Nobel, Parth; Agrawal, Akshay; Boyd, Stephen Computing tighter bounds on the \(n\)-queens constant via Newton’s method. (English) Zbl 07692824 Optim. Lett. 17, No. 5, 1229-1240 (2023). MSC: 90Cxx PDF BibTeX XML Cite \textit{P. Nobel} et al., Optim. Lett. 17, No. 5, 1229--1240 (2023; Zbl 07692824) Full Text: DOI arXiv OpenURL
Kieffer, Jean Certified Newton schemes for the evaluation of low-genus theta functions. (English) Zbl 07684728 Numer. Algorithms 93, No. 2, 833-862 (2023). MSC: 65-XX 05-XX PDF BibTeX XML Cite \textit{J. Kieffer}, Numer. Algorithms 93, No. 2, 833--862 (2023; Zbl 07684728) Full Text: DOI arXiv OpenURL
Sadkane, Miloud A smallest singular value method for nonlinear eigenvalue problems. (English) Zbl 07683131 Linear Multilinear Algebra 71, No. 1, 16-28 (2023). MSC: 65F15 15A18 15A22 PDF BibTeX XML Cite \textit{M. Sadkane}, Linear Multilinear Algebra 71, No. 1, 16--28 (2023; Zbl 07683131) Full Text: DOI OpenURL
Kogelbauer, Florian; Breunung, Thomas When does the method of harmonic balance give a correct prediction for mechanical systems? (English) Zbl 07681620 Appl. Anal. 102, No. 2, 425-443 (2023). MSC: 37N05 49M15 PDF BibTeX XML Cite \textit{F. Kogelbauer} and \textit{T. Breunung}, Appl. Anal. 102, No. 2, 425--443 (2023; Zbl 07681620) Full Text: DOI OpenURL
Panigrahy, Krushnachandra; Mishra, Debasisha A note on a faster fixed point iterative method. (English) Zbl 07667040 J. Anal. 31, No. 1, 831-854 (2023). MSC: 47H05 47H09 47H20 PDF BibTeX XML Cite \textit{K. Panigrahy} and \textit{D. Mishra}, J. Anal. 31, No. 1, 831--854 (2023; Zbl 07667040) Full Text: DOI OpenURL
Paraschiv, Dan Newton-like components in the Chebyshev-Halley family of degree \(n\) polynomials. (English) Zbl 07660431 Mediterr. J. Math. 20, No. 3, Paper No. 149, 17 p. (2023). MSC: 37F10 37F20 37F46 30D05 PDF BibTeX XML Cite \textit{D. Paraschiv}, Mediterr. J. Math. 20, No. 3, Paper No. 149, 17 p. (2023; Zbl 07660431) Full Text: DOI arXiv OpenURL
Zhang, Yingchao; Mei, Liangcai; Lin, Yingzhen Multiscale orthonormal method for nonlinear system of BVPs. (English) Zbl 07657511 Comput. Appl. Math. 42, No. 1, Paper No. 39, 14 p. (2023). MSC: 65Lxx 34Bxx 65-XX PDF BibTeX XML Cite \textit{Y. Zhang} et al., Comput. Appl. Math. 42, No. 1, Paper No. 39, 14 p. (2023; Zbl 07657511) Full Text: DOI OpenURL
Ghiat, Mourad; Tair, Boutheina; Ghuebbai, Hamza; Kamouche, Soumia Block-by-block method for solving non-linear Volterra integral equation of the first kind. (English) Zbl 1505.65319 Comput. Appl. Math. 42, No. 1, Paper No. 67, 21 p. (2023). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{M. Ghiat} et al., Comput. Appl. Math. 42, No. 1, Paper No. 67, 21 p. (2023; Zbl 1505.65319) Full Text: DOI OpenURL
Dali, Béchir; Guediri, Mohammed; Li, Chong; Shen, Weiping Newton’s method on two step nilpotent Lie groups: convergence criteria and the extended Smale point estimate theory. (English) Zbl 1504.65115 J. Nonlinear Convex Anal. 24, No. 2, 385-403 (2023). MSC: 65H10 22E25 PDF BibTeX XML Cite \textit{B. Dali} et al., J. Nonlinear Convex Anal. 24, No. 2, 385--403 (2023; Zbl 1504.65115) Full Text: Link OpenURL
Kumar, Yashveer; Srivastava, Nikhil; Singh, Aman; Singh, Vineet Kumar Wavelets based computational algorithms for multidimensional distributed order fractional differential equations with nonlinear source term. (English) Zbl 07648417 Comput. Math. Appl. 132, 73-103 (2023). MSC: 26A33 34A08 65T60 65L60 65L05 PDF BibTeX XML Cite \textit{Y. Kumar} et al., Comput. Math. Appl. 132, 73--103 (2023; Zbl 07648417) Full Text: DOI OpenURL
Schleicher, Dierk On the efficient global dynamics of Newton’s method for complex polynomials. (English) Zbl 07646813 Nonlinearity 36, No. 2, 1349-1377 (2023). MSC: 37N30 37F20 37F10 65H04 65E05 12D10 30C15 PDF BibTeX XML Cite \textit{D. Schleicher}, Nonlinearity 36, No. 2, 1349--1377 (2023; Zbl 07646813) Full Text: DOI arXiv OpenURL
Yang, Jing; Shi, Xueyu; Prokopyev, Oleg A. Exact solution approaches for a class of bilevel fractional programs. (English) Zbl 07643578 Optim. Lett. 17, No. 1, 191-210 (2023). MSC: 90C32 PDF BibTeX XML Cite \textit{J. Yang} et al., Optim. Lett. 17, No. 1, 191--210 (2023; Zbl 07643578) Full Text: DOI OpenURL
Ferreira, O. P.; Jean-Alexis, C.; Piétrus, A.; Silva, G. N. On Newton’s method for solving generalized equations. (English) Zbl 1506.65084 J. Complexity 74, Article ID 101697, 17 p. (2023). MSC: 65K15 49M15 90C30 PDF BibTeX XML Cite \textit{O. P. Ferreira} et al., J. Complexity 74, Article ID 101697, 17 p. (2023; Zbl 1506.65084) Full Text: DOI OpenURL
