Sow, El Hadji Points of low degrees on the Tsuzuki-Yamauchi smooth curve. (English) Zbl 07940128 JP J. Geom. Topol. 30, No. 1, 63-67 (2024). MSC: 14L40 14H40 14C20 × Cite Format Result Cite Review PDF Full Text: DOI
Shimada, Ichiro Mordell-Weil groups and automorphism groups of elliptic \(K3\) surfaces. (English) Zbl 07928005 Rev. Mat. Iberoam. 40, No. 4, 1469-1503 (2024). MSC: 14J28 14Q10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Diallo, Mohamadou Mor D.; Coly, Cherif M.; Fall, Moussa Algebraic points of given degree on the curve of affine equation: \({y^2 =x^5+6912}\). (English) Zbl 1546.14084 Seck, Diaraf (ed.) et al., Nonlinear analysis, geometry and applications. Proceedings of the third NLAGA-BIRS symposium, AIMS-Mbour, Senegal, August 21–27, 2023. Cham: Birkhäuser. Trends Math., 377-384 (2024). MSC: 14L40 14H40 14C20 × Cite Format Result Cite Review PDF Full Text: DOI
Coly, Cherif Mamina; Diallo, Mohamadou Mor Diogou; Fall, Moussa Quartic points on \(\mathcal{C}_2 (7)\). (English) Zbl 1546.14083 Seck, Diaraf (ed.) et al., Nonlinear analysis, geometry and applications. Proceedings of the third NLAGA-BIRS symposium, AIMS-Mbour, Senegal, August 21–27, 2023. Cham: Birkhäuser. Trends Math., 353-358 (2024). MSC: 14L40 14H40 14C20 × Cite Format Result Cite Review PDF Full Text: DOI
Prakash, Om; Chakraborty, Kalyan Generalized fruit Diophantine equation and hyperelliptic curves. (English) Zbl 07807395 Monatsh. Math. 203, No. 3, 667-676 (2024). Reviewer: Balasubramanian Sury (Bangalore) MSC: 11D41 11G30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Balde, Boubacar Sidy; Sall, Oumar Algebraic points on the curve of affine equation \(y^2 = x(x-3)(x-4)(x-6)(x-7)\). (English) Zbl 1538.14005 Afr. Mat. 35, No. 1, Paper No. 5, 9 p. (2024). MSC: 14H50 14H40 11D68 × Cite Format Result Cite Review PDF Full Text: DOI
Balde, Boubacar Sidy; Sall, Oumar Algebraic points of degree at most 3 on the affine equation curve \(\mathcal{C}_3(11):y^{11}=x^3(x-1)^3\). (Points algébriques de degré au plus 3 sur la courbe d’équation affine \(\mathcal{C}_3(11):y^{11}=x^3(x-1)^3\).) (French. English summary) Zbl 07869702 Afr. Math. Ann. (AFMA) 10, 183-188 (2023). MSC: 14H50 14H40 11D68 × Cite Format Result Cite Review PDF
Balde, Boubacar Sidy; Sall, Oumar Algebraic points of degree at most 4 on the affine equation curve \(y^2=x(x-3)(x-4)(x-6)(x-7)\). (Points algébriques de degré au plus 4 sur la courbe d’équation affine \(y^2=x(x-3)(x-4)(x-6)(x-7)\).) (French. English summary) Zbl 07869701 Afr. Math. Ann. (AFMA) 10, 175-182 (2023). MSC: 14H50 14H40 11D68 × Cite Format Result Cite Review PDF
Diallo, Mohamadou Mor Diogou; Fall, Moussa Parametrization of algebraic points of a family of Arnthjensen-Flynn hyperelliptic curves of a given degree. (English) Zbl 07835776 JP J. Algebra Number Theory Appl. 62, No. 1, 35-49 (2023). MSC: 14L40 14H40 14C20 × Cite Format Result Cite Review PDF Full Text: DOI
Diallo, Mohamadou Mor Diogou; Coly, Cherif Mamina; Sall, Oumar Algebraic points of the family of superelliptic curves of Tomasz Jdrzȩjak for a given degree. (English) Zbl 07835773 JP J. Geom. Topol. 29, No. 2, 167-172 (2023). MSC: 14L40 11D68 14C20 × Cite Format Result Cite Review PDF Full Text: DOI
Fall, Moussa; Camara, Moustapha; Sall, Oumar Algebraic points of degree at most 14 on the Fermat septic. (English) Zbl 1548.14102 J. Niger. Math. Soc. 42, No. 2, 96-110 (2023). MSC: 14H50 11D41 11G05 14C20 × Cite Format Result Cite Review PDF Full Text: Link
Li, Guilin; Cheng, Teng The Selmer groups of elliptic curves \(E_n: y^2=x^3+nx\). (English) Zbl 1542.11057 Bull. Belg. Math. Soc. - Simon Stevin 30, No. 3, 369-385 (2023). Reviewer: Maciej Ulas (Kraków) MSC: 11G05 11D25 × Cite Format Result Cite Review PDF Full Text: DOI Link
