Baghani, Hamid; Nieto, Juan J. Some new properties of the Mittag-Leffler functions and their applications to solvability and stability of a class of fractional Langevin differential equations. (English) Zbl 07752319 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 18, 19 p. (2024). MSC: 26A33 34A12 34A25 PDF BibTeX XML Cite \textit{H. Baghani} and \textit{J. J. Nieto}, Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 18, 19 p. (2024; Zbl 07752319) Full Text: DOI
Li, Chenkuan; Saadati, Reza; Beaudin, Joshua; Hrytsenko, Andrii Remarks on a fractional nonlinear partial integro-differential equation via the new generalized multivariate Mittag-Leffler function. (English) Zbl 07773192 Bound. Value Probl. 2023, Paper No. 96, 11 p. (2023). MSC: 65M25 65Q30 35C10 35C15 26A33 PDF BibTeX XML Cite \textit{C. Li} et al., Bound. Value Probl. 2023, Paper No. 96, 11 p. (2023; Zbl 07773192) Full Text: DOI OA License
Rezaei Aderyani, Safoura; Saadati, Reza; Li, Chenkuan; Rassias, Themistocles M.; Park, Choonkil Special functions and multi-stability of the Jensen type random operator equation in \(C^*\)-algebras via fixed point. (English) Zbl 07772812 J. Inequal. Appl. 2023, Paper No. 35, 24 p. (2023). MSC: 54H20 46L05 39B62 PDF BibTeX XML Cite \textit{S. Rezaei Aderyani} et al., J. Inequal. Appl. 2023, Paper No. 35, 24 p. (2023; Zbl 07772812) Full Text: DOI
Farid, Ghulam; Mehmood, Sajid; Rathour, Laxmi; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan Fractional Hadamard and Fejér-Hadamard inequalities associated with exp. \((\alpha,h-m)\)-convexity. (English) Zbl 07772593 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 5, 353-367 (2023). MSC: 26D15 26A33 26A51 33E12 PDF BibTeX XML Cite \textit{G. Farid} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 5, 353--367 (2023; Zbl 07772593) Full Text: Link Link
Zhu, Huijian; Peng, Yuming; Li, Yiyang; Zeng, Caibin Forward dynamics and memory effect in a fractional order chemostat minimal model with non-monotonic growth. (English) Zbl 07765959 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2749-2764 (2023). MSC: 92D25 33E12 34A08 34C60 PDF BibTeX XML Cite \textit{H. Zhu} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2749--2764 (2023; Zbl 07765959) Full Text: DOI
Khan, Nabiullah; Husain, Saddam A novel beta matrix function via Wiman matrix function and their applications. (English) Zbl 07762912 Analysis, München 43, No. 4, 255-266 (2023). Reviewer: Juan Luis Varona (Logroño) MSC: 15A16 33B15 33C05 33C15 33E12 PDF BibTeX XML Cite \textit{N. Khan} and \textit{S. Husain}, Analysis, München 43, No. 4, 255--266 (2023; Zbl 07762912) Full Text: DOI
Haubold, Hans J.; Kabeer, Ashik A.; Kumar, Dilip Analytic forms of thermonuclear functions. (English) Zbl 07762327 Physica A 630, Article ID 129249, 10 p. (2023). MSC: 82-10 33E20 33C60 33E12 60E05 PDF BibTeX XML Cite \textit{H. J. Haubold} et al., Physica A 630, Article ID 129249, 10 p. (2023; Zbl 07762327) Full Text: DOI
Gadzova, L. Kh. Naimark problem for a fractional ordinary differential equation. (English. Russian original) Zbl 07761815 Math. Notes 114, No. 2, 159-164 (2023); translation from Mat. Zametki 114, No. 2, 195-202 (2023). MSC: 26Axx 34Axx 26-XX PDF BibTeX XML Cite \textit{L. Kh. Gadzova}, Math. Notes 114, No. 2, 159--164 (2023; Zbl 07761815); translation from Mat. Zametki 114, No. 2, 195--202 (2023) Full Text: DOI
Song, Pengfei; Wei, Peijun; Zhou, Xiaoli Transient response of rectangular plate on viscoelastic foundation under time-variable load based on fractional-order differential model. (English) Zbl 07758781 Acta Mech. 234, No. 11, 5947-5965 (2023). Reviewer: Girish Kumar Ramaiah (Bangalore) MSC: 74H45 74K20 74D05 PDF BibTeX XML Cite \textit{P. Song} et al., Acta Mech. 234, No. 11, 5947--5965 (2023; Zbl 07758781) Full Text: DOI
Ashurov, Ravshan; Kadirkulov, Baxtiyar; Jalilov, Muhammadali On an inverse problem of the Bitsadze-Samarskii type for a parabolic equation of fractional order. (English) Zbl 07754910 Bol. Soc. Mat. Mex., III. Ser. 29, No. 3, Paper No. 70, 21 p. (2023). MSC: 35R30 35K65 35R11 34K37 PDF BibTeX XML Cite \textit{R. Ashurov} et al., Bol. Soc. Mat. Mex., III. Ser. 29, No. 3, Paper No. 70, 21 p. (2023; Zbl 07754910) Full Text: DOI
Chanu, Athokpam Langlen; Bhadana, Jyoti; Brojen Singh, R. K. Non-Markovian process with variable memory functions. (English) Zbl 07754371 Ric. Mat. 72, No. 2, 835-851 (2023). MSC: 35R60 33E12 PDF BibTeX XML Cite \textit{A. L. Chanu} et al., Ric. Mat. 72, No. 2, 835--851 (2023; Zbl 07754371) Full Text: DOI arXiv
Li, Chenkuan; Saadati, Reza; Eidinejad, Zahra Fixed point results for the fractional nonlinear problem with integral boundary condition. (English) Zbl 1522.34026 Mediterr. J. Math. 20, No. 6, Paper No. 298, 15 p. (2023). MSC: 34A08 34A12 34B10 PDF BibTeX XML Cite \textit{C. Li} et al., Mediterr. J. Math. 20, No. 6, Paper No. 298, 15 p. (2023; Zbl 1522.34026) Full Text: DOI