Novruzi, Arian; Protas, Bartosz An accelerated Sobolev gradient method for unconstrained optimization problems based on variable inner products. (English) Zbl 1504.90200 J. Comput. Appl. Math. 420, Article ID 114833, 18 p. (2023). MSC: 90C53 97N40 65K10 78M50 PDF BibTeX XML Cite \textit{A. Novruzi} and \textit{B. Protas}, J. Comput. Appl. Math. 420, Article ID 114833, 18 p. (2023; Zbl 1504.90200) Full Text: DOI OpenURL
Macías, E. M.; Pérez, R.; Martínez, H. J. An explicit polynomial to globalize algorithms for solving matrix polynomial equations. (English) Zbl 1497.65075 J. Comput. Appl. Math. 420, Article ID 114806, 21 p. (2023). MSC: 65F45 15A24 65H10 PDF BibTeX XML Cite \textit{E. M. Macías} et al., J. Comput. Appl. Math. 420, Article ID 114806, 21 p. (2023; Zbl 1497.65075) Full Text: DOI OpenURL
Tayyebi, Javad; Mitra, Ankan; Sefair, Jorge A. The continuous maximum capacity path interdiction problem. (English) Zbl 07602380 Eur. J. Oper. Res. 305, No. 1, 38-52 (2023). MSC: 90Bxx PDF BibTeX XML Cite \textit{J. Tayyebi} et al., Eur. J. Oper. Res. 305, No. 1, 38--52 (2023; Zbl 07602380) Full Text: DOI OpenURL
Brenner, Konstantin On the monotone convergence of Jacobi-Newton method for mildly nonlinear systems. (English) Zbl 1498.58006 J. Comput. Appl. Math. 419, Article ID 114719, 16 p. (2023). MSC: 58C15 65H10 65H20 65M22 PDF BibTeX XML Cite \textit{K. Brenner}, J. Comput. Appl. Math. 419, Article ID 114719, 16 p. (2023; Zbl 1498.58006) Full Text: DOI OpenURL
Peng, Shiyu; Weng, Hongming; Dai, Xi RTGW2020: an efficient implementation of the multi-orbital Gutzwiller method with general local interactions. (English) Zbl 07671133 Comput. Phys. Commun. 276, Article ID 108348, 20 p. (2022). MSC: 81-XX 74-XX PDF BibTeX XML Cite \textit{S. Peng} et al., Comput. Phys. Commun. 276, Article ID 108348, 20 p. (2022; Zbl 07671133) Full Text: DOI OpenURL
Chaiya, Malinee; Chaiya, Somjate A uniform bound for the distance to a root of complex polynomials under Newton’s method. (English) Zbl 07648473 Bull. Iran. Math. Soc. 48, No. 6, 3619-3635 (2022). MSC: 26A18 30C15 PDF BibTeX XML Cite \textit{M. Chaiya} and \textit{S. Chaiya}, Bull. Iran. Math. Soc. 48, No. 6, 3619--3635 (2022; Zbl 07648473) Full Text: DOI OpenURL
Argyros, Ioannis K.; Singh, Manoj Kumar On the semi-local convergence of contraharmonic-mean Newton’s method (CHMN). (English) Zbl 07639924 Commun. Korean Math. Soc. 37, No. 4, 1009-1023 (2022). MSC: 65J15 65G99 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{M. K. Singh}, Commun. Korean Math. Soc. 37, No. 4, 1009--1023 (2022; Zbl 07639924) Full Text: DOI OpenURL
Singh, Manoj Kumar; Argyros, Ioannis K.; Singh, Arvind K. An optimal 8th order Newton’s-type method with basin of attraction. (English) Zbl 1499.65180 S\(\vec{\text{e}}\)MA J. 79, No. 4, 631-645 (2022). MSC: 65H05 PDF BibTeX XML Cite \textit{M. K. Singh} et al., S\(\vec{\text{e}}\)MA J. 79, No. 4, 631--645 (2022; Zbl 1499.65180) Full Text: DOI OpenURL
Krishnendu, R.; Saeed, M.; George, S.; Jidesh, P. On Newton’s midpoint-type iterative Scheme’s convergence. (English) Zbl 1503.65117 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 266, 11 p. (2022). MSC: 65J15 PDF BibTeX XML Cite \textit{R. Krishnendu} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 266, 11 p. (2022; Zbl 1503.65117) Full Text: DOI OpenURL
Chacha, Chacha S. On solution and perturbation estimates for the nonlinear matrix equation \(X-A^*e^XA=I\). (English) Zbl 1505.65177 J. Egypt. Math. Soc. 30, Paper No. 18, 18 p. (2022). MSC: 65F45 15A24 PDF BibTeX XML Cite \textit{C. S. Chacha}, J. Egypt. Math. Soc. 30, Paper No. 18, 18 p. (2022; Zbl 1505.65177) Full Text: DOI OpenURL
Zhou, Fang; Jiang, Junzheng; Tay, David B. Distributed reconstruction of time-varying graph signals via a modified Newton’s method. (English) Zbl 1503.94014 J. Franklin Inst. 359, No. 16, 9401-9421 (2022). MSC: 94A12 90C53 90C90 05C90 PDF BibTeX XML Cite \textit{F. Zhou} et al., J. Franklin Inst. 359, No. 16, 9401--9421 (2022; Zbl 1503.94014) Full Text: DOI OpenURL
Bazikar, Fatemeh; Ketabchi, Saeed; Moosaei, Hossein Smooth augmented Lagrangian method for twin bounded support vector machine. (English) Zbl 1506.90244 Numer. Algebra Control Optim. 12, No. 4, 659-678 (2022). MSC: 90C30 PDF BibTeX XML Cite \textit{F. Bazikar} et al., Numer. Algebra Control Optim. 12, No. 4, 659--678 (2022; Zbl 1506.90244) Full Text: DOI OpenURL
Jiang, Run; Li, Yonglin; Wu, Haijun; Zou, Jun Finite element method for a nonlinear perfectly matched layer Helmholtz equation with high wave number. (English) Zbl 1502.65204 SIAM J. Numer. Anal. 60, No. 5, 2866-2896 (2022). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65H10 65N12 65N15 78A40 78A45 78A60 35Q60 35A01 35A02 PDF BibTeX XML Cite \textit{R. Jiang} et al., SIAM J. Numer. Anal. 60, No. 5, 2866--2896 (2022; Zbl 1502.65204) Full Text: DOI arXiv OpenURL
