Gelbukh, Irina Realization of a graph as the Reeb graph of a Morse-Bott or a round function. (English) Zbl 07523929 Stud. Sci. Math. Hung. 59, No. 1, 1-16 (2022). MSC: 57M15 57R70 05Cxx 58-XX PDF BibTeX XML Cite \textit{I. Gelbukh}, Stud. Sci. Math. Hung. 59, No. 1, 1--16 (2022; Zbl 07523929) Full Text: DOI OpenURL
McCann, Brennan; Nazari, Morad Control and maintenance of fully-constrained and underconstrained rigid body motion on Lie groups and their tangent bundles. (English) Zbl 07512088 J. Geom. Mech. 14, No. 1, 29-55 (2022). MSC: 37-XX 93-XX PDF BibTeX XML Cite \textit{B. McCann} and \textit{M. Nazari}, J. Geom. Mech. 14, No. 1, 29--55 (2022; Zbl 07512088) Full Text: DOI OpenURL
Cufí-Cabré, Clara; Llibre, Jaume Periods of Morse-Smale diffeomorphisms on \(\mathbb{S}^n, \mathbb{S}^m \times \mathbb{S}^n, \mathbb{C}\mathbf{P}^n\) and \(\mathbb{H}\mathbf{P}^n\). (English) Zbl 07453464 J. Fixed Point Theory Appl. 24, No. 1, Paper No. 4, 12 p. (2022). MSC: 37C05 37C25 37C30 58B05 PDF BibTeX XML Cite \textit{C. Cufí-Cabré} and \textit{J. Llibre}, J. Fixed Point Theory Appl. 24, No. 1, Paper No. 4, 12 p. (2022; Zbl 07453464) Full Text: DOI arXiv OpenURL
Yagi, Jun The level sets of the chain length function derived from equilateral and equiangular 5-polygonal chains with simplicity. (English) Zbl 07523329 Nihonkai Math. J. 32, No. 1, 1-13 (2021). MSC: 55R80 57M50 92E10 58E05 52C99 PDF BibTeX XML Cite \textit{J. Yagi}, Nihonkai Math. J. 32, No. 1, 1--13 (2021; Zbl 07523329) Full Text: Link OpenURL
Gritsans, Armands; Yermachenko, Inara On the maximum number of period annuli for second order conservative equations. (English) Zbl 1483.34056 Math. Model. Anal. 26, No. 4, 612-630 (2021). MSC: 34C25 PDF BibTeX XML Cite \textit{A. Gritsans} and \textit{I. Yermachenko}, Math. Model. Anal. 26, No. 4, 612--630 (2021; Zbl 1483.34056) Full Text: DOI OpenURL
Li, Yao-Qiang Generalized Koch curves and Thue-Morse sequences. (English) Zbl 1483.11047 Fractals 29, No. 6, Article ID 2150130, 15 p. (2021). MSC: 11B85 11B83 28A75 28A80 PDF BibTeX XML Cite \textit{Y.-Q. Li}, Fractals 29, No. 6, Article ID 2150130, 15 p. (2021; Zbl 1483.11047) Full Text: DOI arXiv OpenURL
Pochinka, Olga V.; Zinina, Svetlana Kh. Construction of the Morse-Bott energy function for regular topological flows. (English) Zbl 07441635 Regul. Chaotic Dyn. 26, No. 4, 350-369 (2021). MSC: 37D05 37B15 37B20 37B35 PDF BibTeX XML Cite \textit{O. V. Pochinka} and \textit{S. Kh. Zinina}, Regul. Chaotic Dyn. 26, No. 4, 350--369 (2021; Zbl 07441635) Full Text: DOI OpenURL
Chang, Kung-Ching; Shao, Sihong; Zhang, Dong; Zhang, Weixi Lovász extension and graph cut. (English) Zbl 07440981 Commun. Math. Sci. 19, No. 3, 761-786 (2021). MSC: 90C35 05C85 58E05 90C27 PDF BibTeX XML Cite \textit{K.-C. Chang} et al., Commun. Math. Sci. 19, No. 3, 761--786 (2021; Zbl 07440981) Full Text: DOI arXiv OpenURL
Gelbukh, Irina A finite graph is homeomorphic to the Reeb graph of a Morse-Bott function. (English) Zbl 1478.58005 Math. Slovaca 71, No. 3, 757-772 (2021). MSC: 58C05 58K65 68U05 05C60 PDF BibTeX XML Cite \textit{I. Gelbukh}, Math. Slovaca 71, No. 3, 757--772 (2021; Zbl 1478.58005) Full Text: DOI OpenURL
Iwamoto, Ken-Ichi Non-singular extensions of Morse functions on disconnected surfaces. (English) Zbl 1479.57071 Kyushu J. Math. 75, No. 1, 23-40 (2021). Reviewer: Dahisy Lima (Santo André) MSC: 57R45 57R70 57M15 57K30 PDF BibTeX XML Cite \textit{K.-I. Iwamoto}, Kyushu J. Math. 75, No. 1, 23--40 (2021; Zbl 1479.57071) Full Text: DOI OpenURL
Pires, Leonardo; La Guardia, Giuliano G. A Lipschitz version of the \(\lambda\)-lemma and a characterization of homoclinic and heteroclinic orbits. (English) Zbl 07421284 Qual. Theory Dyn. Syst. 20, No. 3, Paper No. 82, 15 p. (2021). MSC: 37D15 37D10 37C29 PDF BibTeX XML Cite \textit{L. Pires} and \textit{G. G. La Guardia}, Qual. Theory Dyn. Syst. 20, No. 3, Paper No. 82, 15 p. (2021; Zbl 07421284) Full Text: DOI arXiv OpenURL
Kuznietsova, I. V.; Soroka, Yu. Yu. First Betti numbers of the orbits of Morse functions on surfaces. (English. Ukrainian original) Zbl 1479.57076 Ukr. Math. J. 73, No. 2, 203-229 (2021); translation from Ukr. Mat. Zh. 73, No. 2, 179-200 (2021). Reviewer: Dorin Andrica (Riyadh) MSC: 57S05 57R45 37C05 58E05 PDF BibTeX XML Cite \textit{I. V. Kuznietsova} and \textit{Yu. Yu. Soroka}, Ukr. Math. J. 73, No. 2, 203--229 (2021; Zbl 1479.57076); translation from Ukr. Mat. Zh. 73, No. 2, 179--200 (2021) Full Text: DOI arXiv OpenURL
Jiang, Xing-Wang; Sándor, Csaba; Yang, Quan-Hui A note on the lower bound of representation functions. (English) Zbl 07410932 Int. J. Number Theory 17, No. 10, 2243-2250 (2021). MSC: 11B34 11B83 PDF BibTeX XML Cite \textit{X.-W. Jiang} et al., Int. J. Number Theory 17, No. 10, 2243--2250 (2021; Zbl 07410932) Full Text: DOI arXiv OpenURL
