Labarre, Florian; Maingé, Paul-Emile First-order frameworks for continuous Newton-like dynamics governed by maximally monotone operators. (English) Zbl 1498.37139 Set-Valued Var. Anal. 30, No. 2, 425-451 (2022). MSC: 37N40 47H05 46N10 65K05 65K10 90B50 90C25 PDF BibTeX XML Cite \textit{F. