Q83 35B40 35Q20 35Q61 82D10 PDF BibTeX XML Cite \textit{Y. Huang} and \textit{H. Liu}, Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 3, 857--888 (2018; Zbl 1438.35407) Full Text: DOI
Hecht, Frederic; Jangveladze, Temur; Kiguradze, Zurab; Pironneau, Olivier Finite difference scheme for one system of nonlinear partial integro-differential equations. (English) Zbl 1427.65164 Appl. Math. Comput. 328, 287-300 (2018). MSC: 65M06 65R20 35B40 35Q60 35R09 45K05 PDF BibTeX XML Cite \textit{F. Hecht} et al., Appl. Math. Comput. 328, 287--300 (2018; Zbl 1427.65164) Full Text: DOI