Nagaraj, Sriram Optimization and learning with nonlocal calculus. (English) Zbl 1496.65072 Found. Data Sci. 4, No. 3, 323-353 (2022). MSC: 65K05 68T09 90C30 PDF BibTeX XML Cite \textit{S. Nagaraj}, Found. Data Sci. 4, No. 3, 323--353 (2022; Zbl 1496.65072) Full Text: DOI arXiv OpenURL
Chen, Hao; Han, Lanshan; Lim, Alvin Beyond the EM algorithm: constrained optimization methods for latent class model. (English) Zbl 07603812 Commun. Stat., Simulation Comput. 51, No. 9, 5222-5244 (2022). MSC: 62-XX PDF BibTeX XML Cite \textit{H. Chen} et al., Commun. Stat., Simulation Comput. 51, No. 9, 5222--5244 (2022; Zbl 07603812) Full Text: DOI arXiv OpenURL
Bassetto, Sabrina; Cancès, Clément; Enchéry, Guillaume; Tran, Quang-Huy On several numerical strategies to solve Richards’ equation in heterogeneous media with finite volumes. (English) Zbl 1496.76132 Comput. Geosci. 26, No. 5, 1297-1322 (2022). MSC: 76S05 76M12 74S10 65H10 PDF BibTeX XML Cite \textit{S. Bassetto} et al., Comput. Geosci. 26, No. 5, 1297--1322 (2022; Zbl 1496.76132) Full Text: DOI OpenURL
Mouhadjer, Lotfi; Benahmed, Boubakeur A new inversion-free iterative method for solving a class of nonlinear matrix equations. (English) Zbl 1502.15011 Bull. Iran. Math. Soc. 48, No. 5, 2825-2841 (2022). Reviewer: Ali Morassaei (Zanjan) MSC: 15A24 15A45 65F45 PDF BibTeX XML Cite \textit{L. Mouhadjer} and \textit{B. Benahmed}, Bull. Iran. Math. Soc. 48, No. 5, 2825--2841 (2022; Zbl 1502.15011) Full Text: DOI OpenURL
Ho, Chin Pang; Kočvara, Michal; Parpas, Panos Newton-type multilevel optimization method. (English) Zbl 1501.90094 Optim. Methods Softw. 37, No. 1, 45-78 (2022). MSC: 90C30 90C53 PDF BibTeX XML Cite \textit{C. P. Ho} et al., Optim. Methods Softw. 37, No. 1, 45--78 (2022; Zbl 1501.90094) Full Text: DOI arXiv OpenURL
Kaltenbacher, Barbara; Rundell, William On the determination of a coefficient in a space-fractional equation with operators of Abel type. (English) Zbl 1497.35518 J. Math. Anal. Appl. 516, No. 2, Article ID 126539, 24 p. (2022). MSC: 35R30 35J25 35R11 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{W. Rundell}, J. Math. Anal. Appl. 516, No. 2, Article ID 126539, 24 p. (2022; Zbl 1497.35518) Full Text: DOI OpenURL
Steele, T. H. Typical dynamics of Newton’s method. (English) Zbl 1503.37033 Topology Appl. 318, Article ID 108201, 7 p. (2022). MSC: 37B20 37B35 26A18 54H25 PDF BibTeX XML Cite \textit{T. H. Steele}, Topology Appl. 318, Article ID 108201, 7 p. (2022; Zbl 1503.37033) Full Text: DOI OpenURL
Noakes, Lyle; Zhang, Erchuan Finding geodesics joining given points. (English) Zbl 1503.53083 Adv. Comput. Math. 48, No. 4, Paper No. 50, 27 p. (2022). MSC: 53C22 49M15 PDF BibTeX XML Cite \textit{L. Noakes} and \textit{E. Zhang}, Adv. Comput. Math. 48, No. 4, Paper No. 50, 27 p. (2022; Zbl 1503.53083) Full Text: DOI OpenURL
Li, Nan; Zhi, Lihong Improved two-step Newton’s method for computing simple multiple zeros of polynomial systems. (English) Zbl 1496.65064 Numer. Algorithms 91, No. 1, 19-50 (2022). MSC: 65H10 PDF BibTeX XML Cite \textit{N. Li} and \textit{L. Zhi}, Numer. Algorithms 91, No. 1, 19--50 (2022; Zbl 1496.65064) Full Text: DOI OpenURL
Birken, Philipp; Linders, Viktor Conservation properties of iterative methods for implicit discretizations of conservation laws. (English) Zbl 1501.65046 J. Sci. Comput. 92, No. 2, Paper No. 60, 32 p. (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65N08 65M22 65H10 65L06 65F10 35D30 PDF BibTeX XML Cite \textit{P. Birken} and \textit{V. Linders}, J. Sci. Comput. 92, No. 2, Paper No. 60, 32 p. (2022; Zbl 1501.65046) Full Text: DOI arXiv OpenURL
Chen, Qipin; Hao, Wenrui Randomized Newton’s method for solving differential equations based on the neural network discretization. (English) Zbl 1502.65167 J. Sci. Comput. 92, No. 2, Paper No. 49, 22 p. (2022). MSC: 65M75 68T07 49J10 49M15 65M12 65M15 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{W. Hao}, J. Sci. Comput. 92, No. 2, Paper No. 49, 22 p. (2022; Zbl 1502.65167) Full Text: DOI arXiv OpenURL
Sète, Olivier; Zur, Jan The transport of images method: computing all zeros of harmonic mappings by continuation. (English) Zbl 07563198 IMA J. Numer. Anal. 42, No. 3, 2403-2428 (2022). MSC: 65-XX PDF BibTeX XML Cite \textit{O. Sète} and \textit{J. Zur}, IMA J. Numer. Anal. 42, No. 3, 2403--2428 (2022; Zbl 07563198) Full Text: DOI arXiv OpenURL