Feshchenko, Bohdan Deformations of circle-valued Morse functions on 2-torus. (English) Zbl 1479.57051 Proc. Int. Geom. Cent. 14, No. 2, 117-136 (2021). Reviewer: Dorin Andrica (Riyadh) MSC: 57M05 57R70 58E05 58D05 57S05 57R45 37C05 PDF BibTeX XML Cite \textit{B. Feshchenko}, Proc. Int. Geom. Cent. 14, No. 2, 117--136 (2021; Zbl 1479.57051) Full Text: DOI arXiv OpenURL
Gelbukh, Irina Morse-Bott functions with two critical values on a surface. (English) Zbl 07396203 Czech. Math. J. 71, No. 3, 865-880 (2021). MSC: 58C05 57K20 05C38 PDF BibTeX XML Cite \textit{I. Gelbukh}, Czech. Math. J. 71, No. 3, 865--880 (2021; Zbl 07396203) Full Text: DOI OpenURL
Plachta, Leonid Configuration spaces of squares in a rectangle. (English) Zbl 1483.57031 Algebr. Geom. Topol. 21, No. 3, 1445-1478 (2021). Reviewer: Dorin Andrica (Riyadh) MSC: 57Q99 57R25 51M20 55R80 PDF BibTeX XML Cite \textit{L. Plachta}, Algebr. Geom. Topol. 21, No. 3, 1445--1478 (2021; Zbl 1483.57031) Full Text: DOI OpenURL
Li, Desheng; Jia, Mo On the Morse theory of attractors: a functional approach. (English) Zbl 1478.37079 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 212, Article ID 112466, 24 p. (2021). MSC: 37L30 35B41 37B25 37B35 PDF BibTeX XML Cite \textit{D. Li} and \textit{M. Jia}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 212, Article ID 112466, 24 p. (2021; Zbl 1478.37079) Full Text: DOI OpenURL
Skuratovskii, Ruslan V.; Williams, Aled Irreducible bases and subgroups of a wreath product in applying to diffeomorphism groups acting on the Möbius band. (English) Zbl 07383951 Rend. Circ. Mat. Palermo (2) 70, No. 2, 721-739 (2021). MSC: 20B27 20E08 20B22 20B35 20F65 20B07 PDF BibTeX XML Cite \textit{R. V. Skuratovskii} and \textit{A. Williams}, Rend. Circ. Mat. Palermo (2) 70, No. 2, 721--739 (2021; Zbl 07383951) Full Text: DOI arXiv OpenURL
Azroul, Elhoussine; Benkirane, Abdelmoujib; Srati, Mohammed Eigenvalue problem associated with nonhomogeneous integro-differential operators. (English) Zbl 1470.35248 J. Elliptic Parabol. Equ. 7, No. 1, 47-64 (2021). MSC: 35P30 35R11 35J25 35J61 46E30 58E05 PDF BibTeX XML Cite \textit{E. Azroul} et al., J. Elliptic Parabol. Equ. 7, No. 1, 47--64 (2021; Zbl 1470.35248) Full Text: DOI OpenURL
Lin, Xiaofang; Zeng, Caibin Morse decompositions of uniform random attractors. (English) Zbl 1476.37027 J. Differ. Equations 293, 23-47 (2021). MSC: 37B35 37H30 58E05 PDF BibTeX XML Cite \textit{X. Lin} and \textit{C. Zeng}, J. Differ. Equations 293, 23--47 (2021; Zbl 1476.37027) Full Text: DOI OpenURL
Lundberg, Erik; Ramachandran, Koushik A note on the critical points of the localization landscape. (English) Zbl 07370980 Complex Anal. Synerg. 7, No. 2, Paper No. 12, 10 p. (2021). MSC: 30D30 58E05 PDF BibTeX XML Cite \textit{E. Lundberg} and \textit{K. Ramachandran}, Complex Anal. Synerg. 7, No. 2, Paper No. 12, 10 p. (2021; Zbl 07370980) Full Text: DOI arXiv OpenURL
Yamamoto, T. Fold cobordism groups of Morse functions on surfaces with boundary. (English. Russian original) Zbl 1475.57045 J. Math. Sci., New York 255, No. 6, 805-824 (2021); translation from Probl. Mat. Anal. 110, 119-136 (2021). Reviewer: Dorin Andrica (Riyadh) MSC: 57R70 57R90 57R45 57R35 58K65 PDF BibTeX XML Cite \textit{T. Yamamoto}, J. Math. Sci., New York 255, No. 6, 805--824 (2021; Zbl 1475.57045); translation from Probl. Mat. Anal. 110, 119--136 (2021) Full Text: DOI OpenURL
Michalak, Łukasz Patryk Combinatorial modifications of Reeb graphs and the realization problem. (English) Zbl 1465.57099 Discrete Comput. Geom. 65, No. 4, 1038-1060 (2021). Reviewer: Irina Gelbukh (Ciudad de México) MSC: 57M15 05C76 05C38 68U10 57R70 PDF BibTeX XML Cite \textit{Ł. P. Michalak}, Discrete Comput. Geom. 65, No. 4, 1038--1060 (2021; Zbl 1465.57099) Full Text: DOI arXiv OpenURL
Lynch, Molly Relations in doubly laced crystal graphs via discrete Morse theory. (English) Zbl 1458.05265 J. Comb. 12, No. 1, 117-155 (2021). MSC: 05E18 57Q70 17B37 PDF BibTeX XML Cite \textit{M. Lynch}, J. Comb. 12, No. 1, 117--155 (2021; Zbl 1458.05265) Full Text: DOI arXiv OpenURL
Bownik, Marcin; Dziedziul, Karol; Kamont, Anna Smooth orthogonal projections on Riemannian manifold. (English) Zbl 1457.46036 Potential Anal. 54, No. 1, 41-94 (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 46E30 46E35 58C35 42C40 PDF BibTeX XML Cite \textit{M. Bownik} et al., Potential Anal. 54, No. 1, 41--94 (2021; Zbl 1457.46036) Full Text: DOI arXiv OpenURL
Medvedev, Timur V.; Pochinka, Olga V.; Zinina, Svetlana Kh. On existence of Morse energy function for topological flows. (English) Zbl 1461.37021 Adv. Math. 378, Article ID 107518, 16 p. (2021). Reviewer: Zdzisław Dzedzej (Gdańsk) MSC: 37B35 37B25 37B02 37B30 58E05 PDF BibTeX XML Cite \textit{T. V. Medvedev} et al., Adv. Math. 378, Article ID 107518, 16 p. (2021; Zbl 1461.37021) Full Text: DOI OpenURL
Lowry-Duda, David; Wheeler, Miles H. Perturbing the mean value theorem: implicit functions, the Morse lemma, and beyond. (English) Zbl 1456.26006 Am. Math. Mon. 128, No. 1, 50-61 (2021). Reviewer: Symon Serbenyuk (Kyïv) MSC: 26A24 26A06 26A15 PDF BibTeX XML Cite \textit{D. Lowry-Duda} and \textit{M. H. Wheeler}, Am. Math. Mon. 128, No. 1, 50--61 (2021; Zbl 1456.26006) Full Text: DOI OpenURL
