Feehan, Paul M. N. Optimal Łojasiewicz-Simon inequalities and Morse-Bott Yang-Mills energy functions. (English) Zbl 1498.58012 Adv. Calc. Var. 15, No. 4, 635-671 (2022). MSC: 58E15 57R57 37D15 58D27 70S15 PDF BibTeX XML Cite \textit{P. M. N. Feehan}, Adv. Calc. Var. 15, No. 4, 635--671 (2022; Zbl 1498.58012) Full Text: DOI arXiv
Izvarina, N. R.; Savin, A. Yu. Ellipticity of operators associated with Morse-Smale diffeomorphisms. (English) Zbl 1514.58015 Manuilov, Vladimir M. (ed.) et al., Differential equations on manifolds and mathematical physics. Dedicated to the memory of Boris Sternin. Selected papers based on the presentations of the conference on partial differential equations and applications, Moscow, Russia, November 6–9, 2018. Cham: Birkhäuser. Trends Math., 202-220 (2021). MSC: 58J40 47L80 47A53 PDF BibTeX XML Cite \textit{N. R. Izvarina} and \textit{A. Yu. Savin}, in: Differential equations on manifolds and mathematical physics. Dedicated to the memory of Boris Sternin. Selected papers based on the presentations of the conference on partial differential equations and applications, Moscow, Russia, November 6--9, 2018. Cham: Birkhäuser. 202--220 (2021; Zbl 1514.58015) Full Text: DOI arXiv
Pellegrini, Alessio Polytope Novikov homology. (English) Zbl 1483.57038 J. Fixed Point Theory Appl. 23, No. 4, Paper No. 62, 36 p. (2021). Reviewer: Guang-Cun Lu (Beijing) MSC: 57R58 53D40 37D15 55N35 PDF BibTeX XML Cite \textit{A. Pellegrini}, J. Fixed Point Theory Appl. 23, No. 4, Paper No. 62, 36 p. (2021; Zbl 1483.57038) Full Text: DOI arXiv
Feehan, Paul M. N.; Maridakis, Manousos Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions. (English) Zbl 1466.58001 Memoirs of the American Mathematical Society 1302. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4302-3/pbk; 978-1-4704-6403-5/ebook). xiii, 138 p. (2020). Reviewer: Mohsen Timoumi (Monastir) MSC: 58-02 58E15 57R57 37D15 58D27 70S15 81T13 PDF BibTeX XML Cite \textit{P. M. N. Feehan} and \textit{M. Maridakis}, Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 1466.58001) Full Text: DOI arXiv
Morozov, A.; Pochinka, O. Morse-Smale surfaced diffeomorphisms with orientable heteroclinic. (English) Zbl 1451.37066 J. Dyn. Control Syst. 26, No. 4, 629-639 (2020). MSC: 37E30 37C29 37D15 37C05 49J15 PDF BibTeX XML Cite \textit{A. Morozov} and \textit{O. Pochinka}, J. Dyn. Control Syst. 26, No. 4, 629--639 (2020; Zbl 1451.37066) Full Text: DOI arXiv
Mescher, Stephan Perturbed gradient flow trees and \(A_\infty\)-algebra structures in Morse cohomology. (English) Zbl 1402.58002 Atlantis Studies in Dynamical Systems 6. Cham: Springer/Atlantis Press (ISBN 978-3-319-76583-9/hbk; 978-3-319-76584-6/ebook). xxv, 171 p. (2018). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 58-02 58E05 58K05 57R70 37D15 37C10 55N35 55U15 PDF BibTeX XML Cite \textit{S. Mescher}, Perturbed gradient flow trees and \(A_\infty\)-algebra structures in Morse cohomology. Cham: Springer/Atlantis Press (2018; Zbl 1402.58002) Full Text: DOI