Yue, Meiling; Xu, Fei; Xie, Manting A multilevel Newton’s method for the Steklov eigenvalue problem. (English) Zbl 1492.35398 Adv. Comput. Math. 48, No. 3, Paper No. 33, 29 p. (2022). MSC: 35Q99 65N25 65N30 65N55 PDF BibTeX XML Cite \textit{M. Yue} et al., Adv. Comput. Math. 48, No. 3, Paper No. 33, 29 p. (2022; Zbl 1492.35398) Full Text: DOI OpenURL
Flores, Mauricio; Calder, Jeff; Lerman, Gilad Analysis and algorithms for \(\ell_p\)-based semi-supervised learning on graphs. (English) Zbl 07557810 Appl. Comput. Harmon. Anal. 60, 77-122 (2022). MSC: 68-XX 90-XX PDF BibTeX XML Cite \textit{M. Flores} et al., Appl. Comput. Harmon. Anal. 60, 77--122 (2022; Zbl 07557810) Full Text: DOI arXiv OpenURL
Dali, Béchir; Guediri, Mohammed Local convergence of the Newton’s method in two step nilpotent Lie groups. (English) Zbl 07556352 J. Nonlinear Var. Anal. 6, No. 3, 199-212 (2022). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{B. Dali} and \textit{M. Guediri}, J. Nonlinear Var. Anal. 6, No. 3, 199--212 (2022; Zbl 07556352) Full Text: DOI OpenURL
Kirkby, J. Lars; Nguyen, Dang H.; Nguyen, Duy; Nguyen, Nhu N. Inversion-free subsampling Newton’s method for large sample logistic regression. (English) Zbl 1493.62448 Stat. Pap. 63, No. 3, 943-963 (2022). MSC: 62J12 62-08 PDF BibTeX XML Cite \textit{J. L. Kirkby} et al., Stat. Pap. 63, No. 3, 943--963 (2022; Zbl 1493.62448) Full Text: DOI OpenURL
Di, Bolei; Lamperski, Andrew Newton’s method, Bellman recursion and differential dynamic programming for unconstrained nonlinear dynamic games. (English) Zbl 1494.91020 Dyn. Games Appl. 12, No. 2, 394-442 (2022). MSC: 91A25 91A10 49L20 49M15 PDF BibTeX XML Cite \textit{B. Di} and \textit{A. Lamperski}, Dyn. Games Appl. 12, No. 2, 394--442 (2022; Zbl 1494.91020) Full Text: DOI OpenURL
Choi, Hayoung; Kim, Sang Dong; Shin, Byeong-Chun Choice of an initial guess for Newton’s method to solve nonlinear differential equations. (English) Zbl 07546678 Comput. Math. Appl. 117, 69-73 (2022). MSC: 65N30 76D05 65N06 65-02 65M22 PDF BibTeX XML Cite \textit{H. Choi} et al., Comput. Math. Appl. 117, 69--73 (2022; Zbl 07546678) Full Text: DOI OpenURL
Kim, Garam; Kim, Hyun-Min Deep learning approach for solving a quadratic matrix equation. (English) Zbl 1492.65102 East Asian Math. J. 38, No. 1, 95-105 (2022). MSC: 65F45 15A24 65H10 68T07 PDF BibTeX XML Cite \textit{G. Kim} and \textit{H.-M. Kim}, East Asian Math. J. 38, No. 1, 95--105 (2022; Zbl 1492.65102) Full Text: DOI OpenURL
Jia, Xiaojing; Liang, Xin; Shen, Chungen; Zhang, Lei-Hong Solving the cubic regularization model by a nested restarting Lanczos method. (English) Zbl 1489.90183 SIAM J. Matrix Anal. Appl. 43, No. 2, 812-839 (2022). MSC: 90C30 90C06 90C53 65K05 65F15 PDF BibTeX XML Cite \textit{X. Jia} et al., SIAM J. Matrix Anal. Appl. 43, No. 2, 812--839 (2022; Zbl 1489.90183) Full Text: DOI OpenURL
Alcântara, Adriano A.; Carmo, Bruno A.; Clark, Haroldo R.; Guardia, Ronald R.; Rincon, Mauro A. Nonlinear wave equation with Dirichlet and acoustic boundary conditions: theoretical analysis and numerical simulation. (English) Zbl 1499.35378 Comput. Appl. Math. 41, No. 4, Paper No. 141, 21 p. (2022). MSC: 35L20 65M60 65M06 PDF BibTeX XML Cite \textit{A. A. Alcântara} et al., Comput. Appl. Math. 41, No. 4, Paper No. 141, 21 p. (2022; Zbl 1499.35378) Full Text: DOI OpenURL
Grapiglia, G. N.; Gonçalves, M. L. N.; Silva, G. N. A cubic regularization of Newton’s method with finite difference Hessian approximations. (English) Zbl 1492.65166 Numer. Algorithms 90, No. 2, 607-630 (2022). MSC: 65K05 90C53 PDF BibTeX XML Cite \textit{G. N. Grapiglia} et al., Numer. Algorithms 90, No. 2, 607--630 (2022; Zbl 1492.65166) Full Text: DOI OpenURL
Ezquerro, J. A.; Hernández-Verón, M. A.; Magreñán, Á. A. How to increase the accessibility of Newton’s method for operators with center-Lipschitz continuous first derivative. (English) Zbl 1492.65147 Numer. Funct. Anal. Optim. 43, No. 3, 350-363 (2022). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{J. A. Ezquerro} et al., Numer. Funct. Anal. Optim. 43, No. 3, 350--363 (2022; Zbl 1492.65147) Full Text: DOI OpenURL
Georgieva, Irina; Hofreither, Clemens A Newton’s method for best uniform polynomial approximation. (English) Zbl 1490.65021 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 49-56 (2022). MSC: 65D15 41A20 PDF BibTeX XML Cite \textit{I. Georgieva} and \textit{C. Hofreither}, Lect. Notes Comput. Sci. 13127, 49--56 (2022; Zbl 1490.65021) Full Text: DOI OpenURL
Fang, Ming; Perng, Cherng-tiao A mean-variance acreage model. (English) Zbl 1492.91011 Appl. Anal. 101, No. 4, 1211-1224 (2022). MSC: 91-10 91A80 PDF BibTeX XML Cite \textit{M. Fang} and \textit{C.-t. Perng}, Appl. Anal. 101, No. 4, 1211--1224 (2022; Zbl 1492.91011) Full Text: DOI OpenURL
