Barthel, Tobias; Stapleton, Nathaniel Transfer ideals and torsion in the Morava \(E\)-theory of abelian groups. (English) Zbl 07217904 J. Homotopy Relat. Struct. 15, No. 2, 369-375 (2020). MSC: 55N22 55P42 55S25 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, J. Homotopy Relat. Struct. 15, No. 2, 369--375 (2020; Zbl 07217904) Full Text: DOI
Peterson, Eric Coalgebraic formal curve spectra and spectral jet spaces. (English) Zbl 07197530 Geom. Topol. 24, No. 1, 1-47 (2020). MSC: 55N22 55P20 55P60 PDF BibTeX XML Cite \textit{E. Peterson}, Geom. Topol. 24, No. 1, 1--47 (2020; Zbl 07197530) Full Text: DOI
Zhu, Yifei Norm coherence for descent of level structures on formal deformations. (English) Zbl 07195678 J. Pure Appl. Algebra 224, No. 10, Article ID 106382, 34 p. (2020). MSC: 55P43 55S25 11S31 14L05 55N20 55N22 55N34 55S12 PDF BibTeX XML Cite \textit{Y. Zhu}, J. Pure Appl. Algebra 224, No. 10, Article ID 106382, 34 p. (2020; Zbl 07195678) Full Text: DOI
Zhu, Yifei The Hecke algebra action and the Rezk logarithm on Morava E-theory of height 2. (English) Zbl 1439.55019 Trans. Am. Math. Soc. 373, No. 5, 3733-3764 (2020). Reviewer: Do Ngoc Diep (Hanoi) MSC: 55S25 PDF BibTeX XML Cite \textit{Y. Zhu}, Trans. Am. Math. Soc. 373, No. 5, 3733--3764 (2020; Zbl 1439.55019) Full Text: DOI
Khorami, Mehdi Higher chromatic analogues of twisted \(K\)-theory. (English) Zbl 1434.55001 Tbil. Math. J. 12, No. 2, 153-162 (2019). Reviewer: Do Ngoc Diep (Hanoi) MSC: 55N20 19L50 PDF BibTeX XML Cite \textit{M. Khorami}, Tbil. Math. J. 12, No. 2, 153--162 (2019; Zbl 1434.55001) Full Text: DOI Euclid
Beaudry, Agnès; Downey, Naiche; McCranie, Connor; Meszar, Luke; Riddle, Andy; Rock, Peter Computations of orbits for the Lubin-Tate ring. (English) Zbl 07107647 J. Homotopy Relat. Struct. 14, No. 3, 691-718 (2019). Reviewer: James D. Quigley (Ithaca) MSC: 55P42 PDF BibTeX XML Cite \textit{A. Beaudry} et al., J. Homotopy Relat. Struct. 14, No. 3, 691--718 (2019; Zbl 07107647) Full Text: DOI
Stapleton, Nathaniel A canonical lift of Frobenius in Morava \(E\)-theory. (English) Zbl 1417.55008 Homology Homotopy Appl. 21, No. 1, 341-350 (2019). Reviewer: Daniel Juan Pineda (Michoacan) MSC: 55N20 55S12 PDF BibTeX XML Cite \textit{N. Stapleton}, Homology Homotopy Appl. 21, No. 1, 341--350 (2018; Zbl 1417.55008) Full Text: DOI arXiv
Barthel, Tobias; Stapleton, Nathaniel Excellent rings in transchromatic homotopy theory. (English) Zbl 1387.55008 Homology Homotopy Appl. 20, No. 1, 209-218 (2018). Reviewer: Lennart Meier (Bonn) MSC: 55N20 13F40 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Homology Homotopy Appl. 20, No. 1, 209--218 (2018; Zbl 1387.55008) Full Text: DOI arXiv
Torii, Takeshi Comparison of power operations in Morava \(E\)-theories. (English) Zbl 1395.55009 Homology Homotopy Appl. 19, No. 1, 59-87 (2017). Reviewer: Martin Frankland (Regina) MSC: 55N22 55S25 PDF BibTeX XML Cite \textit{T. Torii}, Homology Homotopy Appl. 19, No. 1, 59--87 (2017; Zbl 1395.55009) Full Text: DOI
Barthel, Tobias; Stapleton, Nathaniel Brown-Peterson cohomology from Morava \(E\)-theory. (English) Zbl 1373.55002 Compos. Math. 153, No. 4, 780-819 (2017). Reviewer: Rui Miguel Saramago (Porto Salvo) MSC: 55N20 55N22 55R40 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Compos. Math. 153, No. 4, 780--819 (2017; Zbl 1373.55002) Full Text: DOI arXiv
