Chen, Xiuxiong; Feldman, Mikhail; Hu, Jingchen Geodesic convexity of small neighborhood in the space of Kähler potentials. (English) Zbl 1469.32016 J. Funct. Anal. 279, No. 7, Article ID 108603, 64 p. (2020). Reviewer: Gabriela Paola Ovando (Rosario) MSC: 32Q15 32W20 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Funct. Anal. 279, No. 7, Article ID 108603, 64 p. (2020; Zbl 1469.32016) Full Text: DOI arXiv OpenURL
Diez, Tobias; Rudolph, Gerd Slice theorem and orbit type stratification in infinite dimensions. (English) Zbl 1417.58002 Differ. Geom. Appl. 65, 176-211 (2019). MSC: 58B25 58D19 58B20 58A35 22E65 PDF BibTeX XML Cite \textit{T. Diez} and \textit{G. Rudolph}, Differ. Geom. Appl. 65, 176--211 (2019; Zbl 1417.58002) Full Text: DOI arXiv OpenURL
Bonnotte, Nicolas From Knothe’s rearrangement to Brenier’s optimal transport map. (English) Zbl 1263.49059 SIAM J. Math. Anal. 45, No. 1, 64-87 (2013). MSC: 49Q20 35J96 47J07 PDF BibTeX XML Cite \textit{N. Bonnotte}, SIAM J. Math. Anal. 45, No. 1, 64--87 (2013; Zbl 1263.49059) Full Text: DOI arXiv OpenURL
Notz, Thilo Closed hypersurfaces driven by mean curvature and inner pressure. (English) Zbl 1263.53064 Commun. Pure Appl. Math. 66, No. 5, 790-819 (2013). Reviewer: Andrea Malchiodi (Coventry) MSC: 53C44 35K35 53C40 35J93 PDF BibTeX XML Cite \textit{T. Notz}, Commun. Pure Appl. Math. 66, No. 5, 790--819 (2013; Zbl 1263.53064) Full Text: DOI Link OpenURL
Neuberger, John W. Sobolev gradients and differential equations. 2nd ed. (English) Zbl 1203.35004 Lecture Notes in Mathematics 1670. Dordrecht: Springer (ISBN 978-3-642-04040-5/pbk; 978-3-642-04041-2/ebook). xiii, 289 p. (2010). Reviewer: Lutz Recke (Berlin) MSC: 35-02 35A15 35A35 65J15 46N40 PDF BibTeX XML Cite \textit{J. W. Neuberger}, Sobolev gradients and differential equations. 2nd ed. Dordrecht: Springer (2010; Zbl 1203.35004) Full Text: DOI OpenURL
Kichenassamy, Satyanad Fuchsian reduction. Applications to geometry, cosmology and mathematical physics. (English) Zbl 1169.35002 Progress in Nonlinear Differential Equations and Their Applications 71. Basel: Birkhäuser (ISBN 978-0-8176-4352-2/hbk). xv, 289 p. (2007). Reviewer: Thoralf Chrobok (Berlin) MSC: 35-02 83C20 85A05 80A25 35A20 35A21 35J65 35L35 53B50 74J30 78A60 76L05 35Q75 PDF BibTeX XML Cite \textit{S. Kichenassamy}, Fuchsian reduction. Applications to geometry, cosmology and mathematical physics. Basel: Birkhäuser (2007; Zbl 1169.35002) OpenURL
Neuberger, J. W. A Nash-Moser theorem with near-minimal hypothesis. (English) Zbl 1021.47043 Int. J. Pure Appl. Math. 4, No. 3, 269-280 (2003). Reviewer: Peter Zabreiko (Minsk) MSC: 47J05 58C15 PDF BibTeX XML Cite \textit{J. W. Neuberger}, Int. J. Pure Appl. Math. 4, No. 3, 269--280 (2003; Zbl 1021.47043) OpenURL
Bonnet, A.; Monneau, R. Distribution of vortices in a type-II superconductor as a free boundary problem: Existence and regularity via Nash-Moser theory. (English) Zbl 0989.35146 Interfaces Free Bound. 2, No. 2, 181-200 (2000). MSC: 35R35 82D55 35J60 PDF BibTeX XML Cite \textit{A. Bonnet} and \textit{R. Monneau}, Interfaces Free Bound. 2, No. 2, 181--200 (2000; Zbl 0989.35146) Full Text: DOI OpenURL
Poppenberg, Markus Negative results on the Nash-Moser theorem for Köthe sequence spaces and for spaces of ultradifferentiable functions. (English) Zbl 0871.46003 Manuscr. Math. 90, No. 4, 465-478 (1996). MSC: 46A45 46G05 46E10 46F05 PDF BibTeX XML Cite \textit{M. Poppenberg}, Manuscr. Math. 90, No. 4, 465--478 (1996; Zbl 0871.46003) Full Text: DOI EuDML OpenURL
Moscatelli, Vincenzo B.; Simões, Marilda A. Generalized Nash-Moser smoothing operators and the structure of Fréchet spaces. (English) Zbl 0719.46001 Stud. Math. 87, 121-132 (1987). MSC: 46A11 46A04 46G05 58C15 46M99 PDF BibTeX XML Cite \textit{V. B. Moscatelli} and \textit{M. A. Simões}, Stud. Math. 87, 121--132 (1987; Zbl 0719.46001) Full Text: DOI EuDML OpenURL
Lindström, Mikael A note on the inverse function theorem of Nash and Moser. (English) Zbl 0601.58014 Int. J. Math. Math. Sci. 9, 361-364 (1986). Reviewer: J.Danesova MSC: 58C15 PDF BibTeX XML Cite \textit{M. Lindström}, Int. J. Math. Math. Sci. 9, 361--364 (1986; Zbl 0601.58014) Full Text: DOI EuDML OpenURL
Bemelmans, Josef; Min-Oo, Maung; Ruh, Ernst A. Smoothing Riemannian metrics. (English) Zbl 0536.53044 Math. Z. 188, 69-74 (1984). MSC: 53C20 PDF BibTeX XML Cite \textit{J. Bemelmans} et al., Math. Z. 188, 69--74 (1984; Zbl 0536.53044) Full Text: DOI EuDML OpenURL
Hamilton, Richard S. Three-manifolds with positive Ricci curvature. (English) Zbl 0504.53034 J. Differ. Geom. 17, 255-306 (1982). Reviewer: C.-c. Hwang MSC: 53C21 53C44 35K55 PDF BibTeX XML Cite \textit{R. S. Hamilton}, J. Differ. Geom. 17, 255--306 (1982; Zbl 0504.53034) Full Text: DOI Euclid Link Backlinks: MO OpenURL
Hamilton, Richard S. The inverse function theorem of Nash and Moser. (English) Zbl 0499.58003 Bull. Am. Math. Soc., New Ser. 7, 65-222 (1982). MSC: 58C15 58C20 46E15 22E65 26E15 53C21 PDF BibTeX XML Cite \textit{R. S. Hamilton}, Bull. Am. Math. Soc., New Ser. 7, 65--222 (1982; Zbl 0499.58003) Full Text: DOI OpenURL