Li, Gongsheng; Wang, Zhen; Jia, Xianzheng; Zhang, Yi An inverse problem of determining the fractional order in the TFDE using the measurement at one space-time point. (English) Zbl 1522.35588 Fract. Calc. Appl. Anal. 26, No. 4, 1770-1785 (2023). MSC: 35R30 35R11 26A33 65M32 PDF BibTeX XML Cite \textit{G. Li} et al., Fract. Calc. Appl. Anal. 26, No. 4, 1770--1785 (2023; Zbl 1522.35588) Full Text: DOI
Maes, Frederick; Van Bockstal, Karel Existence and uniqueness of a weak solution to fractional single-phase-lag heat equation. (English) Zbl 1522.35560 Fract. Calc. Appl. Anal. 26, No. 4, 1663-1690 (2023). MSC: 35R11 35K05 26A33 35D30 PDF BibTeX XML Cite \textit{F. Maes} and \textit{K. Van Bockstal}, Fract. Calc. Appl. Anal. 26, No. 4, 1663--1690 (2023; Zbl 1522.35560) Full Text: DOI arXiv
Zhokh, Alexey; Strizhak, Peter Green’s functions on various time scales for the time-fractional reaction-diffusion equation. (English) Zbl 07748018 Adv. Math. Phys. 2023, Article ID 6646284, 6 p. (2023). MSC: 35R11 35A08 35A22 35K10 PDF BibTeX XML Cite \textit{A. Zhokh} and \textit{P. Strizhak}, Adv. Math. Phys. 2023, Article ID 6646284, 6 p. (2023; Zbl 07748018) Full Text: DOI
Mazhgikhova, Madina Gumarovna The Cauchy problem for the delay differential equation with Dzhrbashyan-Nersesyan fractional derivative. (Russian. English summary) Zbl 07746598 Vestn. KRAUNTS, Fiz.-Mat. Nauki 42, No. 1, 98-107 (2023). MSC: 34A12 34K09 PDF BibTeX XML Cite \textit{M. G. Mazhgikhova}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 42, No. 1, 98--107 (2023; Zbl 07746598) Full Text: DOI MNR
Sobirov, Z. A.; Khujakulov, J. R.; Turemuratova, A. A. Unique solvability of IBVP for pseudo-subdiffusion equation with Hilfer fractional derivative on a metric graph. (English) Zbl 07746216 Chelyabinskiĭ Fiz.-Mat. Zh. 8, No. 3, 351-370 (2023). MSC: 35R11 35R02 PDF BibTeX XML Cite \textit{Z. A. Sobirov} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 8, No. 3, 351--370 (2023; Zbl 07746216) Full Text: DOI MNR
Ahmad, Manzoor; Mishra, Rajshree; Jain, Renu Analytical solution of time fractional Black-Scholes equation with two assets through new Sumudu transform iterative method. (English) Zbl 1522.91256 Gulf J. Math. 15, No. 1, 42-56 (2023). MSC: 91G20 35R11 33E12 PDF BibTeX XML Cite \textit{M. Ahmad} et al., Gulf J. Math. 15, No. 1, 42--56 (2023; Zbl 1522.91256) Full Text: DOI
Khasanov, Ibrokhim Ikhmierovich; Akramova, Dilshoda Isroil kizi; Rakhmonov, Askar Akhmadovich Investigation of the Cauchy problem for one fractional order equation with the Riemann-Liouville operator. (Russian. English summary) Zbl 07744567 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 27, No. 1, 64-80 (2023). MSC: 35R11 PDF BibTeX XML Cite \textit{I. I. Khasanov} et al., Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 27, No. 1, 64--80 (2023; Zbl 07744567) Full Text: DOI MNR
Thakkar, Yogesh M.; Shukla, Ajay Some results involving the \(_pR_q(\alpha, \beta; z)\) function. (English) Zbl 07742566 J. Indian Math. Soc., New Ser. 90, No. 3-4, 329-342 (2023). MSC: 33E12 33B15 33C45 40A25 44A99 PDF BibTeX XML Cite \textit{Y. M. Thakkar} and \textit{A. Shukla}, J. Indian Math. Soc., New Ser. 90, No. 3--4, 329--342 (2023; Zbl 07742566) Full Text: DOI
Eshaghi, Shiva; Ansari, Alireza; Ghaziani, Reza Khoshsiar Lyapunov-type inequalities for nonlinear systems with Prabhakar fractional derivatives. (English) Zbl 07742382 Acta Math. Acad. Paedagog. Nyházi. (N.S.) 34, 34-49 (2023). MSC: 26A33 26D10 33E12 34A08 PDF BibTeX XML Cite \textit{S. Eshaghi} et al., Acta Math. Acad. Paedagog. Nyházi. (N.S.) 34, 34--49 (2023; Zbl 07742382) Full Text: Link
Panwar, Savita; Rai, Prakriti Multi-indexed Whittaker function and its properties. (English) Zbl 07742075 J. Indian Math. Soc., New Ser. 90, No. 1-2, 115-124 (2023). MSC: 33C15 33C05 33B15 PDF BibTeX XML Cite \textit{S. Panwar} and \textit{P. Rai}, J. Indian Math. Soc., New Ser. 90, No. 1--2, 115--124 (2023; Zbl 07742075) Full Text: DOI
Altinkaya, Şahsene; Yavuz, Tuğba On sharp general coefficient estimates for \(\vartheta \)-spirallike functions. (English) Zbl 07741886 Commun. Korean Math. Soc. 38, No. 2, 461-468 (2023). MSC: 30C45 33E12 30C50 PDF BibTeX XML Cite \textit{Ş. Altinkaya} and \textit{T. Yavuz}, Commun. Korean Math. Soc. 38, No. 2, 461--468 (2023; Zbl 07741886) Full Text: DOI
Uhl, Michael Ramanujan’s formula for odd zeta values: a proof by Mittag-Leffler expansion and applications. (English) Zbl 07740685 Eur. J. Math. 9, No. 3, Paper No. 79, 12 p. (2023). MSC: 11M06 33E12 41A58 PDF BibTeX XML Cite \textit{M. Uhl}, Eur. J. Math. 9, No. 3, Paper No. 79, 12 p. (2023; Zbl 07740685) Full Text: DOI
Foroghi, Farid; Tahmasebi, Saeid; Afshari, Mahmoud; Lak, Fazlollah Extensions of fractional cumulative residual entropy with applications. (English) Zbl 07736147 Commun. Stat., Theory Methods 52, No. 20, 7350-7369 (2023). MSC: 62B10 94A17 60E15 PDF BibTeX XML Cite \textit{F. Foroghi} et al., Commun. Stat., Theory Methods 52, No. 20, 7350--7369 (2023; Zbl 07736147) Full Text: DOI