Wolff, Mareike A class of Newton maps with Julia sets of Lebesgue measure zero. (English) Zbl 1500.37038 Math. Z. 301, No. 1, 665-711 (2022). Reviewer: Weiwei Cui (Lund) MSC: 37F10 30D05 PDF BibTeX XML Cite \textit{M. Wolff}, Math. Z. 301, No. 1, 665--711 (2022; Zbl 1500.37038) Full Text: DOI arXiv OpenURL
Balashov, M. V.; Tremba, A. A. Error bound conditions and convergence of optimization methods on smooth and proximally smooth manifolds. (English) Zbl 1490.90224 Optimization 71, No. 3, 711-735 (2022). MSC: 90C26 65K05 46N10 65K10 PDF BibTeX XML Cite \textit{M. V. Balashov} and \textit{A. A. Tremba}, Optimization 71, No. 3, 711--735 (2022; Zbl 1490.90224) Full Text: DOI arXiv OpenURL
Kouri, D. P. A matrix-free trust-region Newton algorithm for convex-constrained optimization. (English) Zbl 1489.90136 Optim. Lett. 16, No. 3, 983-997 (2022). MSC: 90C26 90C53 PDF BibTeX XML Cite \textit{D. P. Kouri}, Optim. Lett. 16, No. 3, 983--997 (2022; Zbl 1489.90136) Full Text: DOI OpenURL
Lavrova, Olga; Polevikov, Viktor Numerical study of the shielding properties of a ferrofluid taking into account magnitophoresis and particle interaction. (English) Zbl 07499250 Math. Model. Anal. 27, No. 1, 161-178 (2022). MSC: 65-XX 35K57 35Q60 65N06 65N38 PDF BibTeX XML Cite \textit{O. Lavrova} and \textit{V. Polevikov}, Math. Model. Anal. 27, No. 1, 161--178 (2022; Zbl 07499250) Full Text: DOI OpenURL
Zhadan, V. G. Primal-dual Newton method with steepest descent for the linear semidefinite programming problem: Newton’s system of equations. (English. Russian original) Zbl 1487.90519 Comput. Math. Math. Phys. 62, No. 2, 232-247 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 2, 232-248 (2022). MSC: 90C22 90C53 PDF BibTeX XML Cite \textit{V. G. Zhadan}, Comput. Math. Math. Phys. 62, No. 2, 232--247 (2022; Zbl 1487.90519); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 2, 232--248 (2022) Full Text: DOI OpenURL
Comemuang, Chalermwut; Orosram, Wachirarak Fourth order iterative methods for solving nonlinear equations. (English) Zbl 1499.65170 Int. J. Math. Comput. Sci. 17, No. 1, 163-172 (2022). MSC: 65H05 PDF BibTeX XML Cite \textit{C. Comemuang} and \textit{W. Orosram}, Int. J. Math. Comput. Sci. 17, No. 1, 163--172 (2022; Zbl 1499.65170) Full Text: Link OpenURL
Trachoo, K.; Prathumwan, D.; Chaiya, I. An efficient two-step iterative method with fifth-order convergence for solving non-linear equations. (English) Zbl 1499.65181 J. Anal. Appl. 20, No. 1, 81-90 (2022). MSC: 65H05 PDF BibTeX XML Cite \textit{K. Trachoo} et al., J. Anal. Appl. 20, No. 1, 81--90 (2022; Zbl 1499.65181) Full Text: Link OpenURL
Wang, Jiaxi; Ouyang, Wei Newton’s method for solving generalized equations without Lipschitz condition. (English) Zbl 1484.49038 J. Optim. Theory Appl. 192, No. 2, 510-532 (2022). MSC: 49J53 49M15 65K10 90C48 PDF BibTeX XML Cite \textit{J. Wang} and \textit{W. Ouyang}, J. Optim. Theory Appl. 192, No. 2, 510--532 (2022; Zbl 1484.49038) Full Text: DOI OpenURL
Sadkane, Miloud Inexact inverse subspace iteration with preconditioning applied to quadratic matrix polynomials. (English) Zbl 1481.65078 Comput. Methods Appl. Math. 22, No. 1, 181-197 (2022). MSC: 65H17 65F15 65F08 PDF BibTeX XML Cite \textit{M. Sadkane}, Comput. Methods Appl. Math. 22, No. 1, 181--197 (2022; Zbl 1481.65078) Full Text: DOI OpenURL
Lee, Eunjung; Na, Hyesun Dual system least-squares finite element method for a hyperbolic problem. (English) Zbl 1482.65213 Comput. Methods Appl. Math. 22, No. 1, 113-131 (2022). MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{E. Lee} and \textit{H. Na}, Comput. Methods Appl. Math. 22, No. 1, 113--131 (2022; Zbl 1482.65213) Full Text: DOI OpenURL
Tian, Jiayue; Zhao, Xueyan; Deng, Feiqi Incremental Newton’s iterative algorithm for optimal control of Itô stochastic systems. (English) Zbl 07484262 Appl. Math. Comput. 421, Article ID 126958, 11 p. (2022). MSC: 93E20 93E03 49K45 49M15 49N10 60H10 65C30 93-08 93B52 PDF BibTeX XML Cite \textit{J. Tian} et al., Appl. Math. Comput. 421, Article ID 126958, 11 p. (2022; Zbl 07484262) Full Text: DOI OpenURL
Mai, Tina; Mortari, Daniele Theory of functional connections applied to quadratic and nonlinear programming under equality constraints. (English) Zbl 1490.65118 J. Comput. Appl. Math. 406, Article ID 113912, 22 p. (2022). MSC: 65K05 90C20 90C25 PDF BibTeX XML Cite \textit{T. Mai} and \textit{D. Mortari}, J. Comput. Appl. Math. 406, Article ID 113912, 22 p. (2022; Zbl 1490.65118) Full Text: DOI arXiv OpenURL
Kelley, C. T. Newton’s method in mixed precision. (English) Zbl 1484.65108 SIAM Rev. 64, No. 1, 191-211 (2022). MSC: 65H10 45G10 65G50 PDF BibTeX XML Cite \textit{C. T. Kelley}, SIAM Rev. 64, No. 1, 191--211 (2022; Zbl 1484.65108) Full Text: DOI OpenURL