Elkies, Noam D.; Goel, Gaurav On powerful integers expressible as sums of two coprime fourth powers. (English) Zbl 1536.11086 Res. Number Theory 9, No. 4, Paper No. 78, 17 p. (2023). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G05 14H52 11D41 11G30 × Cite Format Result Cite Review PDF Full Text: DOI Backlinks: MO
Cullinan, John; Kaplan, Nathan The probability of non-isomorphic group structures of isogenous elliptic curves in finite field extensions. I. (English) Zbl 1532.11080 Res. Number Theory 9, No. 3, Paper No. 57, 31 p. (2023). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11G20 11G05 11G25 14H52 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Mok, Ngaiming; Ng, Sui-Chung Multiplicities of the Betti map associated to a section of an elliptic surface from a differential-geometric perspective. (English) Zbl 1531.11054 J. Geom. Anal. 33, No. 7, Paper No. 202, 30 p. (2023). Reviewer: Matthias Schütt (Hannover) MSC: 11G05 14J27 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Gong, Cheng; Gu, Yi Deformation of integral sections in the Mordell-Weil group. (English) Zbl 1508.14036 Arch. Math. 120, No. 4, 373-379 (2023). Reviewer: Piotr Pokora (Kraków) MSC: 14J27 × Cite Format Result Cite Review PDF Full Text: DOI
Sow, El Hadji; Fall, Moussa; Sall, Oumar Parametrization of algebraic points of low degrees on the Hindry-Silverman curve. (English) Zbl 1524.14050 J. Contemp. Appl. Math. 13, No. 1, 64-70 (2023). MSC: 14G05 14H40 14C20 × Cite Format Result Cite Review PDF Full Text: Link
Fall, Moussa; Diallo, Mouhamadou Mor Diogou; Coly, Cherif Mamina Algebraic points of any given degree on the affine curves \(y^2=x(x+2p)(x+4p)(x^2-8p^2)\). (English) Zbl 1518.14069 J. Contemp. Appl. Math. 13, No. 1, 11-23 (2023). MSC: 14L40 14H40 14C20 × Cite Format Result Cite Review PDF Full Text: Link
Bourdon, Abbey; Chaos, Holly Paige Torsion for CM elliptic curves defined over number fields of degree \(2p\). (English) Zbl 1515.11053 Proc. Am. Math. Soc. 151, No. 3, 1001-1015 (2023). Reviewer: Pascal Autissier (Bordeaux) MSC: 11G05 11G15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Yoo, Hwajong; Yu, Myungjun Bounds for 2-Selmer ranks in terms of seminarrow class groups. (English) Zbl 1523.11101 Pac. J. Math. 320, No. 1, 193-222 (2022). MSC: 11G05 11G07 11R29 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Cauchi, Antonio; Lei, Antonio On analogues of Mazur-Tate type conjectures in the Rankin-Selberg setting. (English) Zbl 1517.11136 Publ. Mat., Barc. 66, No. 2, 571-630 (2022). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11R23 11F11 11R20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Leterrier, Gauthier On the Mordell-Weil lattice of \(y^2=x^3+bx+t^{3^n+1}\) in characteristic 3. (English) Zbl 1495.11072 Res. Number Theory 8, No. 2, Paper No. 23, 20 p. (2022). Reviewer: Mohammad Sadek (New Cairo) MSC: 11G05 11M38 11T24 52C15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Mitankin, Vladimir; Salgado, Cecília Genus one fibrations and vertical Brauer elements on del Pezzo surfaces of degree 4. (English) Zbl 1482.14024 J. Number Theory 236, 463-478 (2022). MSC: 14G05 11G35 14F22 14J26 11D09 14D10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Sprung, Florian Ito Chromatic Selmer groups and arithmetic invariants of elliptic curves. (English. French summary) Zbl 1489.11098 J. Théor. Nombres Bordx. 33, No. 3, Part 2, 1103-1114 (2022). MSC: 11G40 11R23 14H52 × Cite Format Result Cite Review PDF Full Text: DOI