Meshcheryakov, M. V. Classification of taut irreducible real linear representations of compact connected Lie groups. (English. Russian original) Zbl 07296446 St. Petersbg. Math. J. 32, No. 1, 31-38 (2021); translation from Algebra Anal. 32, No. 1, 40-50 (2020). MSC: 53C42 22E15 53C30 PDF BibTeX XML Cite \textit{M. V. Meshcheryakov}, St. Petersbg. Math. J. 32, No. 1, 31--38 (2021; Zbl 07296446); translation from Algebra Anal. 32, No. 1, 40--50 (2020) Full Text: DOI OpenURL
Jiang, Xing-Wang; Sándor, Csaba; Yang, Quan-Hui On the values of representation functions. II. (English) Zbl 1459.11032 J. Number Theory 218, 288-301 (2021). MSC: 11B34 11B83 PDF BibTeX XML Cite \textit{X.-W. Jiang} et al., J. Number Theory 218, 288--301 (2021; Zbl 1459.11032) Full Text: DOI arXiv OpenURL
Kurochkin, S. V. Absence of bottlenecks in a neural network determines its generic functional properties. (English. Russian original) Zbl 07424554 Dokl. Math. 101, No. 1, 62-65 (2020); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 490, 74-77 (2020). MSC: 68-XX 39-XX PDF BibTeX XML Cite \textit{S. V. Kurochkin}, Dokl. Math. 101, No. 1, 62--65 (2020; Zbl 07424554); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 490, 74--77 (2020) Full Text: DOI OpenURL
Adelstein, Ian M. An extension to the Morse energy gradient flow. (English) Zbl 1479.53043 Bourni, Theodora (ed.) et al., Mean curvature flow. Proceedings of the John H. Barrett memorial lectures, University of Tennessee, Knoxville, TN, USA, May 29 – June 1, 2018. Berlin: De Gruyter. De Gruyter Proc. Math., 67-70 (2020). MSC: 53C20 53C22 53E99 PDF BibTeX XML Cite \textit{I. M. Adelstein}, in: Mean curvature flow. Proceedings of the John H. Barrett memorial lectures, University of Tennessee, Knoxville, TN, USA, May 29 -- June 1, 2018. Berlin: De Gruyter. 67--70 (2020; Zbl 1479.53043) Full Text: DOI OpenURL
Maksymenko, Sergiy Deformations of functions on surfaces. (English) Zbl 07402542 Zb. Pr. Inst. Mat. NAN Ukr. 17, No. 2, 150-199 (2020). MSC: 57S05 57R70 57R45 20E22 58B05 PDF BibTeX XML Cite \textit{S. Maksymenko}, Zb. Pr. Inst. Mat. NAN Ukr. 17, No. 2, 150--199 (2020; Zbl 07402542) Full Text: arXiv OpenURL
Kuznietsova, Iryna; Maksymenko, Sergiy Reversing orientation homeomorphisms of surfaces. (English) Zbl 1473.57065 Proc. Int. Geom. Cent. 13, No. 4, 179-209 (2020). Reviewer: Dahisy Lima (Santo André) MSC: 57M60 57K20 57R70 PDF BibTeX XML Cite \textit{I. Kuznietsova} and \textit{S. Maksymenko}, Proc. Int. Geom. Cent. 13, No. 4, 179--209 (2020; Zbl 1473.57065) Full Text: DOI arXiv OpenURL
Su, Guang Xiang Complex valued Bismut-Lott index theorem. (English) Zbl 1475.58016 Acta Math. Sin., Engl. Ser. 36, No. 11, 1221-1231 (2020). Reviewer: Bo Liu (Bures-sur-Yvette) MSC: 58J20 58E05 PDF BibTeX XML Cite \textit{G. X. Su}, Acta Math. Sin., Engl. Ser. 36, No. 11, 1221--1231 (2020; Zbl 1475.58016) Full Text: DOI OpenURL
Avez, A. Differential calculus. Translated from the French by D. Edmunds. Reprint of the 1986 edition. (English) Zbl 1458.46001 Mineola, NY: Dover Publications (ISBN 978-0-486-84564-7/pbk). xii, 179 p. (2020). MSC: 46-01 46G05 34G20 49J27 34G10 26B10 46A32 58C20 58C15 01A75 PDF BibTeX XML Cite \textit{A. Avez}, Differential calculus. Translated from the French by D. Edmunds. Reprint of the 1986 edition. Mineola, NY: Dover Publications (2020; Zbl 1458.46001) OpenURL
Kravchenko, Anna; Maksymenko, Sergiy Automorphisms of cellular divisions of 2-sphere induced by functions with isolated critical points. (English) Zbl 1482.57024 J. Math. Phys. Anal. Geom. 16, No. 2, 138-160 (2020). Reviewer: Irina Gelbukh (Ciudad de México) MSC: 57M60 22F50 57R70 58E05 PDF BibTeX XML Cite \textit{A. Kravchenko} and \textit{S. Maksymenko}, J. Math. Phys. Anal. Geom. 16, No. 2, 138--160 (2020; Zbl 1482.57024) Full Text: DOI arXiv OpenURL
Lazarev, Oleg Simplifying Weinstein Morse functions. (English) Zbl 1461.57010 Geom. Topol. 24, No. 5, 2603-2646 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 57R17 53D37 53D40 57R80 PDF BibTeX XML Cite \textit{O. Lazarev}, Geom. Topol. 24, No. 5, 2603--2646 (2020; Zbl 1461.57010) Full Text: DOI arXiv OpenURL
Sharmin, V. G.; Sharmin, D. V. Studying global properties of a closed non-regular hypersurface with a bijective Gaussian mapping using the level function. (Russian. English summary) Zbl 1459.53011 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 12, No. 1, 37-43 (2020). MSC: 53A07 PDF BibTeX XML Cite \textit{V. G. Sharmin} and \textit{D. V. Sharmin}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 12, No. 1, 37--43 (2020; Zbl 1459.53011) Full Text: DOI MNR OpenURL