Barthel, Tobias; Stapleton, Nathaniel The character of the total power operation. (English) Zbl 1360.55004 Geom. Topol. 21, No. 1, 385-440 (2017). Reviewer: Do Ngoc Diep (Hanoi) MSC: 55N22 55S25 55P42 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Geom. Topol. 21, No. 1, 385--440 (2017; Zbl 1360.55004) Full Text: DOI arXiv
Barthel, Tobias; Stapleton, Nathaniel Centralizers in good groups are good. (English) Zbl 1365.55001 Algebr. Geom. Topol. 16, No. 3, 1453-1472 (2016). Reviewer: Donald M. Larson (Altoona) MSC: 55N20 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Algebr. Geom. Topol. 16, No. 3, 1453--1472 (2016; Zbl 1365.55001) Full Text: DOI arXiv
Barthel, Tobias; Heard, Drew The \(E_{2}\)-term of the \(K(n)\)-local \(E_{n}\)-Adams spectral sequence. (English) Zbl 1348.55008 Topology Appl. 206, 190-214 (2016). Reviewer: Lennart Meier (Bonn) MSC: 55P60 55Q10 13J10 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{D. Heard}, Topology Appl. 206, 190--214 (2016; Zbl 1348.55008) Full Text: DOI arXiv
Schlank, Tomer M.; Stapleton, Nathaniel A transchromatic proof of Strickland’s theorem. (English) Zbl 1373.55004 Adv. Math. 285, 1415-1447 (2015). MSC: 55N20 20C15 55N91 55P35 PDF BibTeX XML Cite \textit{T. M. Schlank} and \textit{N. Stapleton}, Adv. Math. 285, 1415--1447 (2015; Zbl 1373.55004) Full Text: DOI arXiv
Barthel, Tobias; Frankland, Martin Completed power operations for Morava \(E\)-theory. (English) Zbl 1326.55018 Algebr. Geom. Topol. 15, No. 4, 2065-2131 (2015). Reviewer: Haruo Minami (Nara) MSC: 55S25 55S12 13B35 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{M. Frankland}, Algebr. Geom. Topol. 15, No. 4, 2065--2131 (2015; Zbl 1326.55018) Full Text: DOI arXiv
Stapleton, Nathaniel Subgroups of \(p\)-divisible groups and centralizers in symmetric groups. (English) Zbl 1333.55004 Trans. Am. Math. Soc. 367, No. 5, 3733-3757 (2015). Reviewer: Julie Bergner (Riverside) MSC: 55N20 55N22 14L05 PDF BibTeX XML Cite \textit{N. Stapleton}, Trans. Am. Math. Soc. 367, No. 5, 3733--3757 (2015; Zbl 1333.55004) Full Text: DOI arXiv
Stapleton, Nathaniel Transchromatic twisted character maps. (English) Zbl 1318.55011 J. Homotopy Relat. Struct. 10, No. 1, 29-61 (2015). Reviewer: Steffen Sagave (Bonn) MSC: 55P42 55N91 55P48 PDF BibTeX XML Cite \textit{N. Stapleton}, J. Homotopy Relat. Struct. 10, No. 1, 29--61 (2015; Zbl 1318.55011) Full Text: DOI arXiv
Zhu, Yifei The power operation structure on Morava \(E\)-theory of height 2 at the prime 3. (English) Zbl 1310.55011 Algebr. Geom. Topol. 14, No. 2, 953-977 (2014). Reviewer: Julie Bergner (Riverside) MSC: 55S12 55N20 55N34 PDF BibTeX XML Cite \textit{Y. Zhu}, Algebr. Geom. Topol. 14, No. 2, 953--977 (2014; Zbl 1310.55011) Full Text: DOI Link arXiv
Stapleton, Nathaniel Transchromatic generalized character maps. (English) Zbl 1300.55011 Algebr. Geom. Topol. 13, No. 1, 171-203 (2013). Reviewer: Michael Joachim (Münster) MSC: 55N91 55N20 55N22 PDF BibTeX XML Cite \textit{N. Stapleton}, Algebr. Geom. Topol. 13, No. 1, 171--203 (2013; Zbl 1300.55011) Full Text: DOI arXiv
Rezk, Charles Modular isogeny complexes. (English) Zbl 1254.14030 Algebr. Geom. Topol. 12, No. 3, 1373-1403 (2012). Reviewer: Piotr Krasoń (Szczecin) MSC: 14H10 55N34 55S25 PDF BibTeX XML Cite \textit{C. Rezk}, Algebr. Geom. Topol. 12, No. 3, 1373--1403 (2012; Zbl 1254.14030) Full Text: DOI arXiv