Rout, Sudhansu Sekhar; Juyal, Abhishek The Mordell-Weil bases for the elliptic curve \(y^2=x^3-m^2x+m^2\). (English) Zbl 07442479 Czech. Math. J. 71, No. 4, 1133-1147 (2021). Reviewer: Andrea Bandini (Pisa) MSC: 11G05 × Cite Format Result Cite Review PDF Full Text: DOI
Kleine, Sören Bounding the Iwasawa invariants of Selmer groups. (English) Zbl 1486.11133 Can. J. Math. 73, No. 5, 1390-1422 (2021). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11R23 11G05 11G10 13C12 × Cite Format Result Cite Review PDF Full Text: DOI
Autissier, Pascal; Hindry, Marc; Pazuki, Fabien Regulators of elliptic curves. (English) Zbl 1493.11093 Int. Math. Res. Not. 2021, No. 7, 4976-4993 (2021). Reviewer: Matteo Longo (Padova) MSC: 11G05 11G50 14H52 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Wawrów, Wojciech On torsion of superelliptic Jacobians. (English. French summary) Zbl 1475.14054 J. Théor. Nombres Bordx. 33, No. 1, 223-235 (2021). MSC: 14H40 14G10 14H45 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Coates, John; Li, Yongxiong Non-vanishing theorems for central \(L\)-values of some elliptic curves with complex multiplication. (English) Zbl 1487.11059 Proc. Lond. Math. Soc. (3) 121, No. 6, 1531-1578 (2020). Reviewer: Matteo Longo (Padova) MSC: 11G15 11G05 11G40 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Coly, Chérif Mamina; Sall, Oumar Algebraic points of degree at most 3 on the curve with affine equation \(y^{11}=x^2(x-1)^2\). (Points algébriques de degré au-plus 3 sur la courbe d’équation affine \(y^{11}=x^2(x-1)^2\).) (French. English summary) Zbl 1458.11103 Afr. Math. Ann. (AFMA) 8, 47-52 (2020). MSC: 11G30 14G25 14H25 14G05 × Cite Format Result Cite Review PDF
Coly, Chérif Mamina; Sall, Oumar Algebraic points of degree at most 2 on the affine curve \(y^{11} = x^2 (x - 1)^2\). (English) Zbl 1460.14058 Seck, Diaraf (ed.) et al., Nonlinear analysis, geometry and applications. Proceedings of the first biennial international research symposium, NLAGA-BIRS, Dakar, Senegal, June 24–28, 2019. Cham: Birkhäuser. Trends Math., 459-462 (2020). MSC: 14G25 14H25 11G30 × Cite Format Result Cite Review PDF Full Text: DOI
Berger, Lisa; Hall, Chris; Pannekoek, René; Park, Jennifer; Pries, Rachel; Sharif, Shahed; Silverberg, Alice; Ulmer, Douglas Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields. (English) Zbl 1465.11002 Memoirs of the American Mathematical Society 1295. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4219-4/pbk; 978-1-4704-6253-6/ebook). v, 131 p. (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 11-02 11G05 11G40 11G30 14H05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Griffon, Richard; Ulmer, Douglas On the arithmetic of a family of twisted constant elliptic curves. (English) Zbl 1458.11093 Pac. J. Math. 305, No. 2, 597-640 (2020). Reviewer: Ernst-Ulrich Gekeler (Saarbrücken) MSC: 11G05 14J27 11G40 11G99 14G10 14G99 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Saïdi, Mohamed; Tamagawa, Akio On the arithmetic of abelian varieties. (English) Zbl 1465.11152 J. Reine Angew. Math. 762, 1-33 (2020). Reviewer: Noriko Yui (Kingston) MSC: 11G10 14K15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Ohshita, Tatsuya Asymptotic lower bound of class numbers along a Galois representation. (English) Zbl 1454.11200 J. Number Theory 211, 95-112 (2020). Reviewer: Piotr Krasoń (Szczecin) MSC: 11R29 11G05 11G10 11R23 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Lee, Jaehoon Structure of the Mordell-Weil group over the \(\mathbb{Z}_p\)-extensions. (English) Zbl 1471.11269 Trans. Am. Math. Soc. 373, No. 4, 2399-2425 (2020). MSC: 11R23 11G05 11R18 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Laface, Antonio; Tironi, Andrea L.; Ugaglia, Luca Del Pezzo