Lin, Guoxing Describing NMR chemical exchange by effective phase diffusion approach. (English) Zbl 1522.81784 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107402, 17 p. (2023). MSC: 81V55 PDF BibTeX XML Cite \textit{G. Lin}, Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107402, 17 p. (2023; Zbl 1522.81784) Full Text: DOI arXiv
Chu, Yu-Ming; Rashid, Saima; Sultana, Sobia; Inc, Mustafa New numerical simulation for the fractal-fractional model of deathly Lassa hemorrhagic fever disease in pregnant women with optimal analysis. (English) Zbl 1522.34071 Fractals 31, No. 4, Article ID 2340054, 21 p. (2023). MSC: 34C60 34A08 26A33 92D30 33E12 34A45 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Fractals 31, No. 4, Article ID 2340054, 21 p. (2023; Zbl 1522.34071) Full Text: DOI
Ghayasuddin, Mohd A new class of the generalized Hermite-based polynomials. (English) Zbl 07726146 Analysis, München 43, No. 3, 201-208 (2023). MSC: 33C45 11B68 33E12 PDF BibTeX XML Cite \textit{M. Ghayasuddin}, Analysis, München 43, No. 3, 201--208 (2023; Zbl 07726146) Full Text: DOI
Ghanmi, Boulbaba; Ghnimi, Saifeddine On the partial stability of nonlinear impulsive Caputo fractional systems. (English) Zbl 07719559 Appl. Math., Ser. B (Engl. Ed.) 38, No. 2, 166-179 (2023). MSC: 34Dxx 26A33 65L20 PDF BibTeX XML Cite \textit{B. Ghanmi} and \textit{S. Ghnimi}, Appl. Math., Ser. B (Engl. Ed.) 38, No. 2, 166--179 (2023; Zbl 07719559) Full Text: DOI
Venkatesan, Govindaraj; Pitchaikkannu, Suresh Kumar Trajectory controllability of nonlinear fractional Langevin systems. (English) Zbl 07715018 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1079-1093 (2023). MSC: 93B05 34A08 34A34 PDF BibTeX XML Cite \textit{G. Venkatesan} and \textit{S. K. Pitchaikkannu}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 1079--1093 (2023; Zbl 07715018) Full Text: DOI
Bansal, Deepak; Raina, Ravinder Krishna Certain convexity properties of Hurwitz-Lerch Zeta and Mittag-Leffler functions. (English) Zbl 1520.30020 Hokkaido Math. J. 52, No. 2, 315-329 (2023). MSC: 30C45 PDF BibTeX XML Cite \textit{D. Bansal} and \textit{R. K. Raina}, Hokkaido Math. J. 52, No. 2, 315--329 (2023; Zbl 1520.30020) Full Text: DOI Link
Górska, K.; Horzela, A.; Penson, K. A. The Havriliak-Negami and Jurlewicz-Weron-Stanislavsky relaxation models revisited: memory functions based study. (English) Zbl 07713596 J. Phys. A, Math. Theor. 56, No. 31, Article ID 313001, 43 p. (2023). MSC: 82-XX 81-XX PDF BibTeX XML Cite \textit{K. Górska} et al., J. Phys. A, Math. Theor. 56, No. 31, Article ID 313001, 43 p. (2023; Zbl 07713596) Full Text: DOI
Chen, Liping; Xue, Min; Lopes, António; Wu, Ranchao; Chen, YangQuan Asymptotic behavior of fractional-order nonlinear systems with two different derivatives. (English) Zbl 1521.34008 J. Eng. Math. 140, Paper No. 9, 9 p. (2023). MSC: 34A08 34D20 44A10 33E12 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Eng. Math. 140, Paper No. 9, 9 p. (2023; Zbl 1521.34008) Full Text: DOI
Kokurin, M. M. Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a Caputo fractional derivative in a Banach space. (English. Russian original) Zbl 07712811 J. Math. Sci., New York 272, No. 6, 826-852 (2023); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 175, 79-104 (2020). MSC: 65J08 34A08 PDF BibTeX XML Cite \textit{M. M. Kokurin}, J. Math. Sci., New York 272, No. 6, 826--852 (2023; Zbl 07712811); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 175, 79--104 (2020) Full Text: DOI
Peskir, Goran; Roodman, David Sticky Feller diffusions. (English) Zbl 1517.60101 Electron. J. Probab. 28, Paper No. 29, 28 p. (2023). MSC: 60J60 60J80 60J65 60H20 35C15 35K20 35K67 PDF BibTeX XML Cite \textit{G. Peskir} and \textit{D. Roodman}, Electron. J. Probab. 28, Paper No. 29, 28 p. (2023; Zbl 1517.60101) Full Text: DOI Link
Lamba, Navneet; Verma, Jyoti; Deshmukh, Kishor A brief note on space time fractional order thermoelastic response in a layer. (English) Zbl 07704596 Appl. Appl. Math. 18, No. 1, Paper No. 18, 9 p. (2023). MSC: 35R11 26A33 42A38 58J35 PDF BibTeX XML Cite \textit{N. Lamba} et al., Appl. Appl. Math. 18, No. 1, Paper No. 18, 9 p. (2023; Zbl 07704596) Full Text: Link
Villafuerte, L. Solution processes for second-order linear fractional differential equations with random inhomogeneous parts. (English) Zbl 07703852 Math. Comput. Simul. 210, 17-48 (2023). MSC: 60-XX 34-XX PDF BibTeX XML Cite \textit{L. Villafuerte}, Math. Comput. Simul. 210, 17--48 (2023; Zbl 07703852) Full Text: DOI
Li, Chenkuan Uniqueness of a nonlinear integro-differential equation with nonlocal boundary condition and variable coefficients. (English) Zbl 1514.34050 Bound. Value Probl. 2023, Paper No. 26, 10 p. (2023). MSC: 34B15 34A12 26A33 PDF BibTeX XML Cite \textit{C. Li}, Bound. Value Probl. 2023, Paper No. 26, 10 p. (2023; Zbl 1514.34050) Full Text: DOI