Maksymenko, Sergiy Deformations of functions on surfaces by isotopic to the identity diffeomorphisms. (English) Zbl 1468.57031 Topology Appl. 282, Article ID 107312, 48 p. (2020). Reviewer: Andrzej Szczepański (Gdańsk) MSC: 57S05 57R70 57R45 20E22 58B05 PDF BibTeX XML Cite \textit{S. Maksymenko}, Topology Appl. 282, Article ID 107312, 48 p. (2020; Zbl 1468.57031) Full Text: DOI arXiv OpenURL
Kravchenko, Anna; Feshchenko, Bohdan Automorphisms of Kronrod-Reeb graphs of Morse functions on 2-torus. (English) Zbl 1463.57010 Methods Funct. Anal. Topol. 26, No. 1, 88-96 (2020). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 57S05 57R45 37C05 PDF BibTeX XML Cite \textit{A. Kravchenko} and \textit{B. Feshchenko}, Methods Funct. Anal. Topol. 26, No. 1, 88--96 (2020; Zbl 1463.57010) Full Text: arXiv Link OpenURL
Macías-Virgós, Enrique; Pereira-Sáez, María José; Tanré, Daniel Non-linear Morse-Bott functions on quaternionic Stiefel manifolds. (English) Zbl 1454.37035 Indag. Math., New Ser. 31, No. 6, 968-983 (2020). MSC: 37D40 37B30 53A40 53C25 PDF BibTeX XML Cite \textit{E. Macías-Virgós} et al., Indag. Math., New Ser. 31, No. 6, 968--983 (2020; Zbl 1454.37035) Full Text: DOI arXiv OpenURL
Montúfar, H.; de Rezende, K. A. Conley theory for Gutierrez-Sotomayor fields. (English) Zbl 1456.37024 J. Singul. 22, 241-277 (2020). Reviewer: Dorin Andrica (Riyadh) MSC: 37B30 37C05 37C10 37C20 58K45 57R45 58E05 PDF BibTeX XML Cite \textit{H. Montúfar} and \textit{K. A. de Rezende}, J. Singul. 22, 241--277 (2020; Zbl 1456.37024) Full Text: DOI OpenURL
Azroul, Elhoussine; Benkirane, Abdelmoujib; Srati, Mohammed Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space. Nonlocal eigenvalue type problem. (English) Zbl 1445.35297 Adv. Oper. Theory 5, No. 4, 1599-1617 (2020). MSC: 35R11 46E30 58E05 35J61 35P30 PDF BibTeX XML Cite \textit{E. Azroul} et al., Adv. Oper. Theory 5, No. 4, 1599--1617 (2020; Zbl 1445.35297) Full Text: DOI OpenURL
Azroul, Elhoussine; Benkirane, Abdelmoujib; Srati, Mohammed Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces. (English) Zbl 1445.35296 Adv. Oper. Theory 5, No. 4, 1350-1375 (2020). MSC: 35R11 46E30 58E05 35J60 35J15 PDF BibTeX XML Cite \textit{E. Azroul} et al., Adv. Oper. Theory 5, No. 4, 1350--1375 (2020; Zbl 1445.35296) Full Text: DOI arXiv OpenURL
Batista, Erica Boizan; Han, Huhe; Nishimura, Takashi Simultaneous smoothness and simultaneous stability of a \(C^\infty\) strictly convex integrand and its dual. (English) Zbl 1444.58013 Kodai Math. J. 43, No. 2, 221-242 (2020). MSC: 58K05 52A05 58K30 52A55 PDF BibTeX XML Cite \textit{E. B. Batista} et al., Kodai Math. J. 43, No. 2, 221--242 (2020; Zbl 1444.58013) Full Text: DOI arXiv Euclid OpenURL
Williams, Jonathan D. Existence of two-parameter crossings, with applications. (English) Zbl 1452.57024 Geom. Dedicata 207, 265-286 (2020). Reviewer: Dorin Andrica (Riyadh) (MR4117573) MSC: 57R45 57K40 57R70 58E05 PDF BibTeX XML Cite \textit{J. D. Williams}, Geom. Dedicata 207, 265--286 (2020; Zbl 1452.57024) Full Text: DOI arXiv OpenURL
Ferone, Adele; Korobkov, Mikhail V.; Roviello, Alba On some universal Morse-Sard type theorems. (English. French summary) Zbl 1441.58007 J. Math. Pures Appl. (9) 139, 1-34 (2020). Reviewer: George Stoica (Saint John) MSC: 58C25 26B35 46E30 PDF BibTeX XML Cite \textit{A. Ferone} et al., J. Math. Pures Appl. (9) 139, 1--34 (2020; Zbl 1441.58007) Full Text: DOI arXiv OpenURL
Feehan, Paul M. N. On the Morse-Bott property of analytic functions on Banach spaces with Łojasiewicz exponent one half. (English) Zbl 1444.32029 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 87, 50 p. (2020). Reviewer: Tadeusz Krasiński (Łódź) MSC: 32S05 14P15 58E05 PDF BibTeX XML Cite \textit{P. M. N. Feehan}, Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 87, 50 p. (2020; Zbl 1444.32029) Full Text: DOI arXiv OpenURL
Zhou, Xin; Zhu, Jonathan Existence of hypersurfaces with prescribed mean curvature I – generic min-max. (English) Zbl 1446.35272 Camb. J. Math. 8, No. 2, 311-362 (2020). Reviewer: Dorin Andrica (Riyadh) MSC: 35R35 49J35 49Q05 53C43 PDF BibTeX XML Cite \textit{X. Zhou} and \textit{J. Zhu}, Camb. J. Math. 8, No. 2, 311--362 (2020; Zbl 1446.35272) Full Text: arXiv OpenURL
Kravchenko, Anna; Maksymenko, Sergiy Automorphisms of Kronrod-Reeb graphs of Morse functions on compact surfaces. (English) Zbl 07189615 Eur. J. Math. 6, No. 1, 114-131 (2020). MSC: 57S05 37C05 57R45 37C10 37J35 57M60 20E22 22F50 PDF BibTeX XML Cite \textit{A. Kravchenko} and \textit{S. Maksymenko}, Eur. J. Math. 6, No. 1, 114--131 (2020; Zbl 07189615) Full Text: DOI arXiv OpenURL
Jiang, Xing-Wang On the values of representation functions. III. (English) Zbl 1459.11031 Int. J. Number Theory 16, No. 3, 511-522 (2020). MSC: 11B34 11B83 PDF BibTeX XML Cite \textit{X.-W. Jiang}, Int. J. Number Theory 16, No. 3, 511--522 (2020; Zbl 1459.11031) Full Text: DOI OpenURL
Leonardi, Salvatore; Papageorgiou, Nikolaos S. On a class of critical Robin problems. (English) Zbl 1437.35217 Forum Math. 32, No. 1, 95-109 (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{S. Leonardi} and \textit{N. S. Papageorgiou}, Forum Math. 32, No. 1, 95--109 (2020; Zbl 1437.35217) Full Text: DOI OpenURL