elliptic varieties of degree \(d\leq 4\). (English) Zbl 1436.14017 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 19, No. 3, 1085-1110 (2019). Reviewer: Roberto Munoz (Madrid) MSC: 14C20 14Q15 14E05 14N25 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Bannai, Shinzo; Tokunaga, Hiro-o; Yamamoto, Momoko A note on the topology of arrangements for a smooth plane quartic and its bitangent lines. (English) Zbl 1423.14227 Hiroshima Math. J. 49, No. 2, 289-302 (2019). MSC: 14J27 14H30 14H50 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid
Hindry, Marc; Salgado, Cecília Lower bounds for the rank of families of abelian varieties under base change. (English) Zbl 1441.11144 Acta Arith. 189, No. 3, 263-282 (2019). MSC: 11G05 11G10 11G30 14D10 14H40 14K15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Virdol, Cristian Cyclic components of quotients of abelian varieties mod \(p\). (English) Zbl 1444.11128 J. Number Theory 197, 135-144 (2019). MSC: 11G10 11G15 × Cite Format Result Cite Review PDF Full Text: DOI
Im, Bo-Hae; Kim, Byoung Du Ranks of rational points of the Jacobian varieties of hyperelliptic curves. (English) Zbl 1458.11098 J. Number Theory 195, 23-50 (2019). MSC: 11G10 11R23 14G05 14G25 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ota, Kazuto On the Mazur-Tate refined conjecture of BSD type. (Japanese. English summary) Zbl 1423.11117 RIMS Kôkyûroku Bessatsu B72, 119-133 (2018). MSC: 11G40 11G05 11R34 × Cite Format Result Cite Review PDF
Kwon, Jung Won; Park, Hwasin On the elliptic curves with infinite rational points. (English) Zbl 1423.14215 JP J. Algebra Number Theory Appl. 40, No. 5, 843-854 (2018). Reviewer: Roberto Dvornicich (Pisa) MSC: 14H52 × Cite Format Result Cite Review PDF Full Text: DOI
Fujita, Yasutsugu; Nara, Tadahisa The Mordell-Weil bases for the elliptic curve of the form \(y^2 = x^3-m^2x + n^2\). (English) Zbl 1413.11081 Publ. Math. Debr. 92, No. 1-2, 79-99 (2018). MSC: 11G05 11D59 11G50 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Bogomolov, Fedor; Halle, Lars Halvard; Pazuki, Fabien; Tanimoto, Sho Abelian Calabi-Yau threefolds: Néron models and rational points. (English) Zbl 1404.14048 Math. Res. Lett. 25, No. 2, 367-392 (2018). Reviewer: Fabrizio Anella (Roma) MSC: 14J32 14J30 14G05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Banaszak, Grzegorz; Blinkiewicz, Dorota Commensurability in Mordell-Weil groups of abelian varieties and tori. (English) Zbl 1491.11060 Funct. Approximatio, Comment. Math. 58, No. 2, 145-156 (2018). MSC: 11G10 14K15 × Cite Format Result Cite Review PDF Full Text: DOI Euclid
Mazur, Barry; Rubin, Karl [Larsen, Michael] Diophantine stability. (English) Zbl 1491.14036 Am. J. Math. 140, No. 3, 571-616 (2018). Reviewer: Michel Waldschmidt (Paris) MSC: 14G05 11G05 14H25 14K05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kimura, Yusuke F-theory models on \(K3\) surfaces with various Mordell-Weil ranks – constructions that use quadratic base change of rational elliptic surfaces. (English) Zbl 1391.83112 J. High Energy Phys. 2018, No. 5, Paper No. 48, 25 p. (2018). MSC: 83E30 22E10 53Z05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Burns, David; Macias Castillo, Daniel; Wuthrich, Christian On Mordell-Weil groups and congruences between derivatives of twisted Hasse-Weil \(L\)-functions. (English) Zbl 1381.11051 J. Reine Angew. Math. 734, 187-228 (2018). Reviewer: Andreas Nickel (Essen) MSC: 11G40 11G10 11R23 14K15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Bannai, Shinzo; Tokunaga, Hiro-o Geometry of bisections of elliptic surfaces and Zariski \(N\)-plets. II. (English) Zbl 1388.14111 Topology Appl. 231, 10-25 (2017). Reviewer: David McKinnon (Waterloo) MSC: 14J27 14E20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kopp, Gene S. The arithmetic geometry of resonant Rossby wave triads. (English) Zbl 1374.14021 SIAM J. Appl. Algebra Geom. 1, No. 1, 352-373 (2017). MSC: 14G05 11D41 76B65 86A10 11D45 11G05 11G35 14M20 35Q35 14G40 14J27 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Cullinan, John Real preimages of duplication on elliptic curves. (English) Zbl 1411.11046 Missouri J. Math. Sci. 29, No. 1, 19-26 (2017). MSC: 11G05 × Cite Format Result Cite Review PDF Full Text: Euclid
Kloosterman, Remke Mordell-Weil lattices and toric decompositions of plane curves. (English) Zbl 1370.14031 Math. Ann. 367, No. 1-2, 755-783 (2017). Reviewer: Alexandru Dimca (Nice) MSC: 14H50 14H20 14H30 14H40 14J27 14J30 14J70 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ulmer, Douglas Rational curves on elliptic surfaces. (English) Zbl 1357.14051 J. Algebr. Geom. 26, No. 2, 357-377 (2017). Reviewer: Remke Kloosterman (Padova) MSC: 14J27 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Daghigh, H.; Didari, S. Complete characterization of the Mordell-Weil group of some families of elliptic curves. (English) Zbl 1373.11046 Bull. Iran. Math. Soc. 42, No. 3, 585-594 (2016). MSC: 11G05 14H52 × Cite Format Result Cite Review PDF Full Text: Link
Hida, Haruzo Control of \(\Lambda \)-adic Mordell-Weil groups. (English) Zbl 1410.11089 Loeffler, David (ed.) et al., Elliptic curves, modular forms and Iwasawa theory. In honour of John H. Coates’ 70th birthday, Cambridge, UK, March 2015. Proceedings of the conference and the workshop. Cham: Springer. Springer Proc. Math. Stat. 188, 253-294 (2016). MSC: 11G40 11G18 11F33 × Cite Format Result Cite Review PDF Full Text: DOI
Byeon, Dongho; Jeong, Keunyoung Infinitely many elliptic curves of rank exactly two. (English) Zbl 1350.11064 Proc. Japan Acad., Ser. A 92, No. 5, 64-66 (2016). MSC: 11G05 11G40 × Cite Format Result Cite Review PDF Full Text: DOI Euclid
Bhargava, Manjul; Ho, Wei Coregular spaces and genus one curves. (English) Zbl 1342.14074 Camb. J. Math. 4, No. 1, 1-119 (2016). Reviewer: Michel Waldschmidt (Paris) MSC: 14H60 11E12 11E20 11E76 11G05 11R45 14H52 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Howe, Everett W. Optimal quotients and surjections of Mordell-Weil groups. (English) Zbl 1417.11113 J. Number Theory 166, 85-92 (2016). MSC: 11G10 11G05 11G30 11G35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Hausen, Jürgen; Laface, Antonio; Tironi, Andrea Luigi; Ugaglia, Luca On cubic elliptic varieties. (English) Zbl 1332.14012 Trans. Am. Math. Soc. 368, No. 1, 689-708 (2016). Reviewer: Gerhard Pfister (Kaiserslautern) MSC: 14C20 14E05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Xue, Hang A quadratic point on the Jacobian of the universal genus four curve. (English) Zbl 1419.14043 Math. Res. Lett. 22, No. 5, 1563-1571 (2015). Reviewer: Amos Turchet (Seattle) MSC: 14H40 14H45 14G05 × Cite Format Result Cite Review PDF Full Text: DOI
Hida, Haruzo Limit Mordell-Weil groups and their \(p\)-adic closure. (English) Zbl 1339.11054 Doc. Math. Extra Vol., Alexander S. Merkurjev’s Sixtieth Birthday, 221-264 (2015). Reviewer: Michel Waldschmidt (Paris) MSC: 11F25 11F32 11D45 11G05 11G10 11G18 14H40 × Cite Format Result Cite Review PDF Full Text: EMIS
Daghigh, Hassan; Didari, Somayeh On the elliptic curves of the form \(y^2 = x^3 - pqx\). (English) Zbl 1395.11087 Iran. J. Math. Sci. Inform. 10, No. 2, 77-86 (2015). MSC: 11G05 14H52 × Cite Format Result Cite Review PDF Full Text: Link