Pathan, M. A.; Bin-Saad, Maged G. Mittag-Leffler-type function of arbitrary order and their application in the fractional kinetic equation. (English) Zbl 07703077 SN Partial Differ. Equ. Appl. 4, No. 2, Paper No. 15, 25 p. (2023). MSC: 33C45 33E12 PDF BibTeX XML Cite \textit{M. A. Pathan} and \textit{M. G. Bin-Saad}, SN Partial Differ. Equ. Appl. 4, No. 2, Paper No. 15, 25 p. (2023; Zbl 07703077) Full Text: DOI
Li, Changpin; Li, Zhiqiang Stability and \(\psi\)-algebraic decay of the solution to \(\psi\)-fractional differential system. (English) Zbl 07702462 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 695-733 (2023). MSC: 34A08 34D20 34D30 PDF BibTeX XML Cite \textit{C. Li} and \textit{Z. Li}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 695--733 (2023; Zbl 07702462) Full Text: DOI
Eidinejad, Zahra; Saadati, Reza; Allahviranloo, Tofigh; Li, Chenkuan A novel stability study on Volterra integral equations with delay (VIE-D) using the fuzzy minimum optimal controller in matrix-valued fuzzy Banach spaces. (English) Zbl 07700522 Comput. Appl. Math. 42, No. 5, Paper No. 215, 20 p. (2023). MSC: 45M10 45D05 33C05 PDF BibTeX XML Cite \textit{Z. Eidinejad} et al., Comput. Appl. Math. 42, No. 5, Paper No. 215, 20 p. (2023; Zbl 07700522) Full Text: DOI
Wang, Kang-Jia; Shi, Feng; Si, Jing; Liu, Jing-Hua; Wang, Guo-Dong Non-differentiable exact solutions of the local fractional Zakharov-Kuznetsov equation on the Cantor sets. (English) Zbl 07700494 Fractals 31, No. 3, Article ID 2350028, 11 p. (2023). MSC: 26Axx 35Rxx 35Qxx PDF BibTeX XML Cite \textit{K.-J. Wang} et al., Fractals 31, No. 3, Article ID 2350028, 11 p. (2023; Zbl 07700494) Full Text: DOI
Pal, Ankit; Jana, R. K.; Nieto, Juan J.; Shukla, A. K. Some results on the \({}_p R_q (\lambda,\mu; z)\) function involving pathway fractional integral operator and statistical distribution. (English) Zbl 07699168 S\(\vec{\text{e}}\)MA J. 80, No. 1, 159-173 (2023). MSC: 33C60 26A33 33E12 44A99 PDF BibTeX XML Cite \textit{A. Pal} et al., S\(\vec{\text{e}}\)MA J. 80, No. 1, 159--173 (2023; Zbl 07699168) Full Text: DOI
Pang, Xia; Li, Xiuwen; Liu, Zhenhai Decay mild solutions of Hilfer fractional differential variational-hemivariational inequalities. (English) Zbl 1516.49009 Nonlinear Anal., Real World Appl. 71, Article ID 103834, 26 p. (2023). MSC: 49J40 34A08 34G25 PDF BibTeX XML Cite \textit{X. Pang} et al., Nonlinear Anal., Real World Appl. 71, Article ID 103834, 26 p. (2023; Zbl 1516.49009) Full Text: DOI
Mazhgikhova, M. G. Generalized Sturm problem for a linear fractional differential equation. (English) Zbl 07688845 Lobachevskii J. Math. 44, No. 2, 629-633 (2023). MSC: 34A30 34A08 26A33 34B15 33E12 PDF BibTeX XML Cite \textit{M. G. Mazhgikhova}, Lobachevskii J. Math. 44, No. 2, 629--633 (2023; Zbl 07688845) Full Text: DOI
Ahamed, Nizamuddin; Kundu, Snehasis Fractional entropy-based modeling of suspended concentration distribution of type I and type II and sediment discharge in pipe and open-channel turbulent flows. (English) Zbl 1514.76099 Z. Angew. Math. Phys. 74, No. 3, Paper No. 101, 47 p. (2023). MSC: 76T20 76F25 76F10 76F55 76M45 PDF BibTeX XML Cite \textit{N. Ahamed} and \textit{S. Kundu}, Z. Angew. Math. Phys. 74, No. 3, Paper No. 101, 47 p. (2023; Zbl 1514.76099) Full Text: DOI
Li, Mengmeng; Wang, Jinrong The existence and averaging principle for Caputo fractional stochastic delay differential systems. (English) Zbl 1511.34083 Fract. Calc. Appl. Anal. 26, No. 2, 893-912 (2023). MSC: 34K37 34K33 34A08 34F05 60H10 PDF BibTeX XML Cite \textit{M. Li} and \textit{J. Wang}, Fract. Calc. Appl. Anal. 26, No. 2, 893--912 (2023; Zbl 1511.34083) Full Text: DOI
Apelblat, Alexander; González-Santander, Juan Luis Differentiation of integral Mittag-Leffler and integral wright functions with respect to parameters. (English) Zbl 1511.33012 Fract. Calc. Appl. Anal. 26, No. 2, 567-598 (2023). MSC: 33E12 33B15 33C20 PDF BibTeX XML Cite \textit{A. Apelblat} and \textit{J. L. González-Santander}, Fract. Calc. Appl. Anal. 26, No. 2, 567--598 (2023; Zbl 1511.33012) Full Text: DOI
Moulay Hachemi, Rahma Yasmina; Øksendal, Bernt The fractional stochastic heat equation driven by time-space white noise. (English) Zbl 1511.35371 Fract. Calc. Appl. Anal. 26, No. 2, 513-532 (2023). MSC: 35R11 35R60 35K05 60H15 60H40 26A33 PDF BibTeX XML Cite \textit{R. Y. Moulay Hachemi} and \textit{B. Øksendal}, Fract. Calc. Appl. Anal. 26, No. 2, 513--532 (2023; Zbl 1511.35371) Full Text: DOI
Suthar, D. L.; Kumar, Dinesh; Habenom, Haile Solutions of fractional kinetic equation associated with the generalized multiindex Bessel function via Laplace transform. (English) Zbl 07682724 Differ. Equ. Dyn. Syst. 31, No. 2, 357-370 (2023). MSC: 33E12 44A10 44A20 PDF BibTeX XML Cite \textit{D. L. Suthar} et al., Differ. Equ. Dyn. Syst. 31, No. 2, 357--370 (2023; Zbl 07682724) Full Text: DOI