Khohliyk, Olexandra; Maksymenko, Sergiy Diffeomorphisms preserving Morse-Bott functions. (English) Zbl 1440.57034 Indag. Math., New Ser. 31, No. 2, 185-203 (2020). Reviewer: Alexander Schmeding (Bergen) MSC: 57R30 57R50 57R70 PDF BibTeX XML Cite \textit{O. Khohliyk} and \textit{S. Maksymenko}, Indag. Math., New Ser. 31, No. 2, 185--203 (2020; Zbl 1440.57034) Full Text: DOI arXiv OpenURL
Papageorgiou, Nikolaos S.; Vetro, Calogero; Vetro, Francesca Superlinear Robin problems with indefinite linear part. (English) Zbl 1431.35026 Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 537-562 (2020). MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 537--562 (2020; Zbl 1431.35026) Full Text: DOI OpenURL
Kravvaritis, Dimitrios C.; Yannacopoulos, Athanasios N. Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. (English) Zbl 1443.49001 De Gruyter Graduate. Berlin: De Gruyter (ISBN 978-3-11-064736-5/pbk; 978-3-11-064738-9/ebook). xxv, 474 p. (2020). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 49-02 47-02 35J20 35J25 35J50 35J57 46A55 47H04 47H05 47H09 47H10 47J20 47J25 47J30 49J35 49J40 49J50 49J52 49J53 49K20 49K35 49N15 49N60 58C30 58E05 58E30 58E35 58J05 58J32 90C25 PDF BibTeX XML Cite \textit{D. C. Kravvaritis} and \textit{A. N. Yannacopoulos}, Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. Berlin: De Gruyter (2020; Zbl 1443.49001) Full Text: DOI OpenURL
Kamiyama, Yasuhiko The Euler characteristic of the regular spherical polygon spaces. (English) Zbl 1436.55024 Homology Homotopy Appl. 22, No. 1, 1-10 (2020). Reviewer: Daciberg Lima Gonçalves (São Paulo) MSC: 55R80 58D29 58E05 PDF BibTeX XML Cite \textit{Y. Kamiyama}, Homology Homotopy Appl. 22, No. 1, 1--10 (2020; Zbl 1436.55024) Full Text: DOI arXiv OpenURL
Shoptrajanov, M. Localization of the chain recurrent set using shape theory and symbolical dynamics. (English) Zbl 1483.37026 Topol. Algebra Appl. 7, 13-28 (2019). MSC: 37B20 37B35 37B25 54C56 PDF BibTeX XML Cite \textit{M. Shoptrajanov}, Topol. Algebra Appl. 7, 13--28 (2019; Zbl 1483.37026) Full Text: DOI OpenURL
Feshchenko, Bohdan Deformations of smooth functions on 2-torus. (English) Zbl 1445.58004 Proc. Int. Geom. Cent. 12, No. 3, 30-50 (2019). MSC: 58E05 57S25 PDF BibTeX XML Cite \textit{B. Feshchenko}, Proc. Int. Geom. Cent. 12, No. 3, 30--50 (2019; Zbl 1445.58004) Full Text: DOI arXiv OpenURL
Kuznietsova, Iryna; Maksymenko, Sergiy Homotopy properties of smooth functions on the Möbius band. (English) Zbl 1456.57027 Proc. Int. Geom. Cent. 12, No. 3, 1-29 (2019). Reviewer: Dorin Andrica (Riyadh) MSC: 57S05 57R45 37C05 PDF BibTeX XML Cite \textit{I. Kuznietsova} and \textit{S. Maksymenko}, Proc. Int. Geom. Cent. 12, No. 3, 1--29 (2019; Zbl 1456.57027) Full Text: DOI arXiv OpenURL
Ferone, A.; Korobkov, M. V.; Roviello, A. The Morse-Sard theorem and Luzin \(N\)-property: a new synthesis for smooth and Sobolev mappings. (English. Russian original) Zbl 1444.26010 Sib. Math. J. 60, No. 5, 916-926 (2019); translation from Sib. Mat. Zh. 60, No. 5, 1171-1185 (2019). Reviewer: Andrey Zahariev (Plovdiv) MSC: 26B10 26B35 46E35 PDF BibTeX XML Cite \textit{A. Ferone} et al., Sib. Math. J. 60, No. 5, 916--926 (2019; Zbl 1444.26010); translation from Sib. Mat. Zh. 60, No. 5, 1171--1185 (2019) Full Text: DOI OpenURL
Acinas, S.; Maksymiuk, J.; Mazzone, F. Clarke duality for Hamiltonian systems with nonstandard growth. (English) Zbl 1428.37060 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 1-21 (2019). MSC: 37J46 46E30 58E05 PDF BibTeX XML Cite \textit{S. Acinas} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 1--21 (2019; Zbl 1428.37060) Full Text: DOI arXiv OpenURL
Krajňák, Vladimír; Wiggins, Stephen Dynamics of the Morse oscillator: analytical expressions for trajectories, action-angle variables, and chaotic dynamics. (English) Zbl 1433.37062 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 11, Article ID 1950157, 8 p. (2019). MSC: 37J46 34C15 37J40 37D45 PDF BibTeX XML Cite \textit{V. Krajňák} and \textit{S. Wiggins}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 11, Article ID 1950157, 8 p. (2019; Zbl 1433.37062) Full Text: DOI arXiv OpenURL
Ge, Bin; Rădulescu, Vicenţiu D. Infinitely many solutions for a non-homogeneous differential inclusion with lack of compactness. (English) Zbl 1420.35082 Adv. Nonlinear Stud. 19, No. 3, 625-637 (2019). MSC: 35J20 35J70 35R70 49J52 58E05 PDF BibTeX XML Cite \textit{B. Ge} and \textit{V. D. Rădulescu}, Adv. Nonlinear Stud. 19, No. 3, 625--637 (2019; Zbl 1420.35082) Full Text: DOI OpenURL
Campagnolo, Caterina; Sauer, Roman Counting maximally broken Morse trajectories on aspherical manifolds. (English) Zbl 1423.57054 Geom. Dedicata 202, 387-399 (2019). Reviewer: Dumitru Motreanu (Perpignan) MSC: 57R99 55N10 57R70 PDF BibTeX XML Cite \textit{C. Campagnolo} and \textit{R. Sauer}, Geom. Dedicata 202, 387--399 (2019; Zbl 1423.57054) Full Text: DOI arXiv OpenURL
