×

Element analysis: a wavelet-based method for analysing time-localized events in noisy time series. (English) Zbl 1404.94016

Summary: A method is derived for the quantitative analysis of signals that are composed of superpositions of isolated, time-localized ‘events’. Here, these events are taken to be well represented as rescaled and phase-rotated versions of generalized Morse wavelets, a broad family of continuous analytic functions. Analysing a signal composed of replicates of such a function using another Morse wavelet allows one to directly estimate the properties of events from the values of the wavelet transform at its own maxima. The distribution of events in general power-law noise is determined in order to establish significance based on an expected false detection rate. Finally, an expression for an event’s ‘region of influence’ within the wavelet transform permits the formation of a criterion for rejecting spurious maxima due to numerical artefacts or other unsuitable events. Signals can then be reconstructed based on a small number of isolated points on the time/scale plane. This method, termed element analysis, is applied to the identification of long-lived eddy structures in ocean currents as observed by along-track measurements of sea surface elevation from satellite altimetry.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
65T60 Numerical methods for wavelets
62M15 Inference from stochastic processes and spectral analysis

Software:

PDCO
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Delprat N, Escudié B, Guillemain P, Kronland-Martinet R, Tchamitchian P, Torrésani B. (1992) Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE Trans. Inform. Theory 38, 644-665. (doi:10.1109/18.119728) · Zbl 0743.42010 · doi:10.1109/18.119728
[2] Mallat S. (1999) A wavelet tour of signal processing, 2nd edn. New York, NY: Academic Press. · Zbl 0998.94510
[3] Lilly JM, Gascard J-C. (2006) Wavelet ridge diagnosis of time-varying elliptical signals with application to an oceanic eddy. Nonlinear Proc. Geoph. 13, 467-483. (doi:10.5194/npg-13-467-2006) · doi:10.5194/npg-13-467-2006
[4] Lilly JM, Olhede SC. (2010) On the analytic wavelet transform. IEEE Trans. Inform. Theory 56, 4135-4156. (doi:10.1109/TIT.2010.2050935) · Zbl 1366.42036 · doi:10.1109/TIT.2010.2050935
[5] Lilly JM, Olhede SC. (2012) Analysis of modulated multivariate oscillations. IEEE Trans. Signal Process. 60, 600-612. (doi:10.1109/TSP.2011.2173681) · Zbl 1393.94333 · doi:10.1109/TSP.2011.2173681
[6] Mallat S, Hwang WL. (1992) Singularity detection and processing with wavelets. IEEE Trans. Inform. Theory 38, 617-643. (doi:10.1109/18.119727) · Zbl 0745.93073 · doi:10.1109/18.119727
[7] Byrne DA, Gordon AL, Haxby WF. (1995) Algulhas eddies: a synoptic view using Geosat ERM data. J. Phys. Oceanogr. 25, 902-917. (doi:10.1175/1520-0485(1995)025<0902:AEASVU>2.0.CO;2) · doi:10.1175/1520-0485(1995)025<0902:AEASVU>2.0.CO;2
[8] Zavala-Hidalgo J, Morey SL, O’Brien JJ. (2003) Cyclonic eddies northeast of the Campeche Bank from altimetry data. J. Phys. Oceanogr. 33, 623-629. (doi:10.1175/1520-0485(2003)033<0623:CENOTC>2.0.CO;2) · doi:10.1175/1520-0485(2003)033<0623:CENOTC>2.0.CO;2
[9] Lilly JM, Rhines PB, Schott F, Lavender K, Lazier J, Send U, D’Asaro E. (2003) Observations of the Labrador Sea eddy field. Prog. Oceanogr. 59, 75-176. (doi:10.1016/j.pocean.2003.08.013) · doi:10.1016/j.pocean.2003.08.013
[10] Le Hénaff M, Kourafalou VH, Dussurget R, Lumpkin R. (2014) Cyclonic activity in the eastern Gulf of Mexico: characterization from along-track altimetry and in situ drifter trajectories. Prog. Oceanogr. 120, 120-138. (doi:10.1016/j.pocean.2013.08.002) · doi:10.1016/j.pocean.2013.08.002
[11] Chelton DB, Schlax MG, Samelson RM. (2011) Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167-216. (doi:10.1016/j.pocean.2011.01.002) · doi:10.1016/j.pocean.2011.01.002
[12] Donoho DL. (1995) De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41, 613-627. (doi:10.1109/18.382009) · Zbl 0820.62002 · doi:10.1109/18.382009
