×

Nonsmooth \(\mu\)-synthesis. (English) Zbl 1227.93043

Summary: We revisit robust complex- and mixed-\(\mu\)-synthesis problems based on upper bounds and show that they can be recast as specially structured controller design programs. The proposed reformulations suggest a streamlined handling of \(\mu\)-synthesis problems using recently developed (local) nonsmooth optimization methods, where both scalings or multipliers and a controller of given structure are obtained simultaneously. A first cut of the nonsmooth programming software for structured \(H_{\infty }\) synthesis is made available through the MATLAB R2010b Prerelease, Robust Control Toolbox Version 3.5 developed by The MathWorks, Inc.

MSC:

93B50 Synthesis problems
93B51 Design techniques (robust design, computer-aided design, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Toker O Ozbay H On the NP-hardness of the purely complex {\(\mu\)} computation, analysis/synthesis, and some related problems in multidimensional systems 447 451 · Zbl 0905.93018
[2] Fan, Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics, IEEE Transactions on Automatic Control AC-36 (1) pp 25– (1991) · Zbl 0722.93055 · doi:10.1109/9.62265
[3] Boyd, SIAM Studies in Applied Mathematics, in: Linear Matrix Inequalities in Systems and Control Theory (1994) · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[4] Balas, {\(\mu\)}-Analysis and Synthesis Toolbox: User’s Guide (1991)
[5] Feron, Analysis of robust H2 performance using multiplier theory, SIAM Journal on Control and Optimization 35 (1) pp 160– (1997) · Zbl 0871.93014 · doi:10.1137/S0363012994266504
[6] Chiang RY Safonov MG Real K m -synthesis via generalized Popov multipliers 1992 2417 2418
[7] Apkarian, Nonsmooth H synthesis, IEEE Transactions on Automatic Control 51 (1) pp 71– (2006) · Zbl 1366.93148 · doi:10.1109/TAC.2005.860290
[8] Fukuda, Branch-and-cut algorithms for the bilinear matrix inequality eigenvalue problem, Computational Optimization and Applications 19 (1) pp 79– (2001) · Zbl 0979.65051 · doi:10.1023/A:1011224403708
[9] Goh, Global optimization for the biaffine matrix inequality problem, Journal of Global Optimization 7 (4) pp 1573– (1995) · Zbl 0844.90083 · doi:10.1007/BF01099648
[10] Simoes, A nonsmooth progress function for frequency shaping control design, IET Control Theory and Applications 2 (4) pp 323– (2008) · doi:10.1049/iet-cta:20070183
[11] Clarke, Canadian Mathematical Society Series, in: Optimization and Nonsmooth Analysis (1983) · Zbl 0582.49001
[12] Lu WM Zhou K Doyle JC Stabilization of LFT Systems 1239 1244
[13] Redheffer, On a certain linear fractional transformation, Journal of Mathematical Physics 39 pp 269– (1960) · Zbl 0102.10402 · doi:10.1002/sapm1960391269
[14] Skogestad, Multivariable Feedback Design-Analysis and Design (1996) · Zbl 0883.93001
[15] McFarlane, A loop shaping design procedure using H synthesis, IEEE Transactions on Automatic Control 37 (6) pp 759– (1992) · Zbl 0755.93019 · doi:10.1109/9.256330
[16] Zhou, Robust and Optimal Control (1996)
[17] Doyle J Packard A Zhou K Review of LFT’s, LMI’s and {\(\mu\)} 1991 1227 1232
[18] Meinsma, A dual formulation of mixed {\(\mu\)} and the losslessness of (D, G)-scaling, IEEE Transactions on Automatic Control 42 (7) pp 1032– (1997) · Zbl 0892.93028 · doi:10.1109/9.599990
[19] Packard, The complex structured singular value, Automatica 29 (1) pp 71– (1993) · Zbl 0772.93023 · doi:10.1016/0005-1098(93)90175-S
[20] Young PM Controller design with mixed uncertainties 1994 2333 2337
[21] Safonov, Control and Dynamic Systems 56 pp 303– (1993)
[22] Adams, Robust flight control design using dynamic inversion and structured singular value synthesis, IEEE Transactions on Circuits and Systems 1 (2) pp 80– (1993)
[23] Packard, Linear, multivariable robust control with a {\(\mu\)} perspective, ASME Journal on Dynamics, Measurements and Control, Special Edition on Control 115 (2b) pp 426– (1993) · Zbl 0775.93039 · doi:10.1115/1.2899083