Rogosin, Sergei; Dubatovskaya, Maryna Multi-parametric Le Roy function. (English) Zbl 1509.33025 Fract. Calc. Appl. Anal. 26, No. 1, 54-69 (2023). MSC: 33E20 26A33 34A08 33E12 44A15 PDF BibTeX XML Cite \textit{S. Rogosin} and \textit{M. Dubatovskaya}, Fract. Calc. Appl. Anal. 26, No. 1, 54--69 (2023; Zbl 1509.33025) Full Text: DOI
Paneva-Konovska, Jordanka Prabhakar function of Le Roy type: a set of results in the complex plane. (English) Zbl 1509.33024 Fract. Calc. Appl. Anal. 26, No. 1, 32-53 (2023). MSC: 33E20 26A33 30D20 41A58 33E12 PDF BibTeX XML Cite \textit{J. Paneva-Konovska}, Fract. Calc. Appl. Anal. 26, No. 1, 32--53 (2023; Zbl 1509.33024) Full Text: DOI
Salem, Néjib Ben Space-time fractional diffusion equation associated with Jacobi expansions. (English) Zbl 1512.35631 Appl. Anal. 102, No. 2, 468-484 (2023). MSC: 35R11 26A33 33C45 33E12 35R03 43A62 47D06 PDF BibTeX XML Cite \textit{N. B. Salem}, Appl. Anal. 102, No. 2, 468--484 (2023; Zbl 1512.35631) Full Text: DOI
Meftah, Badreddine; Foukrach, Djamal Some new Gronwall-Bellman-Bihari type integral inequality associated with \(\psi\)-Hilfer fractional derivative. (English) Zbl 1514.26009 Analysis, München 43, No. 2, 117-127 (2023). MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{B. Meftah} and \textit{D. Foukrach}, Analysis, München 43, No. 2, 117--127 (2023; Zbl 1514.26009) Full Text: DOI
Farid, Ghulam; Bibi, Sidra; Rathour, Laxmi; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan Fractional versions of Hadamard inequalities for strongly \((s,m)\)-convex functions via Caputo fractional derivatives. (English) Zbl 07680670 Korean J. Math. 31, No. 1, 75-94 (2023). MSC: 26D15 26A33 33E12 26A51 PDF BibTeX XML Cite \textit{G. Farid} et al., Korean J. Math. 31, No. 1, 75--94 (2023; Zbl 07680670) Full Text: DOI
Nguyen, Thi Thu Huong; Nguyen, Nhu Thang; Tran, Minh Nguyet Global fractional Halanay inequalities approach to finite-time stability of nonlinear fractional order delay systems. (English) Zbl 1520.34073 J. Math. Anal. Appl. 525, No. 1, Article ID 127145, 16 p. (2023). Reviewer: Vladimir Răsvan (Craiova) MSC: 34K37 34K20 34K30 33E12 93D40 PDF BibTeX XML Cite \textit{T. T. H. Nguyen} et al., J. Math. Anal. Appl. 525, No. 1, Article ID 127145, 16 p. (2023; Zbl 1520.34073) Full Text: DOI
Abilassan, A.; Restrepo, J. E.; Suragan, D. On a variant of multivariate Mittag-Leffler’s function arising in the Laplace transform method. (English) Zbl 1512.33019 Integral Transforms Spec. Funct. 34, No. 3, 244-260 (2023). Reviewer: Sergei V. Rogosin (Minsk) MSC: 33E12 26A33 34A08 44A10 PDF BibTeX XML Cite \textit{A. Abilassan} et al., Integral Transforms Spec. Funct. 34, No. 3, 244--260 (2023; Zbl 1512.33019) Full Text: DOI
Saha, Shital; Kayal, Suchandan Extended fractional cumulative past and paired \(\phi\)-entropy measures. (English) Zbl 07662568 Physica A 614, Article ID 128552, 21 p. (2023). MSC: 82-XX 94A17 60E15 62B10 PDF BibTeX XML Cite \textit{S. Saha} and \textit{S. Kayal}, Physica A 614, Article ID 128552, 21 p. (2023; Zbl 07662568) Full Text: DOI arXiv
Gerhold, Stefan; Simon, Thomas A converse to the neo-classical inequality with an application to the Mittag-Leffler function. (English) Zbl 07661582 Monatsh. Math. 200, No. 3, 627-645 (2023). MSC: 33E12 26D15 60G52 PDF BibTeX XML Cite \textit{S. Gerhold} and \textit{T. Simon}, Monatsh. Math. 200, No. 3, 627--645 (2023; Zbl 07661582) Full Text: DOI arXiv
Al-Salti, Nasser; Karimov, Erkinjon; Kerbal, Sebti A boundary problem for the time-fractional Hallaire-Luikov moisture transfer equation with Hilfer derivative. (English) Zbl 1509.35336 Comput. Appl. Math. 42, No. 2, Paper No. 94, 10 p. (2023). MSC: 35R11 35C10 42A20 PDF BibTeX XML Cite \textit{N. Al-Salti} et al., Comput. Appl. Math. 42, No. 2, Paper No. 94, 10 p. (2023; Zbl 1509.35336) Full Text: DOI
Alharthi, Nadiyah Hussain; Atangana, Abdon; Alkahtani, Badr S. Analysis of Cauchy problem with fractal-fractional differential operators. (English) Zbl 07658567 Demonstr. Math. 56, Article ID 20220181, 15 p. (2023). MSC: 34A12 34A08 34A45 26A33 26D10 65L05 33E12 PDF BibTeX XML Cite \textit{N. H. Alharthi} et al., Demonstr. Math. 56, Article ID 20220181, 15 p. (2023; Zbl 07658567) Full Text: DOI
Luo, Hui-Ping; Liu, Song Relative controllability of nonlinear switched fractional delayed systems. (English) Zbl 1508.93039 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107133, 11 p. (2023). MSC: 93B05 93C30 93C10 93C43 34K50 PDF BibTeX XML Cite \textit{H.-P. Luo} and \textit{S. Liu}, Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107133, 11 p. (2023; Zbl 1508.93039) Full Text: DOI