Mikić, Miljen; Najman, Filip On the number of \(n\)-isogenies of elliptic curves over number fields. (English) Zbl 1395.11092 Glas. Mat., III. Ser. 50, No. 2, 333-348 (2015). MSC: 11G05 11G18 11R16 14G25 × Cite Format Result Cite Review PDF Full Text: DOI Link Link
Mikić, Miljen On the Mordell-Weil group of elliptic curves induced by families of Diophantine triples. (English) Zbl 1333.11052 Rocky Mt. J. Math. 45, No. 5, 1565-1589 (2015). Reviewer: Michael Th. Rassias (Princeton) MSC: 11G05 × Cite Format Result Cite Review PDF Full Text: DOI Euclid
Bannai, Shinzo; Tokunaga, Hiro-o Geometry of bisections of elliptic surfaces and Zariski \(N\)-plets for conic arrangements. (English) Zbl 1327.14177 Geom. Dedicata 178, 219-237 (2015). MSC: 14J27 14E20 × Cite Format Result Cite Review PDF Full Text: DOI
Rzonsowski, Piotr Linear relations and arithmetic on abelian schemes. (English) Zbl 1395.11095 Funct. Approximatio, Comment. Math. 52, No. 1, 83-107 (2015). MSC: 11G10 14G05 14L15 14K15 × Cite Format Result Cite Review PDF Full Text: DOI Euclid
Andreescu, Titu; Andrica, Dorin [Mihăilescu, Preda] Quadratic Diophantine equations. With a foreword by Preda Mihăilescu. (English) Zbl 1376.11001 Developments in Mathematics 40. New York, NY: Springer (ISBN 978-0-387-35156-8/hbk; 978-0-387-54109-9/ebook). xviii, 211 p. (2015). Reviewer: Mowaffaq Hajja (Amman) MSC: 11-02 11D09 11J70 × Cite Format Result Cite Review PDF Full Text: DOI
Daghigh, H.; Didari, S. On the elliptic curves of the form \(y^2=x^3-3px\). (English) Zbl 1364.11104 Bull. Iran. Math. Soc. 40, No. 5, 1119-1133 (2014). MSC: 11G05 14H52 × Cite Format Result Cite Review PDF Full Text: Link
Nara, Tadahisa Lower bounds of the canonical height on quadratic twists of elliptic curves. (English) Zbl 1322.11059 Rocky Mt. J. Math. 44, No. 6, 2009-2027 (2014). Reviewer: Andrej Dujella (Zagreb) MSC: 11G05 11G50 11G07 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid
Fujita, Yasutsugu Generators for congruent number curves of ranks at least two and three. (English) Zbl 1316.11043 J. Ramanujan Math. Soc. 29, No. 3, 307-319 (2014). Reviewer: Andrej Dujella (Zagreb) MSC: 11G05 × Cite Format Result Cite Review PDF
Kim, Sungjin Average behaviors of invariant factors in Mordell-Weil groups of CM elliptic curves modulo \(p\). (English) Zbl 1296.11064 Finite Fields Appl. 30, 178-190 (2014). MSC: 11G05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Moehlmann, G. Computation of Mordell-Weil bases for ordinary elliptic curves in characteristic two. (English) Zbl 1296.11065 LMS J. Comput. Math. 17A, Spec. Iss., 1-13 (2014). MSC: 11G05 11G07 14G25 14G17 × Cite Format Result Cite Review PDF Full Text: DOI
Karayayla, Tolga Automorphism groups of rational elliptic surfaces with section and constant \(J\)-map. (English) Zbl 1298.14044 Cent. Eur. J. Math. 12, No. 12, 1772-1795 (2014). Reviewer: Paola Comparin (Poitiers) MSC: 14J50 14J27 14J26 × Cite Format Result Cite Review PDF Full Text: DOI
Tokunaga, Hiro-O Sections of elliptic surfaces and Zariski pairs for conic-line arrangements via dihedral covers. (English) Zbl 1300.14018 J. Math. Soc. Japan 66, No. 2, 613-640 (2014). Reviewer: Hisanori Ohashi (Yamazaki) MSC: 14E20 14J27 14J26 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid
Izadi, F. A.; Khoshnam, F.; Nabardi, K. Sums of two biquadrates and elliptic curves of rank \(\geq 4\). (English) Zbl 1294.11089 Math. J. Okayama Univ. 56, 51-63 (2014). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11G05 11E25 × Cite Format Result Cite Review PDF Full Text: arXiv