Feehan, Paul M. N. Energy gap for Yang-Mills connections. I: Four-dimensional closed Riemannian manifolds. (English) Zbl 1456.58014 Adv. Math. 296, 55-84 (2016). MSC: 58E15 57R57 37D15 58D27 70S15 81T13 PDF BibTeX XML Cite \textit{P. M. N. Feehan}, Adv. Math. 296, 55--84 (2016; Zbl 1456.58014) Full Text: DOI arXiv
Isobe, Takeshi; Marini, Antonella Small coupling limit and multiple solutions to the Dirichlet problem for Yang-Mills connections in four dimensions. I. (English) Zbl 1346.70035 J. Math. Phys. 53, No. 6, 063706, 39 p. (2012). MSC: 70S15 70S05 14D21 35G31 37D15 PDF BibTeX XML Cite \textit{T. Isobe} and \textit{A. Marini}, J. Math. Phys. 53, No. 6, 063706, 39 p. (2012; Zbl 1346.70035) Full Text: DOI arXiv
Isobe, Takeshi; Marini, Antonella Small coupling limit and multiple solutions to the Dirichlet problem for Yang-Mills connections in four dimensions. II. (English) Zbl 1346.70034 J. Math. Phys. 53, No. 6, 063707, 39 p. (2012). MSC: 70S15 70S05 14D21 35G31 37D15 PDF BibTeX XML Cite \textit{T. Isobe} and \textit{A. Marini}, J. Math. Phys. 53, No. 6, 063707, 39 p. (2012; Zbl 1346.70034) Full Text: DOI arXiv
Banyaga, Augustin; Hurtubise, David Lectures on Morse homology. (English) Zbl 1080.57001 Kluwer Texts in the Mathematical Sciences 29. Berlin: Springer (ISBN 1-4020-2695-1/hbk). ix, 324 p. (2004). Reviewer: Ioan Pop (Iaşi) MSC: 57-02 57R70 55N35 57R58 58E05 57R19 PDF BibTeX XML Cite \textit{A. Banyaga} and \textit{D. Hurtubise}, Lectures on Morse homology. Berlin: Springer (2004; Zbl 1080.57001)
Ranicki, Andrew Circle valued Morse theory and Novikov homology. (English) Zbl 1068.57031 Farrell, F. Thomas (ed.) et al., Topology of high-dimensional manifolds. Proceedings of the school on high-dimensional manifold topology, Abdus Salam ICTP, Trieste, Italy, May 21–June 8, 2001. Number 1 and 2. Trieste: The Abdus Salam International Centre for Theoretical Physics (ISBN 92-95003-12-8/pbk). ICTP Lect. Notes 9, 539-569 (2002). Reviewer: Dorin Andrica (Cluj-Napoca) MSC: 57R70 55N35 58E05 PDF BibTeX XML Cite \textit{A. Ranicki}, ICTP Lect. Notes 9, 539--569 (2002; Zbl 1068.57031) Full Text: arXiv
Bismut, Jean-Michel; Goette, Sebastian Families torsion and Morse functions. (English) Zbl 1071.58025 Astérisque 275. Paris: Société Mathématique de France (ISBN 2-85629-109-0/pbk). ix, 293 p. (2001). Reviewer: Jesus A. Álvarez López (Santiago de Compostela) MSC: 58J52 58-02 58J35 37D15 57R20 58J20 58J22 57R22 57R91 57Q10 PDF BibTeX XML Cite \textit{J.-M. Bismut} and \textit{S. Goette}, Families torsion and Morse functions. Paris: Société Mathématique de France (2001; Zbl 1071.58025)
Nikolaev, Igor; Zhuzhoma, Evgeny Flows on 2-dimensional manifolds. An overview. (English) Zbl 1022.37027 Lecture Notes in Mathematics. 1705. Berlin: Springer. xix, 294 p. (1999). MSC: 37E35 37-02 37C10 PDF BibTeX XML Cite \textit{I. Nikolaev} and \textit{E. Zhuzhoma}, Flows on 2-dimensional manifolds. An overview. Berlin: Springer (1999; Zbl 1022.37027) Full Text: DOI
Guilarte, J. M. The supersymmetric sigma model, topological quantum mechanics and knot invariants. (English) Zbl 0726.53061 J. Geom. Phys. 7, No. 2, 255-302 (1990). MSC: 53C80 37D15 81T10 81T60 PDF BibTeX XML Cite \textit{J. M. Guilarte}, J. Geom. Phys. 7, No. 2, 255--302 (1990; Zbl 0726.53061) Full Text: DOI