Duhé, Jean-François; Victor, Stéphane; Melchior, Pierre; Abdelmounen, Youssef; Roubertie, François Fractional derivative truncation approximation for real-time applications. (English) Zbl 07656602 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107096, 20 p. (2023). MSC: 26A33 93B30 PDF BibTeX XML Cite \textit{J.-F. Duhé} et al., Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107096, 20 p. (2023; Zbl 07656602) Full Text: DOI
Srivastava, H. M.; Şeker, Bilal; Eker, Sevtap Sümer; Çekiç, Bilal A class of Poisson distributions based upon a two-parameter Mittag-Leffler type function. (English) Zbl 1507.60033 J. Nonlinear Convex Anal. 24, No. 2, 475-485 (2023). MSC: 60E05 30C80 33C80 33C20 33E12 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., J. Nonlinear Convex Anal. 24, No. 2, 475--485 (2023; Zbl 1507.60033) Full Text: Link
Raghavan, Divya; Gómez-Aguilar, J. F.; Sukavanam, N. Analytical approach of Hilfer fractional order differential equations using iterative Laplace transform method. (English) Zbl 1516.34019 J. Math. Chem. 61, No. 1, 219-241 (2023). Reviewer: Syed Abbas (Mandi) MSC: 34A08 44A10 33E12 34A45 PDF BibTeX XML Cite \textit{D. Raghavan} et al., J. Math. Chem. 61, No. 1, 219--241 (2023; Zbl 1516.34019) Full Text: DOI
Teodoro, C.; Bautista, O.; Méndez, F.; Arcos, J. Mixed electroosmotic/pressure-driven flow for a generalized Phan-Thien-Tanner fluid in a microchannel with nonlinear Navier slip at the wall. (English) Zbl 1506.76214 Eur. J. Mech., B, Fluids 97, 70-77 (2023). MSC: 76W05 76A10 PDF BibTeX XML Cite \textit{C. Teodoro} et al., Eur. J. Mech., B, Fluids 97, 70--77 (2023; Zbl 1506.76214) Full Text: DOI
Chen, Churong Discrete Caputo delta fractional economic cobweb models. (English) Zbl 1505.39018 Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 8, 15 p. (2023). MSC: 39A60 39A13 39A70 39A30 PDF BibTeX XML Cite \textit{C. Chen}, Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 8, 15 p. (2023; Zbl 1505.39018) Full Text: DOI
Nagar, Harish; Mishra, Shristi Composition of pathway fractional integral operator on product of special functions. (English) Zbl 07710123 J. Ramanujan Soc. Math. Math. Sci. 10, No. 1, 39-46 (2022). MSC: 33C20 33C65 PDF BibTeX XML Cite \textit{H. Nagar} and \textit{S. Mishra}, J. Ramanujan Soc. Math. Math. Sci. 10, No. 1, 39--46 (2022; Zbl 07710123) Full Text: DOI Link
Hakkar, N.; Lavanya, M.; Debbouche, A.; Vadivoo, B. S. Nonlinear fractional order neutral-type stochastic integro-differential system with Rosenblatt process – a controllability exploration. (English) Zbl 1516.34119 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, Spec. Iss., 68-83 (2022). MSC: 34K50 34K40 60H15 93B05 PDF BibTeX XML Cite \textit{N. Hakkar} et al., Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, 68--83 (2022; Zbl 1516.34119) Full Text: DOI
Gehlot, Kuldeep Singh; Bhandari, Anjana; Prajapati, Jyotindra C. Fractional integral and differentiation of the \(j\)-generalized \(p\)-\(k\) Mittag-Leffler function. (Fractional integral and differentiation of the j-generalized p-k Mittag-Leffer function.) (English) Zbl 07690122 Gaṇita 72, No. 1, 49-55 (2022). MSC: 33E12 26A33 33B10 PDF BibTeX XML Cite \textit{K. S. Gehlot} et al., Gaṇita 72, No. 1, 49--55 (2022; Zbl 07690122) Full Text: Link
Toshtemirov, Bakhodirjon On solvability of the non-local problem for the fractional mixed-type equation with Bessel operator. (English) Zbl 07689800 Fract. Differ. Calc. 12, No. 1, 63-76 (2022). MSC: 35M12 35R11 PDF BibTeX XML Cite \textit{B. Toshtemirov}, Fract. Differ. Calc. 12, No. 1, 63--76 (2022; Zbl 07689800) Full Text: DOI arXiv
Mehrez, K.; Bansal, D. Geometric properties of normalized Le Roy-type Mittag-Leffler functions. (English) Zbl 07668445 J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 6, 344-357 (2022) and Izv. Nats. Akad. Nauk Armen., Mat. 57, No. 6, 32-48 (2022). MSC: 33E12 30C45 PDF BibTeX XML Cite \textit{K. Mehrez} and \textit{D. Bansal}, J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 6, 344--357 (2022; Zbl 07668445) Full Text: DOI
Akram, Muhammad; Ihsan, Tayyaba; Allahviranloo, Tofigh; Al-Shamiri, Mohammed M. Ali Analysis on determining the solution of fourth-order fuzzy initial value problem with Laplace operator. (English) Zbl 1516.34006 Math. Biosci. Eng. 19, No. 12, 11868-11902 (2022). MSC: 34A07 34A08 34A12 33E12 44A10 PDF BibTeX XML Cite \textit{M. Akram} et al., Math. Biosci. Eng. 19, No. 12, 11868--11902 (2022; Zbl 1516.34006) Full Text: DOI
Masaeva, Olesya Khazhismelovna Solution of the boundary problem for the generalized Laplace equation with a fractional derivative. (Russian. English summary) Zbl 07667792 Vestn. KRAUNTS, Fiz.-Mat. Nauki 40, No. 3, 53-63 (2022). MSC: 35L05 PDF BibTeX XML Cite \textit{O. K. Masaeva}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 40, No. 3, 53--63 (2022; Zbl 07667792) Full Text: DOI MNR