Bartsch, Thomas; Micheletti, Anna Maria; Pistoia, Angela The Morse property for functions of Kirchhoff-Routh path type. (English) Zbl 1475.35127 Discrete Contin. Dyn. Syst., Ser. S 12, No. 7, 1867-1877 (2019). Reviewer: Marius Ghergu (Dublin) MSC: 35J08 35J25 35Q31 76B47 PDF BibTeX XML Cite \textit{T. Bartsch} et al., Discrete Contin. Dyn. Syst., Ser. S 12, No. 7, 1867--1877 (2019; Zbl 1475.35127) Full Text: DOI arXiv OpenURL
Graff, Grzegorz; Lebiedź, Małgorzata; Myszkowski, Adrian Periodic expansion in determining minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms. (English) Zbl 1431.37033 J. Fixed Point Theory Appl. 21, No. 2, Paper No. 47, 21 p. (2019). Reviewer: Mohammad Reza Molaei (Kerman) MSC: 37D15 37C25 37E15 37C30 37D40 PDF BibTeX XML Cite \textit{G. Graff} et al., J. Fixed Point Theory Appl. 21, No. 2, Paper No. 47, 21 p. (2019; Zbl 1431.37033) Full Text: DOI OpenURL
Kosta, Neža Mramor; Pamuk, Mehmetcik; Varlı, Hanife Decomposing perfect discrete Morse functions on connected sum of 3-manifolds. (English) Zbl 1422.57083 Topology Appl. 260, 139-147 (2019). Reviewer: Wolfgang Kühnel (Stuttgart) MSC: 57R70 37E35 57R05 PDF BibTeX XML Cite \textit{N. M. Kosta} et al., Topology Appl. 260, 139--147 (2019; Zbl 1422.57083) Full Text: DOI arXiv OpenURL
Ferone, Adele; Korobkov, Mikhail V.; Roviello, Alba On the Luzin \(N\)-property and the uncertainty principle for Sobolev mappings. (English) Zbl 1406.26006 Anal. PDE 12, No. 5, 1149-1175 (2019). MSC: 26B35 46E30 46E35 58C25 PDF BibTeX XML Cite \textit{A. Ferone} et al., Anal. PDE 12, No. 5, 1149--1175 (2019; Zbl 1406.26006) Full Text: DOI arXiv OpenURL
Baryshnikov, Yuliy; Melczer, Stephen; Pemantle, Robin; Straub, Armin Diagonal asymptotics for symmetric rational functions via ACSV. (English) Zbl 1482.05011 Fill, James Allen (ed.) et al., 29th international conference on probabilistic, combinatorial and asymptotic methods for the analysis of algorithms, AofA 2018, June 25–29, 2018, Uppsala, Sweden. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik. LIPIcs – Leibniz Int. Proc. Inform. 110, Article 12, 15 p. (2018). MSC: 05A15 PDF BibTeX XML Cite \textit{Y. Baryshnikov} et al., LIPIcs -- Leibniz Int. Proc. Inform. 110, Article 12, 15 p. (2018; Zbl 1482.05011) Full Text: DOI arXiv OpenURL
Gutú, Olivia Chang Palais-Smale condition and global inversion. (English) Zbl 1463.47172 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 61(109), No. 3, 293-303 (2018). Reviewer: Dumitru Motreanu (Perpignan) MSC: 47J07 58E05 49J52 PDF BibTeX XML Cite \textit{O. Gutú}, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 61(109), No. 3, 293--303 (2018; Zbl 1463.47172) Full Text: arXiv OpenURL
Ding, Pisheng Certain metric properties of level hypersurfaces. (English) Zbl 1429.53010 JP J. Geom. Topol. 21, No. 1, 75-83 (2018). MSC: 53A07 53A05 26B15 PDF BibTeX XML Cite \textit{P. Ding}, JP J. Geom. Topol. 21, No. 1, 75--83 (2018; Zbl 1429.53010) Full Text: DOI arXiv OpenURL
Kravchenko, Anna; Maksymenko, Sergiy Automorphisms of Kronrod-Reeb graphs of Morse functions on 2-sphere. (English) Zbl 1419.37038 Proc. Int. Geom. Cent. 11, No. 4, 72-79 (2018). MSC: 37E30 37E25 22F50 PDF BibTeX XML Cite \textit{A. Kravchenko} and \textit{S. Maksymenko}, Proc. Int. Geom. Cent. 11, No. 4, 72--79 (2018; Zbl 1419.37038) Full Text: DOI arXiv OpenURL
Cojan, Stelian Paul A generalization of the theorem of Von Staudt-Hua-Buekenhout-Cojan in the real \(\overset=\to\partial-\mathcal{F}\mathbf{R}^k_{td}\), \(1\le k\le 2n+1\), space on real geometric projective \(P_k\), \(1\le k\le 2n+1\), finite dimensional space. I. (English) Zbl 1412.58002 Int. J. Geom. 7, No. 2, 50-58 (2018). MSC: 58A05 58A40 58E05 PDF BibTeX XML Cite \textit{S. P. Cojan}, Int. J. Geom. 7, No. 2, 50--58 (2018; Zbl 1412.58002) OpenURL
Michalak, Łukasz Patryk Realization of a graph as the Reeb graph of a Morse function on a manifold. (English) Zbl 1425.58022 Topol. Methods Nonlinear Anal. 52, No. 2, 749-762 (2018). Reviewer: Dorin Andrica (Riyadh) MSC: 58K05 57M15 58K65 58E05 57R70 PDF BibTeX XML Cite \textit{Ł. P. Michalak}, Topol. Methods Nonlinear Anal. 52, No. 2, 749--762 (2018; Zbl 1425.58022) Full Text: DOI arXiv Euclid OpenURL
Macías-Virgós, Enrique The Cayley transform on Lie groups, symmetric spaces and Stiefel manifolds. (English) Zbl 1438.53095 Rev. Roum. Math. Pures Appl. 63, No. 2, 143-160 (2018). Reviewer: John D. Dixon (Ottawa) MSC: 53C35 22E15 53C30 55M30 58E05 PDF BibTeX XML Cite \textit{E. Macías-Virgós}, Rev. Roum. Math. Pures Appl. 63, No. 2, 143--160 (2018; Zbl 1438.53095) OpenURL