Creutz, Brendan Explicit descent in the Picard group of a cyclic cover of the projective line. (English) Zbl 1345.11036 Howe, Everett W. (ed.) et al., ANTS X. Proceedings of the tenth algorithmic number theory symposium, San Diego, CA, USA, July 9–13, 2012. Berkeley, CA: Mathematical Sciences Publishers (MSP) (ISBN 978-1-935107-00-2/hbk; 978-1-935107-01-9/ebook). The Open Book Series 1, 295-315 (2013). MSC: 11G10 14C22 14E20 11Y50 × Cite Format Result Cite Review PDF Full Text: arXiv
Bruin, Nils Success and challenges in determining the rational points on curves. (English) Zbl 1344.11048 Howe, Everett W. (ed.) et al., ANTS X. Proceedings of the tenth algorithmic number theory symposium, San Diego, CA, USA, July 9–13, 2012. Berkeley, CA: Mathematical Sciences Publishers (MSP) (ISBN 978-1-935107-00-2/hbk; 978-1-935107-01-9/ebook). The Open Book Series 1, 187-212 (2013). MSC: 11G30 11D45 14H45 11G10 × Cite Format Result Cite Review PDF
Nara, Tadahisa Mordell-Weil group of the twist family of elliptic curves and related topics. (Japanese. English summary) Zbl 1318.11077 RIMS Kôkyûroku Bessatsu B44, 141-149 (2013). MSC: 11G05 11G50 × Cite Format Result Cite Review PDF
Bhargava, Manjul; Gross, Benedict H. The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point. (English) Zbl 1303.11072 Prasad, D. (ed.) et al., Automorphic representations and \(L\)-functions. Proceedings of the international colloquium, Mumbai, India, January 3–11, 2012. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research (ISBN 978-93-80250-49-6/hbk). Studies in Mathematics. Tata Institute of Fundamental Research 22, 23-91 (2013). MSC: 11G30 11G05 14H55 14H40 × Cite Format Result Cite Review PDF Full Text: arXiv
Li, Xiumei On the Selmer groups and Mordell-Weil groups of elliptic curves \(y^2 = x(x \pm p)(x \pm q)\) over imaginary quadratic number fields of class number one. (English) Zbl 1299.11046 Adv. Math., Beijing 42, No. 3, 302-314 (2013). MSC: 11G05 14H52 × Cite Format Result Cite Review PDF Full Text: arXiv
Kitagawa, Shinya Extremal hyperelliptic fibrations on rational surfaces. (English) Zbl 1312.14089 Saitama Math. J. 30, 1-14 (2013). MSC: 14J26 14D06 × Cite Format Result Cite Review PDF Full Text: arXiv
Bartel, Alex; de Smit, Bart Index formulae for integral Galois modules. (English) Zbl 1290.11152 J. Lond. Math. Soc., II. Ser. 88, No. 3, 845-859 (2013). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11R33 20C10 11R70 11G05 19A22 19F27 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Hall, Chris; Perucca, Antonella Characterizing abelian varieties by the reduction of the Mordell-Weil group. (English) Zbl 1288.11059 Pac. J. Math. 265, No. 2, 427-440 (2013). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11G05 11G10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Libgober, Anatoly On Mordell-Weil groups of isotrivial abelian varieties over function fields. (English) Zbl 1283.14017 Math. Ann. 357, No. 2, 605-629 (2013). Reviewer: Fumio Hazama (Hatoyama) MSC: 14K22 14H30 11G10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kumar, Abhinav; Shioda, Tetsuji Multiplicative excellent families of elliptic surfaces of type \(E_7\) or \(E_8\). (English) Zbl 1281.14030 Algebra Number Theory 7, No. 7, 1613-1641 (2013). Reviewer: Paola Comparin (Poitiers) MSC: 14J27 11G05 12F10 13A50 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kloosterman, Remke Cuspidal plane curves, syzygies and a bound on the MW-rank. (English) Zbl 1281.14024 J. Algebra 375, 216-234 (2013). Reviewer: Alexandru Dimca (Nice) MSC: 14H30 13D02 14H50 14J30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Bannai, Shinzo Relative dihedral group actions on rational elliptic surfaces. (English) Zbl 1314.14068 Kyushu J. Math. 67, No. 1, 1-16 (2013). Reviewer: Matthias Schütt (Hannover) MSC: 14J27 14E07 × Cite Format Result Cite Review PDF Full Text: DOI