Bokhari, Ahmed; Baleanu, Dumitru; Belgacem, Rachid Regularized Prabhakar derivative for partial differential equations. (English) Zbl 07665251 Comput. Methods Differ. Equ. 10, No. 3, 726-737 (2022). MSC: 35R11 26A33 65R10 33E12 PDF BibTeX XML Cite \textit{A. Bokhari} et al., Comput. Methods Differ. Equ. 10, No. 3, 726--737 (2022; Zbl 07665251) Full Text: DOI
Ali, Musharraf; Ghayasuddin, Mohd; Paris, R. B. Generalized beta-type integrals. (English) Zbl 07659988 Indian J. Math. 64, No. 1, 133-145 (2022). MSC: 33B15 33C20 33C65 33E12 PDF BibTeX XML Cite \textit{M. Ali} et al., Indian J. Math. 64, No. 1, 133--145 (2022; Zbl 07659988) Full Text: arXiv
Ilolov, M. I. Fractional linear Volterra integro-differential equations in Banach spaces. (English. Russian original) Zbl 1510.45002 J. Math. Sci., New York 268, No. 1, 56-62 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 173, 58-64 (2019). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45D05 45K05 45N05 26A33 47G20 PDF BibTeX XML Cite \textit{M. I. Ilolov}, J. Math. Sci., New York 268, No. 1, 56--62 (2022; Zbl 1510.45002); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 173, 58--64 (2019) Full Text: DOI
Biswas, Swapan; Das, Shantanu; Ghosh, Uttam Time fractional telegraph equation and its solution by Laplace transform method. (English) Zbl 1515.26008 Asian-Eur. J. Math. 15, No. 7, Article ID 2250137, 11 p. (2022). MSC: 26A33 33E20 33C45 PDF BibTeX XML Cite \textit{S. Biswas} et al., Asian-Eur. J. Math. 15, No. 7, Article ID 2250137, 11 p. (2022; Zbl 1515.26008) Full Text: DOI
Porwal, S.; Magesh, N. Mapping properties of an integral operator associated with Mittag-Leffler function. (English) Zbl 07648829 Acta Univ. Apulensis, Math. Inform. 70, 1-6 (2022). MSC: 30C45 PDF BibTeX XML Cite \textit{S. Porwal} and \textit{N. Magesh}, Acta Univ. Apulensis, Math. Inform. 70, 1--6 (2022; Zbl 07648829)
Mohammed, Pshtiwan Othman; Kürt, Cemaliye; Abdeljawad, Thabet Bivariate discrete Mittag-Leffler functions with associated discrete fractional operators. (English) Zbl 1508.39015 Chaos Solitons Fractals 165, Part 2, Article ID 112848, 7 p. (2022). MSC: 39A70 26A33 33E12 PDF BibTeX XML Cite \textit{P. O. Mohammed} et al., Chaos Solitons Fractals 165, Part 2, Article ID 112848, 7 p. (2022; Zbl 1508.39015) Full Text: DOI
Akram, Muhammad; Muhammad, Ghulam; Allahviranloo, Tofigh; Pedrycz, Witold Solution of initial-value problem for linear third-order fuzzy differential equations. (English) Zbl 1513.34008 Comput. Appl. Math. 41, No. 8, Paper No. 398, 31 p. (2022). MSC: 34A07 34A08 03E72 33E12 34A12 34A30 44A10 PDF BibTeX XML Cite \textit{M. Akram} et al., Comput. Appl. Math. 41, No. 8, Paper No. 398, 31 p. (2022; Zbl 1513.34008) Full Text: DOI
Eker, Sevtap Sümer; Ece, Sadettin Geometric properties of normalized Rabotnov function. (English) Zbl 1513.33049 Hacet. J. Math. Stat. 51, No. 5, 1248-1259 (2022). MSC: 33E12 30C45 30C55 33E20 PDF BibTeX XML Cite \textit{S. S. Eker} and \textit{S. Ece}, Hacet. J. Math. Stat. 51, No. 5, 1248--1259 (2022; Zbl 1513.33049) Full Text: DOI
Mehrez, Khaled; Das, Sourav On some geometric properties of the Le Roy-type Mittag-Leffler function. (English) Zbl 1513.33053 Hacet. J. Math. Stat. 51, No. 4, 1085-1103 (2022). MSC: 33E12 30C45 PDF BibTeX XML Cite \textit{K. Mehrez} and \textit{S. Das}, Hacet. J. Math. Stat. 51, No. 4, 1085--1103 (2022; Zbl 1513.33053) Full Text: DOI
Omaba, M. Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals. (English) Zbl 07644464 Carpathian Math. Publ. 14, No. 2, 475-484 (2022). MSC: 26D15 26A33 PDF BibTeX XML Cite \textit{M. Omaba}, Carpathian Math. Publ. 14, No. 2, 475--484 (2022; Zbl 07644464) Full Text: DOI
Bohner, Martin; Jonnalagadda, Jagan Mohan Discrete fractional cobweb models. (English) Zbl 1506.39014 Chaos Solitons Fractals 162, Article ID 112451, 5 p. (2022). MSC: 39A60 26A33 91B62 PDF BibTeX XML Cite \textit{M. Bohner} and \textit{J. M. Jonnalagadda}, Chaos Solitons Fractals 162, Article ID 112451, 5 p. (2022; Zbl 1506.39014) Full Text: DOI
Saenko, V. V. Integral representation of the Mittag-Leffler function. (English. Russian original) Zbl 07640133 Russ. Math. 66, No. 4, 43-58 (2022); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 4, 49-66 (2022). MSC: 33-XX 30Bxx 33Exx PDF BibTeX XML Cite \textit{V. V. Saenko}, Russ. Math. 66, No. 4, 43--58 (2022; Zbl 07640133); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 4, 49--66 (2022) Full Text: DOI arXiv
Paris, Richard Asymptotics of the Mittag-Leffler function \(E_a(z)\) on the negative real axis when \(a \rightarrow 1\). (English) Zbl 1503.30092 Fract. Calc. Appl. Anal. 25, No. 2, 735-746 (2022). MSC: 30E15 30E20 33E20 33E12 PDF BibTeX XML Cite \textit{R. Paris}, Fract. Calc. Appl. Anal. 25, No. 2, 735--746 (2022; Zbl 1503.30092) Full Text: DOI
Chen, Le; Hu, Guannan Hölder regularity for the nonlinear stochastic time-fractional slow & fast diffusion equations on \({\mathbb{R}}^d\). (English) Zbl 1503.60080 Fract. Calc. Appl. Anal. 25, No. 2, 608-629 (2022). MSC: 60H15 60G60 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{L. Chen} and \textit{G. Hu}, Fract. Calc. Appl. Anal. 25, No. 2, 608--629 (2022; Zbl 1503.60080) Full Text: DOI