[24] Reiner J Balas GJ Garrard WL Design of a flight control system for a highly maneuverable aircraft using {\(\mu\)} synthesis 710 719
[25] Doyle JC Lenz K Packard A Design examples using {\(\mu\)}-synthesis: space shuttle lateral axis FCS during reentry 2218 2223
[26] Apkarian, A trust region spectral bundle method for nonconvex eigenvalue optimization, SIAM Journal on Optimization 19 (1) pp 281– (2008) · Zbl 1167.90015 · doi:10.1137/060665191
[27] Apkarian, Nonsmooth optimization for multidisk H synthesis, European Journal of Control 12 (3) pp 229– (2006) · Zbl 1293.93310 · doi:10.3166/ejc.12.229-244
[28] Bruinsma, A fast algorithm to compute the H-norm of a transfer function matrix, Systems and Control Letters 14 (5) pp 287– (1990) · Zbl 0699.93021 · doi:10.1016/0167-6911(90)90049-Z
[29] Boyd S Balakrishnan V A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L -norm 954 955 · Zbl 0704.93014
[30] Apkarian, IQC analysis and synthesis via nonsmooth optimization, Systems and Control Letters 55 (12) pp 971– (2006) · Zbl 1120.93315 · doi:10.1016/j.sysconle.2006.06.008
[31] Helmersson A Applications of mixed {\(\mu\)}-synthesis using the passivity approach 1994
[32] Ly J Safonov MG Chiang RY Real/complex multivariable stability margin computation via generalized Popov multiplier-LMI approach 425 429
[33] Young, Controller design with real parametric uncertainty, International Journal of Control 65 (3) pp 469– (1996) · Zbl 0857.93029 · doi:10.1080/00207179608921707
[34] Desoer, Feedback Systems: Input-Output Properties (1975)
[35] Balakrishnan, Linear matrix inequalities in robustness analysis with multipliers, Systems and Control Letters 25 pp 265– (1995) · Zbl 0877.93083 · doi:10.1016/0167-6911(94)00087-C
[36] Dym, Multidisk problems in H optimization: a method for analyzing numerical algorithms, Indiana University Mathematics Journal 51 (5) pp 1111– (2002) · Zbl 1044.93017 · doi:10.1512/iumj.2002.51.2253
[37] Apkarian, Nonsmooth optimization for multiband frequency domain control design, Automatica 43 (4) pp 724– (2007) · Zbl 1114.93030 · doi:10.1016/j.automatica.2006.08.031
[38] Noll, A proximity control algorithm to minimize nonsmooth and nonconvex semi-infinite maximum eigenvalue functions, Journal of Convex Analysis 16 (3 & 4) pp 641– (2009) · Zbl 1182.49012
[39] Gumussoy S Millstone M Overton ML H strong stabilization via HIFOO, a package for fixed-order controller design 4135 4140
[40] Michiels, Advances in Design and Control, in: Stability and Stabilization of Time-delay Systems. An Eigenvalue Based Approach (2007) · Zbl 1140.93026 · doi:10.1137/1.9780898718645
[41] Burke, Stabilization via nonsmooth, nonconvex optimization, IEEE Transactions on Automatic Control 51 (11) pp 1760– (2006) · Zbl 1366.93490 · doi:10.1109/TAC.2006.884944
[42] Apkarian, Mixed H2/H control via nonsmooth optimization, SIAM Journal on Control and Optimization 47 (3) pp 1516– (2008) · Zbl 1161.93010 · doi:10.1137/070685026
[43] Bompart V Apkarian P Noll D Nonsmooth techniques for stabilizing linear systems 1245 1250 · Zbl 1157.93386
[44] Bertsekas, Nonlinear Programming (1995)
[45] Helton JW Merino O Semidefinite programming tailored to H -optimization arising from plant uncertainty problems 1996 1333 1338
[46] Helton, Conditions for optimality over H, SIAM Journal on Control 31 (6) pp 1379– (1993) · Zbl 0794.49022 · doi:10.1137/0331065
[47] Robust Control Toolbox (2010)
[48] Wu, Induced L2 norm control for LPV systems with bounded parameter variation rates, International Journal of Robust and Nonlinear Control 6 (9) pp 983– (1996) · Zbl 0863.93074 · doi:10.1002/(SICI)1099-1239(199611)6:9/10<983::AID-RNC263>3.0.CO;2-C
[49] Ferreres G Biannic JM A Skew Mu Toolbox (SMT) for robustness analysis 2003-2009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.