Torii, Takeshi \(K(n)\)-localization of the \(K(n + 1)\)-local \(E_{n+1}\)-Adams spectral sequences. (English) Zbl 1227.55017 Pac. J. Math. 250, No. 2, 439-471 (2011). Reviewer: Daniel G. Davis (Lafayette) MSC: 55T25 55P42 55Q51 55N22 55N20 PDF BibTeX XML Cite \textit{T. Torii}, Pac. J. Math. 250, No. 2, 439--471 (2011; Zbl 1227.55017) Full Text: DOI Link
Torii, Takeshi Comparison of Morava \(E\)-theories. (English) Zbl 1203.55004 Math. Z. 266, No. 4, 933-951 (2010). Reviewer: Jean Claude Thomas (Angers) MSC: 55N22 55N20 55S05 PDF BibTeX XML Cite \textit{T. Torii}, Math. Z. 266, No. 4, 933--951 (2010; Zbl 1203.55004) Full Text: DOI arXiv
Behrens, Mark; Davis, Daniel G. The homotopy fixed point spectra of profinite Galois extensions. (English) Zbl 1204.55007 Trans. Am. Math. Soc. 362, No. 9, 4983-5042 (2010). Reviewer: Haruo Minami (Nara) MSC: 55P43 55P91 55Q51 PDF BibTeX XML Cite \textit{M. Behrens} and \textit{D. G. Davis}, Trans. Am. Math. Soc. 362, No. 9, 4983--5042 (2010; Zbl 1204.55007) Full Text: DOI arXiv
Rezk, Charles The congruence criterion for power operations in Morava \(E\)-theory. (English) Zbl 1193.55010 Homology Homotopy Appl. 11, No. 2, 327-379 (2009). Reviewer: Martin D. Crossley (Swansea) MSC: 55S25 55S12 14L05 PDF BibTeX XML Cite \textit{C. Rezk}, Homology Homotopy Appl. 11, No. 2, 327--379 (2009; Zbl 1193.55010) Full Text: DOI Link arXiv
Hovey, Mark Morava \(E\)-theory of filtered colimits. (English) Zbl 1128.55005 Trans. Am. Math. Soc. 360, No. 1, 369-382 (2008). Reviewer: Andrew Baker (Glasgow) MSC: 55N22 55P42 55T25 18G10 18G40 PDF BibTeX XML Cite \textit{M. Hovey}, Trans. Am. Math. Soc. 360, No. 1, 369--382 (2008; Zbl 1128.55005) Full Text: DOI
Rezk, Charles The units of a ring spectrum and a logarithmic cohomology operation. (English) Zbl 1106.55002 J. Am. Math. Soc. 19, No. 4, 969-1014 (2006). Reviewer: Keith Johnson (Halifax) (MR2219307) MSC: 55N22 55P43 55S05 55S25 55P47 55P60 55N34 11F25 PDF BibTeX XML Cite \textit{C. Rezk}, J. Am. Math. Soc. 19, No. 4, 969--1014 (2006; Zbl 1106.55002) Full Text: DOI arXiv
Hovey, Mark Operations and co-operations in Morava \(E\)-theory. (English) Zbl 1063.55003 Homology Homotopy Appl. 6, No. 1, 201-236 (2004). Reviewer: Yuli Rudyak (Gainesville) MSC: 55N22 55P42 55P60 55S25 57T05 PDF BibTeX XML Cite \textit{M. Hovey}, Homology Homotopy Appl. 6, No. 1, 201--236 (2004; Zbl 1063.55003) Full Text: DOI EMIS EuDML
Green, D. J.; Hunton, J. R.; Schuster, B. Chromatic characteristic classes in ordinary group cohomology. (English) Zbl 1031.55011 Topology 42, No. 1, 243-263 (2003). Reviewer: Michael Joachim (Münster) MSC: 55R40 16W30 20J06 55N20 55P47 PDF BibTeX XML Cite \textit{D. J. Green} et al., Topology 42, No. 1, 243--263 (2003; Zbl 1031.55011) Full Text: DOI arXiv
Torii, Takeshi The geometric fixed point spectrum of \((\mathbb{Z}/p)^k\) Borel cohomology for \(E_n\) and its completion. (English) Zbl 1008.55004 Davis, Donald M. (ed.) et al., Recent progress in homotopy theory. Proceedings of a conference, Baltimore, MD, USA, March 17-27, 2000. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 293, 343-369 (2002). Reviewer: Keith Johnson (Halifax / Nova Scotia) MSC: 55N22 14L05 55N91 55P43 PDF BibTeX XML Cite \textit{T. Torii}, Contemp. Math. 293, 343--369 (2002; Zbl 1008.55004)