Behl, Ramandeep; Arora, Himani CMMSE: a novel scheme having seventh-order convergence for nonlinear systems. (English) Zbl 1481.65074 J. Comput. Appl. Math. 404, Article ID 113301, 16 p. (2022). MSC: 65H10 65Y20 PDF BibTeX XML Cite \textit{R. Behl} and \textit{H. Arora}, J. Comput. Appl. Math. 404, Article ID 113301, 16 p. (2022; Zbl 1481.65074) Full Text: DOI OpenURL
Candelario, Giro; Cordero, Alicia; Torregrosa, Juan R.; Vassileva, María P. An optimal and low computational cost fractional Newton-type method for solving nonlinear equations. (English) Zbl 1487.65053 Appl. Math. Lett. 124, Article ID 107650, 8 p. (2022). Reviewer: Juan Ramón Torregrosa Sánchez (Valencia) MSC: 65H05 26A33 PDF BibTeX XML Cite \textit{G. Candelario} et al., Appl. Math. Lett. 124, Article ID 107650, 8 p. (2022; Zbl 1487.65053) Full Text: DOI OpenURL
Han, K. S.; Park, B. H.; Aydemir, A. Y.; Woo, M. H. A free-boundary equilibrium solver with a hybrid iteration method in a semi-bounded computational domain. (English) Zbl 07692439 Comput. Phys. Commun. 264, Article ID 107888, 13 p. (2021). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{K. S. Han} et al., Comput. Phys. Commun. 264, Article ID 107888, 13 p. (2021; Zbl 07692439) Full Text: DOI OpenURL
Rashid, M. H. Lipschitz-like mapping and its application to convergence analysis of a variant of Newton’s method. (Russian. English summary) Zbl 07617332 Sib. Zh. Vychisl. Mat. 24, No. 2, 193-212 (2021). MSC: 47H04 49J53 65K10 90C30 PDF BibTeX XML Cite \textit{M. H. Rashid}, Sib. Zh. Vychisl. Mat. 24, No. 2, 193--212 (2021; Zbl 07617332) Full Text: DOI MNR OpenURL
Dubeau, François; Gnang, Calvin Schröder’s processes and the best ways of increasing order of Newton’s method. (English) Zbl 07573446 Elem. Math. 76, No. 4, 165-177 (2021). MSC: 65H05 65B99 PDF BibTeX XML Cite \textit{F. Dubeau} and \textit{C. Gnang}, Elem. Math. 76, No. 4, 165--177 (2021; Zbl 07573446) Full Text: DOI OpenURL
Akrivis, Georgios; Li, Buyang Linearization of the finite element method for gradient flows by Newton’s method. (English) Zbl 07528281 IMA J. Numer. Anal. 41, No. 2, 1411-1440 (2021). MSC: 65Mxx PDF BibTeX XML Cite \textit{G. Akrivis} and \textit{B. Li}, IMA J. Numer. Anal. 41, No. 2, 1411--1440 (2021; Zbl 07528281) Full Text: DOI OpenURL
Burachik, Regina S.; Caldwell, Bethany I.; Kaya, C. Yalçın A generalized multivariable Newton method. (English) Zbl 07525619 Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 15, 31 p. (2021). MSC: 49M15 65H04 65H10 PDF BibTeX XML Cite \textit{R. S. Burachik} et al., Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 15, 31 p. (2021; Zbl 07525619) Full Text: DOI arXiv OpenURL
Li, Jiawei; Tomin, Pavel; Tchelepi, Hamdi Sequential fully implicit Newton method for compositional flow and transport. (English) Zbl 07515443 J. Comput. Phys. 444, Article ID 110541, 20 p. (2021). MSC: 76Mxx 76Sxx 65Fxx PDF BibTeX XML Cite \textit{J. Li} et al., J. Comput. Phys. 444, Article ID 110541, 20 p. (2021; Zbl 07515443) Full Text: DOI OpenURL
Yaslan. H., Cerdik Numerical solution of the multi-term variable-order space fractional nonlinear partial differential equations. (English) Zbl 1499.35190 Miskolc Math. Notes 22, No. 2, 1027-1038 (2021). MSC: 35G31 35R11 65M70 PDF BibTeX XML Cite \textit{C. Yaslan. H.}, Miskolc Math. Notes 22, No. 2, 1027--1038 (2021; Zbl 1499.35190) Full Text: DOI OpenURL
Mohd, Ismail Bin; Dasril, Yosza Bin A globally convergent interval Newton’s method for computing and bounding real roots of a function with one variable. (English) Zbl 1486.65048 Int. J. Math. Oper. Res. 20, No. 4, 521-547 (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{I. B. Mohd} and \textit{Y. B. Dasril}, Int. J. Math. Oper. Res. 20, No. 4, 521--547 (2021; Zbl 1486.65048) Full Text: DOI OpenURL
Iben, U.; Dörr, A.; Boeru, E.; Astrakhantsev, N. Inversion of equations of state by combining multi-task neural networks and Newton’s method. (English) Zbl 07484767 Inverse Probl. Sci. Eng. 29, No. 13, 3490-3508 (2021). MSC: 76Mxx 76Nxx 76Jxx PDF BibTeX XML Cite \textit{U. Iben} et al., Inverse Probl. Sci. Eng. 29, No. 13, 3490--3508 (2021; Zbl 07484767) Full Text: DOI OpenURL
Usurelu, Gabriela Ioana; Bejenaru, Andreea; Postolache, Mihai Newton-like methods and polynomiographic visualization of modified Thakur processes. (English) Zbl 07476604 Int. J. Comput. Math. 98, No. 5, 1049-1068 (2021). MSC: 47H09 47J05 47J25 PDF BibTeX XML Cite \textit{G. I. Usurelu} et al., Int. J. Comput. Math. 98, No. 5, 1049--1068 (2021; Zbl 07476604) Full Text: DOI OpenURL