Naskrȩcki, Bartosz Mordell-Weil ranks of families of elliptic curves associated to Pythagorean triples. (English) Zbl 1279.14040 Acta Arith. 160, No. 2, 159-183 (2013). Reviewer: Andrea Bandini (Parma) MSC: 14H52 11G05 11D25 11D45 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Jossen, Peter Detecting linear dependence on an abelian variety via reduction maps. (English) Zbl 1303.11069 Comment. Math. Helv. 88, No. 2, 323-352 (2013). Reviewer: Remke Kloosterman (Berlin) MSC: 11G10 11G05 14K15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Im, Bo-Hae; Larsen, Michael Infinite rank of elliptic curves over \(\mathbb{Q}^{\mathrm{ab}}\). (English) Zbl 1272.11077 Acta Arith. 158, No. 1, 49-59 (2013). Reviewer: Fumio Hazama (Hatoyama) MSC: 11G05 14H52 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ito, Hiroyuki; Liedtke, Christian Elliptic \(K3\) surfaces with \(p^{n}\)-torsion sections. (English) Zbl 1258.14042 J. Algebr. Geom. 22, No. 1, 105-139 (2013). Reviewer: Noriko Yui (Kingston) MSC: 14J28 14J17 14F22 11G35 11G50 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ulmer, Douglas On Mordell-Weil groups of Jacobians over function fields. (English) Zbl 1318.14025 J. Inst. Math. Jussieu 12, No. 1, 1-29 (2013). Reviewer: Herbert Lange (Erlangen) MSC: 14G05 11G40 11G05 11G10 11G30 14G10 14G25 14K15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Tokunaga, Hiro-o A note on quadratic residue curves on rational ruled surfaces. (English) Zbl 1325.14028 Nakamura, Hiroaki (ed.) et al., Galois-Teichmüller theory and arithmetic geometry. Selected papers based on the presentations at the workshop and conference, Kyoto, Japan, October 25–30, 2010. Tokyo: Mathematical Society of Japan (ISBN 978-4-86497-014-3/hbk). Advanced Studies in Pure Mathematics 63, 565-577 (2012). MSC: 14E20 14H30 14H50 14J26 × Cite Format Result Cite Review PDF
Astaneh-Asl, Ali A note on the independence of Heegner points. (English) Zbl 1294.11085 Ann. Sci. Math. Qué. 36, No. 1, 11-16 (2012). MSC: 11G05 × Cite Format Result Cite Review PDF
Gross, Benedict H. Hanoi lectures on the arithmetic of hyperelliptic curves. (English) Zbl 1294.11107 Acta Math. Vietnam. 37, No. 4, 579-588 (2012). Reviewer: Andrew Obus (Charlottesville) MSC: 11G30 14H25 × Cite Format Result Cite Review PDF Full Text: Link
Berger, Lisa Elliptic curves with bounded ranks in function field towers. (English) Zbl 1271.14040 Acta Arith. 156, No. 4, 301-323 (2012). Reviewer: Roberto Dvornicich (Pisa) MSC: 14H52 14G05 11C08 14K15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Libgober, Anatoly On combinatorial invariance of the cohomology of the Milnor fiber of arrangements and the Catalan equation over function fields. (English) Zbl 1260.14035 Terao, Hiroaki (ed.) et al., Arrangements of hyperplanes. Proceedings of the 2nd Mathematical Society of Japan-Seasonal Institute, MSJ-SI, Sapporo, Japan, August 1–13, 2009. Tokyo: Mathematical Society of Japan (ISBN 978-4-931469-67-9/hbk). Advanced Studies in Pure Mathematics 62, 175-187 (2012). Reviewer: Andras Nemethi (Budapest) MSC: 14H30 32S22 52B20 11F23 × Cite Format Result Cite Review PDF Full Text: arXiv
Hulek, Klaus; Schütt, Matthias Arithmetic of singular Enriques surfaces. (English) Zbl 1248.14043 Algebra Number Theory 6, No. 2, 195-230 (2012). Reviewer: Noriko Yui (Kingston) MSC: 14J28 11E16 11G15 11G35 14J27 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Tadić, Petra On the family of elliptic curves \(Y^{2}=X^{3}-T^{2}X+1\). (English) Zbl 1254.11057 Glas. Mat., III. Ser. 47, No. 1, 81-93 (2012). Reviewer: Fumio Hazama (Hatoyama) MSC: 11G05 14H52 × Cite Format Result Cite Review PDF Full Text: DOI