Bender, Christian; Butko, Yana A. Stochastic solutions of generalized time-fractional evolution equations. (English) Zbl 1503.45005 Fract. Calc. Appl. Anal. 25, No. 2, 488-519 (2022). MSC: 45J05 45R05 60H20 26A33 33E12 60G22 60G65 33C65 PDF BibTeX XML Cite \textit{C. Bender} and \textit{Y. A. Butko}, Fract. Calc. Appl. Anal. 25, No. 2, 488--519 (2022; Zbl 1503.45005) Full Text: DOI arXiv
Liang, Yingjie; Yu, Yue; Magin, Richard L. Computation of the inverse Mittag-Leffler function and its application to modeling ultraslow dynamics. (English) Zbl 1503.33017 Fract. Calc. Appl. Anal. 25, No. 2, 439-452 (2022). MSC: 33E12 26A33 33F05 65D20 PDF BibTeX XML Cite \textit{Y. Liang} et al., Fract. Calc. Appl. Anal. 25, No. 2, 439--452 (2022; Zbl 1503.33017) Full Text: DOI
Fečkan, Michal; Pospíšil, Michal; Danca, Marius-F.; Wang, JinRong Caputo delta weakly fractional difference equations. (English) Zbl 1503.39004 Fract. Calc. Appl. Anal. 25, No. 6, 2222-2240 (2022). MSC: 39A13 26A33 26D20 33E12 PDF BibTeX XML Cite \textit{M. Fečkan} et al., Fract. Calc. Appl. Anal. 25, No. 6, 2222--2240 (2022; Zbl 1503.39004) Full Text: DOI
Sin, Chung-Sik; Rim, Jin-U; Choe, Hyon-Sok Initial-boundary value problems for multi-term time-fractional wave equations. (English) Zbl 1503.35275 Fract. Calc. Appl. Anal. 25, No. 5, 1994-2019 (2022). MSC: 35R11 33E12 35B30 35B40 35C10 35D30 45K05 26A33 PDF BibTeX XML Cite \textit{C.-S. Sin} et al., Fract. Calc. Appl. Anal. 25, No. 5, 1994--2019 (2022; Zbl 1503.35275) Full Text: DOI
Liu, Li; Dong, Qixiang; Li, Gang Exact solutions of fractional oscillation systems with pure delay. (English) Zbl 1503.34145 Fract. Calc. Appl. Anal. 25, No. 4, 1688-1712 (2022). MSC: 34K37 34K11 26A33 33E12 44A10 PDF BibTeX XML Cite \textit{L. Liu} et al., Fract. Calc. Appl. Anal. 25, No. 4, 1688--1712 (2022; Zbl 1503.34145) Full Text: DOI
Tomovski, Živorad; Metzler, Ralf; Gerhold, Stefan Fractional characteristic functions, and a fractional calculus approach for moments of random variables. (English) Zbl 1503.26013 Fract. Calc. Appl. Anal. 25, No. 4, 1307-1323 (2022). MSC: 26A33 60E10 33E12 44A10 44A20 PDF BibTeX XML Cite \textit{Ž. Tomovski} et al., Fract. Calc. Appl. Anal. 25, No. 4, 1307--1323 (2022; Zbl 1503.26013) Full Text: DOI
Abed-Elhameed, Tarek M.; Aboelenen, Tarek Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems. (English) Zbl 07636096 Adv. Contin. Discrete Models 2022, Paper No. 50, 16 p. (2022). MSC: 26A33 33E12 37C75 37D45 PDF BibTeX XML Cite \textit{T. M. Abed-Elhameed} and \textit{T. Aboelenen}, Adv. Contin. Discrete Models 2022, Paper No. 50, 16 p. (2022; Zbl 07636096) Full Text: DOI
Mulyava, O. M. Elementary remarks to the relative growth of series by the system of Mittag-Leffler functions. (English) Zbl 1513.30018 Bukovyn. Mat. Zh. 10, No. 1, 33-40 (2022). MSC: 30B50 30D10 30D20 PDF BibTeX XML Cite \textit{O. M. Mulyava}, Bukovyn. Mat. Zh. 10, No. 1, 33--40 (2022; Zbl 1513.30018) Full Text: DOI
Echi, Nadhem Global Mittag-Leffler output feedback stabilization for nonlinear fractional-order system with known growth rate. (English) Zbl 1505.93185 Rocky Mt. J. Math. 52, No. 5, 1575-1585 (2022). Reviewer: Savin Treanta (Bucureşti) MSC: 93D15 93D30 93C10 26A33 PDF BibTeX XML Cite \textit{N. Echi}, Rocky Mt. J. Math. 52, No. 5, 1575--1585 (2022; Zbl 1505.93185) Full Text: DOI Link
Aceto, Lidia; Durastante, Fabio Efficient computation of the Wright function and its applications to fractional diffusion-wave equations. (English) Zbl 1508.65014 ESAIM, Math. Model. Numer. Anal. 56, No. 6, 2181-2196 (2022). MSC: 65D20 65D30 44A10 26A33 33E12 PDF BibTeX XML Cite \textit{L. Aceto} and \textit{F. Durastante}, ESAIM, Math. Model. Numer. Anal. 56, No. 6, 2181--2196 (2022; Zbl 1508.65014) Full Text: DOI arXiv
Gavrilyuk, I. P.; Makarov, V. L. Approximations of the Mittag-Leffler operator function with exponential accuracy and their applications to solving evolutionary equations with fractional time derivative. (English) Zbl 1511.34005 Ukr. Math. J. 74, No. 5, 709-725 (2022) and Ukr. Mat. Zh. 74, No. 5, 620-634 (2022). Reviewer: Ismail Huseynov (Mersin) MSC: 34A08 34G10 33E12 34A25 41A30 PDF BibTeX XML Cite \textit{I. P. Gavrilyuk} and \textit{V. L. Makarov}, Ukr. Math. J. 74, No. 5, 709--725 (2022; Zbl 1511.34005) Full Text: DOI
Tunç, Cemil; Tunç, Osman; Yao, Jen-Chih On the new qualitative results in integro-differential equations with Caputo fractional derivative and multiple kernels and delays. (English) Zbl 1499.34296 J. Nonlinear Convex Anal. 23, No. 11, 2577-2591 (2022). MSC: 34D05 34K20 45J05 PDF BibTeX XML Cite \textit{C. Tunç} et al., J. Nonlinear Convex Anal. 23, No. 11, 2577--2591 (2022; Zbl 1499.34296) Full Text: Link