Argyros, Ioannis K.; George, Santhosh Expanding the applicability of Newton’s method and of a robust modified Newton’s method. (English) Zbl 1480.65116 Appl. Math. 48, No. 1, 89-100 (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, Appl. Math. 48, No. 1, 89--100 (2021; Zbl 1480.65116) Full Text: DOI OpenURL
Torkashvand, Vali; Araghi, Mohammad Ali Fariborzi Construction of iterative adaptive methods with memory with 100% improvement of convergence order. (English) Zbl 1478.65039 J. Math. Ext. 15, No. 3, Paper No. 16, 32 p. (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{V. Torkashvand} and \textit{M. A. F. Araghi}, J. Math. Ext. 15, No. 3, Paper No. 16, 32 p. (2021; Zbl 1478.65039) Full Text: DOI Link OpenURL
Sharma, Debasis; Parhi, Sanjaya Kumar Local convergence of two Newton-like methods under Hölder continuity condition in Banach spaces. (English) Zbl 1482.65083 Int. J. Math. Oper. Res. 19, No. 4, 500-514 (2021). MSC: 65J15 49M15 PDF BibTeX XML Cite \textit{D. Sharma} and \textit{S. K. Parhi}, Int. J. Math. Oper. Res. 19, No. 4, 500--514 (2021; Zbl 1482.65083) Full Text: DOI OpenURL
Avakov, E. R.; Magaril-Il’yaev, G. G. A note on the classical implicit function theorem. (English. Russian original) Zbl 1481.58006 Math. Notes 110, No. 6, 942-946 (2021); translation from Mat. Zametki 110, No. 6, 911-915 (2021). Reviewer: Antonio Roberto da Silva (Rio de Janeiro) MSC: 58C15 PDF BibTeX XML Cite \textit{E. R. Avakov} and \textit{G. G. Magaril-Il'yaev}, Math. Notes 110, No. 6, 942--946 (2021; Zbl 1481.58006); translation from Mat. Zametki 110, No. 6, 911--915 (2021) Full Text: DOI OpenURL
Zhou, Shenglong; Pan, Lili; Xiu, Naihua; Qi, Hou-Duo Quadratic convergence of smoothing Newton’s method for 0/1 loss optimization. (English) Zbl 1483.90126 SIAM J. Optim. 31, No. 4, 3184-3211 (2021). MSC: 90C26 90C30 65K05 PDF BibTeX XML Cite \textit{S. Zhou} et al., SIAM J. Optim. 31, No. 4, 3184--3211 (2021; Zbl 1483.90126) Full Text: DOI arXiv OpenURL
Yong, Longquan Advances in Newton’s iterative methods for nonlinear equation. (Chinese. English summary) Zbl 1488.65120 Math. Pract. Theory 51, No. 15, 240-249 (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{L. Yong}, Math. Pract. Theory 51, No. 15, 240--249 (2021; Zbl 1488.65120) OpenURL
Zhang, Yingchao; Mei, Liangcai; Lin, Yingzhen A novel method for nonlinear boundary value problems based on multiscale orthogonal base. (English) Zbl 07446703 Int. J. Comput. Methods 18, No. 9, Article ID 2150036, 17 p. (2021). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{Y. Zhang} et al., Int. J. Comput. Methods 18, No. 9, Article ID 2150036, 17 p. (2021; Zbl 07446703) Full Text: DOI OpenURL
Kräutle, Serge; Hodai, Jan; Knabner, Peter Robust simulation of mineral precipitation-dissolution problems with variable mineral surface area. (English) Zbl 1476.92060 J. Eng. Math. 129, Paper No. 5, 26 p. (2021). MSC: 92E20 35K57 65M99 76S05 PDF BibTeX XML Cite \textit{S. Kräutle} et al., J. Eng. Math. 129, Paper No. 5, 26 p. (2021; Zbl 1476.92060) Full Text: DOI OpenURL
Weng, Peter Chang-Yi Solving two generalized nonlinear matrix equations. (English) Zbl 07435227 J. Appl. Math. Comput. 66, No. 1-2, 543-559 (2021). MSC: 65F45 PDF BibTeX XML Cite \textit{P. C. Y. Weng}, J. Appl. Math. Comput. 66, No. 1--2, 543--559 (2021; Zbl 07435227) Full Text: DOI OpenURL
Duc Thach Son Vu; Ben Gharbia, Ibtihel; Haddou, Mounir; Quang Huy Tran A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems. (English) Zbl 07431569 Math. Comput. Simul. 190, 1243-1274 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Duc Thach Son Vu} et al., Math. Comput. Simul. 190, 1243--1274 (2021; Zbl 07431569) Full Text: DOI Link OpenURL
Alcântara, Adriano A.; Carmo, Bruno A.; Clark, Haroldo R.; Guardia, Ronald R.; Rincon, Mauro A. On a nonlinear problem with Dirichlet and acoustic boundary conditions. (English) Zbl 07426890 Appl. Math. Comput. 411, Article ID 126514, 19 p. (2021). MSC: 35L20 65M06 65M60 PDF BibTeX XML Cite \textit{A. A. Alcântara} et al., Appl. Math. Comput. 411, Article ID 126514, 19 p. (2021; Zbl 07426890) Full Text: DOI OpenURL
Singh, Manoj Kumar; Singh, Arvind K. On a Newton-type method under weak conditions with dynamics. (English) Zbl 1473.65058 Asian-Eur. J. Math. 14, No. 8, Article ID 2150145, 16 p. (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{M. K. Singh} and \textit{A. K. Singh}, Asian-Eur. J. Math. 14, No. 8, Article ID 2150145, 16 p. (2021; Zbl 1473.65058) Full Text: DOI OpenURL
Hernández-Verón, M. A.; Yadav, Sonia; Martínez, Eulalia; Singh, Sukhjit Solving nonlinear integral equations with non-separable kernel via a high-order iterative process. (English) Zbl 1497.45006 Appl. Math. Comput. 409, Article ID 126385, 12 p. (2021). MSC: 45G10 47H99 65J15 PDF BibTeX XML Cite \textit{M. A. Hernández-Verón} et al., Appl. Math. Comput. 409, Article ID 126385, 12 p. (2021; Zbl 1497.45006) Full Text: DOI OpenURL