Saeki, Osamu; Yamamoto, Takahiro Singular fibers of stable maps of manifold pairs and their applications. (English) Zbl 1415.57021 Araújo dos Santos, Raimundo Nonato (ed.) et al., Singularities and foliations. Geometry, topology and applications. BMMS 2/NBMS 3, Salvador, Brazil, 2015. Proceedings of the 3rd singularity theory meeting, ENSINO, July 8–11, 2015 and the Brazil-Mexico 2nd meeting of singularities, July 13–17, 2015. Cham: Springer. Springer Proc. Math. Stat. 222, 259-294 (2018). Reviewer: Dorin Andrica (Riyadh) MSC: 57R45 57R35 57R90 58K15 58K65 PDF BibTeX XML Cite \textit{O. Saeki} and \textit{T. Yamamoto}, Springer Proc. Math. Stat. 222, 259--294 (2018; Zbl 1415.57021) Full Text: DOI OpenURL
Korobkov, Mikhail V.; Kristensen, Jan The trace theorem, the Luzin \(N\)- and Morse-Sard properties for the sharp case of Sobolev-Lorentz mappings. (English) Zbl 1430.58005 J. Geom. Anal. 28, No. 3, 2834-2856 (2018). Reviewer: Dorin Andrica (Riyadh) MSC: 58C25 26B10 46E30 PDF BibTeX XML Cite \textit{M. V. Korobkov} and \textit{J. Kristensen}, J. Geom. Anal. 28, No. 3, 2834--2856 (2018; Zbl 1430.58005) Full Text: DOI OpenURL
Zelaya, Kevin; Dey, Sanjib; Hussin, Véronique Generalized squeezed states. (English) Zbl 1404.81161 Phys. Lett., A 382, No. 47, 3369-3375 (2018). MSC: 81S30 81R30 81V80 PDF BibTeX XML Cite \textit{K. Zelaya} et al., Phys. Lett., A 382, No. 47, 3369--3375 (2018; Zbl 1404.81161) Full Text: DOI arXiv OpenURL
Trifonova, V. A. Partially symmetric height atoms. (English. Russian original) Zbl 1398.37047 Mosc. Univ. Math. Bull. 73, No. 2, 71-78 (2018); translation from Vestn. Mosk. Univ., Ser. I 73, No. 2, 33-41 (2018). MSC: 37J05 57M60 37J15 37E15 PDF BibTeX XML Cite \textit{V. A. Trifonova}, Mosc. Univ. Math. Bull. 73, No. 2, 71--78 (2018; Zbl 1398.37047); translation from Vestn. Mosk. Univ., Ser. I 73, No. 2, 33--41 (2018) Full Text: DOI OpenURL
Taylor, Scott A.; Tomova, Maggy Additive invariants for knots, links and graphs in 3-manifolds. (English) Zbl 1400.57012 Geom. Topol. 22, No. 6, 3235-3286 (2018). Reviewer: Lee P. Neuwirth (Princeton) MSC: 57M25 57M27 57M50 PDF BibTeX XML Cite \textit{S. A. Taylor} and \textit{M. Tomova}, Geom. Topol. 22, No. 6, 3235--3286 (2018; Zbl 1400.57012) Full Text: DOI arXiv OpenURL
de Rezende, Ketty A.; Ledesma, Guido G. E.; Manzoli-Neto, Oziride; Vago, Gioia M. Lyapunov graphs for circle valued functions. (English) Zbl 1395.37011 Topology Appl. 245, 62-91 (2018). MSC: 37B30 37B35 37D15 37E35 PDF BibTeX XML Cite \textit{K. A. de Rezende} et al., Topology Appl. 245, 62--91 (2018; Zbl 1395.37011) Full Text: DOI OpenURL
Gelbukh, Irina Loops in Reeb graphs of \(n\)-manifolds. (English) Zbl 1391.05144 Discrete Comput. Geom. 59, No. 4, 843-863 (2018). MSC: 05C38 05E45 58E05 PDF BibTeX XML Cite \textit{I. Gelbukh}, Discrete Comput. Geom. 59, No. 4, 843--863 (2018; Zbl 1391.05144) Full Text: DOI OpenURL
Boumali, Abdelmalek The statistical properties of q-deformed Morse potential for some diatomic molecules via Euler-Maclaurin method in one dimension. (English) Zbl 1393.81036 J. Math. Chem. 56, No. 6, 1656-1666 (2018). MSC: 81V55 81R50 70J10 80A50 82B27 PDF BibTeX XML Cite \textit{A. Boumali}, J. Math. Chem. 56, No. 6, 1656--1666 (2018; Zbl 1393.81036) Full Text: DOI arXiv OpenURL
Yamamoto, Minoru On height isotopy classes of embeddings in the plane of a Morse function of a circle. (English) Zbl 1400.57004 Geom. Dedicata 194, 37-54 (2018). Reviewer: Dorin Andrica (Riyadh) MSC: 57M15 57R45 57R52 PDF BibTeX XML Cite \textit{M. Yamamoto}, Geom. Dedicata 194, 37--54 (2018; Zbl 1400.57004) Full Text: DOI OpenURL
Cadeddu, Lucio; Farina, Maria Antonietta A brief note on the coarea formula. (English) Zbl 1393.58007 Abh. Math. Semin. Univ. Hamb. 88, No. 1, 193-199 (2018). MSC: 58C35 28A75 28A10 28A25 PDF BibTeX XML Cite \textit{L. Cadeddu} and \textit{M. A. Farina}, Abh. Math. Semin. Univ. Hamb. 88, No. 1, 193--199 (2018; Zbl 1393.58007) Full Text: DOI OpenURL
Lima, Dahisy V. De S.; Neto, Oziride Manzoli; De Rezende, Ketty A.; Da Silveira, Mariana R. Cancellations for circle-valued Morse functions via spectral sequences. (English) Zbl 1393.37016 Topol. Methods Nonlinear Anal. 51, No. 1, 259-311 (2018). Reviewer: Michael Farber (London) MSC: 37B30 37E35 57R70 57R19 55T05 PDF BibTeX XML Cite \textit{D. V. De S. Lima} et al., Topol. Methods Nonlinear Anal. 51, No. 1, 259--311 (2018; Zbl 1393.37016) Full Text: DOI arXiv Euclid OpenURL
Martínez-Alfaro, José; Meza-Sarmiento, Ingrid S.; Oliveira, Regilene D. S. Singular levels and topological invariants of Morse-Bott foliations on non-orientable surfaces. (English) Zbl 1393.37057 Topol. Methods Nonlinear Anal. 51, No. 1, 183-213 (2018). Reviewer: Stathis Antoniou (Athína) MSC: 37E35 57R30 57R70 58K65 PDF BibTeX XML Cite \textit{J. Martínez-Alfaro} et al., Topol. Methods Nonlinear Anal. 51, No. 1, 183--213 (2018; Zbl 1393.37057) Full Text: DOI Euclid OpenURL
Nii, Shunsaku Genericity of interactions with potentials being Morse functions. (English) Zbl 1391.82014 J. Geom. Phys. 129, 233-237 (2018). MSC: 82B20 81T25 82B26 58E05 PDF BibTeX XML Cite \textit{S. Nii}, J. Geom. Phys. 129, 233--237 (2018; Zbl 1391.82014) Full Text: DOI OpenURL