[13] Daubechies I, Paul T. (1988) Time-frequency localisation operators: a geometric phase space approach II. The use of dilations and translations. Inverse Probl. 4, 661-80. (doi:10.1088/0266-5611/4/3/009) · Zbl 0701.42004 · doi:10.1088/0266-5611/4/3/009
[14] Bayram M, Baraniuk R. (2000)Multiple window time-varying spectrum estimation. In Nonlinear and nonstationary signal processing, pp. 292-316. Cambridge, UK: Cambridge University Press. · Zbl 0997.62072
[15] Olhede SC, Walden AT. (2002) Generalized Morse wavelets. IEEE Trans. Signal Process. 50, 2661-2670. (doi:10.1109/TSP.2002.804066) · Zbl 1369.94247 · doi:10.1109/TSP.2002.804066
[16] Olhede SC, Walden AT. (2003) Polarization phase relationships via multiple Morse wavelets. I. Fundamentals. Proc. R. Soc. Lond. A 459, 413-444. (doi:10.1098/rspa.2002.1049) · Zbl 1026.94502 · doi:10.1098/rspa.2002.1049
[17] Lilly JM, Olhede SC. (2009) Higher-order properties of analytic wavelets. IEEE Trans. Signal Process. 57, 146-160. (doi:10.1109/TSP.2008.2007607) · Zbl 1391.42044 · doi:10.1109/TSP.2008.2007607
[18] Lilly JM, Olhede SC. (2012) Generalized Morse wavelets as a superfamily of analytic wavelets. IEEE Trans. Signal Process. 60, 6036-6041. (doi:10.1109/TSP.2012.2210890) · Zbl 1393.94334 · doi:10.1109/TSP.2012.2210890
[19] Thomas C, Foken T. (2004) Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor. Appl. Climatol. 80, 91-104. (doi:10.1007/s00704-004-0093-0) · doi:10.1007/s00704-004-0093-0
[20] Barthlott C, Drobinski P, Fesquet C, Dubos T, Pietras C. (2007) Long-term study of coherent structures in the atmospheric surface layer. Bound.-Lay. Meteorol. 125, 1-24. (doi:10.1007/s10546-007-9190-9) · doi:10.1007/s10546-007-9190-9
[21] Kang Y, Belušić D, Smith-Miles K. (2014) Detecting and classifying events in noisy time series. J. Atmos. Sci. 71, 1090-1104. (doi:10.1175/JAS-D-13-0182.1) · doi:10.1175/JAS-D-13-0182.1
[22] Kang Y, Belušić D, Smith-Miles K. (2015) Classes of structures in the stable atmospheric boundary layer. Q. J. R. Meteor. Soc. 141, 2057-2069. (doi:10.1002/qj.2501) · doi:10.1002/qj.2501
[23] Chen SS, Donoho DL, Saunders MA. (2001) Atomic decomposition by basis pursuit. SIAM Rev. 43, 129-159. (doi:10.1137/S003614450037906X) · Zbl 0979.94010 · doi:10.1137/S003614450037906X
[24] Mann ME, Lees JM. (1996) Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33, 409-445. (doi:10.1007/BF00142586) · doi:10.1007/BF00142586
[25] Mandelbrot BB, Van Ness JW. (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422-437. (doi:10.1137/1010093) · Zbl 0179.47801 · doi:10.1137/1010093
[26] Lilly JM, Sykulski AM, Early JJ, Olhede SC. In press. Fractional Brownian motion, the Matérn process, and stochastic modeling of turbulent dispersion. Nonlin. Processes Geophys. Discuss. (doi:10.5194/npg-2017-15) · doi:10.5194/npg-2017-15
[27] Thomson DJ. (1982) Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055-1096. (doi:10.1109/PROC.1982.12433) · doi:10.1109/PROC.1982.12433
[28] Beckley B, Zelensky N, Holmes S, Lemoine F, Ray R, Mitchum G, Desai S, Brown S. (2016)Integrated multi-mission ocean altimeter data for climate research version 3.1 (dataset accessed 26 September 2016). See http://podaac.jpl.nasa.gov/dataset/MERGED_TP_J1_OSTM_OST_CYCLES_V3.
[29] Eden C, Böning C. (2002) Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr. 32, 3346-3363. (doi:10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2) · doi:10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2
[30] Gelderloos R, Katsman CA, Drijfhout SS. (2011) Assessing the role of three eddy types in restratifying the Labrador Sea after deep convection. J. Phys. Oceanogr. 41, 2102-2119. (doi:10.1175/JPO-D-11-054.1) · doi:10.1175/JPO-D-11-054.1
[31] Luo H, Bracco A, Di Lorenzo E. (2011) The interannual variability of the surface eddy kinetic energy in the Labrador Sea. Prog. Oceanogr. 91, 295-311. (doi:10.1016/j.pocean.2011.01.006) · doi:10.1016/j.pocean.2011.01.006
[32] de Jong MF, Bower AS, Furey HH. (2014) Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification. J. Phys. Oceanogr. 44, 427-444. (doi:10.1175/JPO-D-13-070.1) · doi:10.1175/JPO-D-13-070.1
[33] Lilly JM, Park J. · doi:10.1111/j.1365-246X.1995.tb06852.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.