Denisov, D. V.; Evtushenko, Yu. G.; Tret’yakov, A. A. Some properties of smooth convex functions and Newton’s method. (English. Russian original) Zbl 1480.90192 Dokl. Math. 103, No. 2, 76-80 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 497, 12-17 (2021). MSC: 90C25 90C53 PDF BibTeX XML Cite \textit{D. V. Denisov} et al., Dokl. Math. 103, No. 2, 76--80 (2021; Zbl 1480.90192); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 497, 12--17 (2021) Full Text: DOI OpenURL
Lu, Di; Guo, Chun-Hua Explicit \(p\)-dependent convergence regions of Newton’s method for the matrix \(p\)th root. (English) Zbl 1503.65094 Appl. Math. Lett. 122, Article ID 107566, 6 p. (2021). MSC: 65F60 15A16 PDF BibTeX XML Cite \textit{D. Lu} and \textit{C.-H. Guo}, Appl. Math. Lett. 122, Article ID 107566, 6 p. (2021; Zbl 1503.65094) Full Text: DOI OpenURL
Pchelintseva, Irina Yur’evna; Litovka, Yuriĭ Vladimirovich Mathematical model and numerical scheme for calculation of electric fields in galvanic baths with non-conductive screen. (Russian. English summary) Zbl 1478.78051 Differ. Uravn. Protsessy Upr. 2021, No. 3, 85-97 (2021). MSC: 78A57 78A55 35J05 78M20 65H10 PDF BibTeX XML Cite \textit{I. Y. Pchelintseva} and \textit{Y. V. Litovka}, Differ. Uravn. Protsessy Upr. 2021, No. 3, 85--97 (2021; Zbl 1478.78051) Full Text: Link OpenURL
Ezquerro, J. A.; Hernández-Verón, M. A. Restricted global convergence domains for integral equations of the Fredholm-Hammerstein type. (English) Zbl 1470.65213 Singh, Harendra (ed.) et al., Topics in integral and integro-differential equations. Theory and applications. Cham: Springer. Stud. Syst. Decis. Control 340, 125-148 (2021). MSC: 65R20 45B05 47H30 65J15 PDF BibTeX XML Cite \textit{J. A. Ezquerro} and \textit{M. A. Hernández-Verón}, Stud. Syst. Decis. Control 340, 125--148 (2021; Zbl 1470.65213) Full Text: DOI OpenURL
Yong, Longquan Newton’s iteration method with fifth-order convergence for absolute value equation. (Chinese. English summary) Zbl 1488.65123 Math. Pract. Theory 51, No. 7, 261-267 (2021). MSC: 65H10 PDF BibTeX XML Cite \textit{L. Yong}, Math. Pract. Theory 51, No. 7, 261--267 (2021; Zbl 1488.65123) OpenURL
Leeb, William Rapid evaluation of the spectral signal detection threshold and Stieltjes transform. (English) Zbl 1490.65122 Adv. Comput. Math. 47, No. 4, Paper No. 60, 29 p. (2021). MSC: 65K10 49M15 60B20 94A12 PDF BibTeX XML Cite \textit{W. Leeb}, Adv. Comput. Math. 47, No. 4, Paper No. 60, 29 p. (2021; Zbl 1490.65122) Full Text: DOI arXiv OpenURL
Shiraishi, Shunsuke; Obata, Tsuneshi On a maximum eigenvalue of third-order pairwise comparison matrix in analytic hierarchy process and convergence of Newton’s method. (English) Zbl 1472.90046 SN Oper. Res. Forum 2, No. 3, Paper No. 30, 11 p. (2021). MSC: 90B50 90C08 PDF BibTeX XML Cite \textit{S. Shiraishi} and \textit{T. Obata}, SN Oper. Res. Forum 2, No. 3, Paper No. 30, 11 p. (2021; Zbl 1472.90046) Full Text: DOI OpenURL
Gorbova, Tat’yana Vladimirovna Numerical algorithm for fractional order population dynamics model with delay. (Russian. English summary) Zbl 1473.65105 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 57, 91-103 (2021). MSC: 65M06 65M12 65M15 65Q20 PDF BibTeX XML Cite \textit{T. V. Gorbova}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 57, 91--103 (2021; Zbl 1473.65105) Full Text: DOI MNR OpenURL
Zhao, Yong-Liang; Li, Meng; Ostermann, Alexander; Gu, Xian-Ming An efficient second-order energy stable BDF scheme for the space fractional Cahn-Hilliard equation. (English) Zbl 1481.65168 BIT 61, No. 3, 1061-1092 (2021). MSC: 65M06 65M12 65N06 65F08 65F10 65H10 15B05 26A33 35R11 35Q35 PDF BibTeX XML Cite \textit{Y.-L. Zhao} et al., BIT 61, No. 3, 1061--1092 (2021; Zbl 1481.65168) Full Text: DOI arXiv OpenURL
Ketabchi, Saeed; Moosaei, Hossein; Hladík, Milan On the minimum-norm solution of convex quadratic programming. (English) Zbl 1471.90106 RAIRO, Oper. Res. 55, No. 1, 247-260 (2021). MSC: 90C20 90C25 15A39 PDF BibTeX XML Cite \textit{S. Ketabchi} et al., RAIRO, Oper. Res. 55, No. 1, 247--260 (2021; Zbl 1471.90106) Full Text: DOI OpenURL
Zhou, Shenglong; Xiu, Naihua; Qi, Hou-Duo Global and quadratic convergence of Newton hard-thresholding pursuit. (English) Zbl 07370529 J. Mach. Learn. Res. 22, Paper No. 12, 45 p. (2021). MSC: 68T05 PDF BibTeX XML Cite \textit{S. Zhou} et al., J. Mach. Learn. Res. 22, Paper No. 12, 45 p. (2021; Zbl 07370529) Full Text: arXiv Link OpenURL