Toutounji, Mohamad Morse oscillator propagator in the high temperature limit. II: Quantum dynamics and spectroscopy. (English) Zbl 1384.81039 Ann. Phys. 391, 175-182 (2018). MSC: 81Q80 81V55 PDF BibTeX XML Cite \textit{M. Toutounji}, Ann. Phys. 391, 175--182 (2018; Zbl 1384.81039) Full Text: DOI OpenURL
Varli, Hanıfe; Pamuk, Mehmetcık; Mramor Kosta, Neža Perfect discrete Morse functions on connected sums. (English) Zbl 1385.37057 Homology Homotopy Appl. 20, No. 1, 219-236 (2018). MSC: 37E35 57R70 PDF BibTeX XML Cite \textit{H. Varli} et al., Homology Homotopy Appl. 20, No. 1, 219--236 (2018; Zbl 1385.37057) Full Text: DOI arXiv OpenURL
Gawron, Maciej; Miska, Piotr; Ulas, Maciej Arithmetic properties of coefficients of power series expansion of \(\prod _{n=0}^{\infty }\left( 1-x^{2^{n}}\right) ^{t}\) (with an appendix by Andrzej Schinzel). (English) Zbl 1388.11072 Monatsh. Math. 185, No. 2, 307-360 (2018). Reviewer: Mircea Merca (Cornu) MSC: 11P81 11P83 11B50 PDF BibTeX XML Cite \textit{M. Gawron} et al., Monatsh. Math. 185, No. 2, 307--360 (2018; Zbl 1388.11072) Full Text: DOI arXiv OpenURL
Berrizbeitia, Pedro; González, Marcos J.; Sirvent, Víctor F. On the Lefschetz zeta function and the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on products of \(\ell\)-spheres. (English) Zbl 1386.37026 Topology Appl. 235, 428-444 (2018). Reviewer: Matheus Cheque Bortolan (Lima) MSC: 37D15 37E15 37C25 11T22 PDF BibTeX XML Cite \textit{P. Berrizbeitia} et al., Topology Appl. 235, 428--444 (2018; Zbl 1386.37026) Full Text: DOI OpenURL
Maksymenko, Sergiy Symplectomorphisms of surfaces preserving a smooth function. I. (English) Zbl 1384.37065 Topology Appl. 235, 275-289 (2018). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 37J05 57S05 58B05 37E30 58D05 PDF BibTeX XML Cite \textit{S. Maksymenko}, Topology Appl. 235, 275--289 (2018; Zbl 1384.37065) Full Text: DOI arXiv OpenURL
Burghelea, Dan New topological invariants for real- and angle-valued maps. An alternative to Morse-Novikov theory. (English) Zbl 1384.58001 Hackensack, NJ: World Scientific (ISBN 978-981-4618-24-3/hbk; 978-981-4618-26-7/ebook). xvi, 242 p. (2018). Reviewer: Dorin Andrica (Riyadh) MSC: 58-02 58E05 58K15 58K05 58K10 57R35 55R35 57M27 PDF BibTeX XML Cite \textit{D. Burghelea}, New topological invariants for real- and angle-valued maps. An alternative to Morse-Novikov theory. Hackensack, NJ: World Scientific (2018; Zbl 1384.58001) Full Text: DOI OpenURL
Lupescu, Adela; Pintea, Cornel Note on the minimum number of critical points of real or circular functions. (English) Zbl 1438.57010 Mathematica 59(82), No. 1-2, 71-75 (2017). MSC: 57R70 58E05 PDF BibTeX XML Cite \textit{A. Lupescu} and \textit{C. Pintea}, Mathematica 59(82), No. 1--2, 71--75 (2017; Zbl 1438.57010) OpenURL
Izosimov, Anton; Khesin, Boris Classification of Casimirs in 2D hydrodynamics. (English) Zbl 1415.76518 Mosc. Math. J. 17, No. 4, 699-716 (2017). MSC: 76M60 76A02 58B25 35Q31 PDF BibTeX XML Cite \textit{A. Izosimov} and \textit{B. Khesin}, Mosc. Math. J. 17, No. 4, 699--716 (2017; Zbl 1415.76518) Full Text: arXiv Link OpenURL
Bauer, Ingrid; Catanese, Fabrizio; Di Scala, Antonio José Higher dimensional lemniscates: the geometry of \(r\) particles in \(n\)-space with logarithmic potentials. (English) Zbl 1393.14054 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 17, No. 3, 1091-1119 (2017). Reviewer: Hans-Peter Schröcker (Innsbruck) MSC: 14P25 32U05 32S50 68U05 37Exx 51F99 70F99 PDF BibTeX XML Cite \textit{I. Bauer} et al., Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 17, No. 3, 1091--1119 (2017; Zbl 1393.14054) Full Text: DOI arXiv OpenURL
Sorin, A. S.; Chernyakov, Yu. B.; Sharygin, G. I. Phase portraits of the full symmetric Toda systems on rank-2 groups. (English. Russian original) Zbl 1383.37045 Theor. Math. Phys. 193, No. 2, 1574-1592 (2017); translation from Teor. Mat. Fiz. 193, No. 2, 193-213 (2017). MSC: 37J35 17B80 PDF BibTeX XML Cite \textit{A. S. Sorin} et al., Theor. Math. Phys. 193, No. 2, 1574--1592 (2017; Zbl 1383.37045); translation from Teor. Mat. Fiz. 193, No. 2, 193--213 (2017) Full Text: DOI arXiv OpenURL
Muñoz Muñoz, Sebastián; Quintero Vélez, Alexander Heat equation and stable minimal Morse functions on real and complex projective spaces. (English) Zbl 1383.37062 Rev. Colomb. Mat. 51, No. 1, 71-82 (2017). MSC: 37L15 37L05 35R01 53C44 58J35 PDF BibTeX XML Cite \textit{S. Muñoz Muñoz} and \textit{A. Quintero Vélez}, Rev. Colomb. Mat. 51, No. 1, 71--82 (2017; Zbl 1383.37062) Full Text: DOI arXiv Link OpenURL
Zhukova, Alena M.; Panina, Gaiane Yu. Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circle. (English. Russian original) Zbl 1386.55020 Sb. Math. 208, No. 9, 1353-1367 (2017); translation from Mat. Sb. 208, No. 9, 100-115 (2017). Reviewer: Nicholas A. Scoville (Collegeville) MSC: 55R80 PDF BibTeX XML Cite \textit{A. M. Zhukova} and \textit{G. Yu. Panina}, Sb. Math. 208, No. 9, 1353--1367 (2017; Zbl 1386.55020); translation from Mat. Sb. 208, No. 9, 100--115 (2017) Full Text: DOI OpenURL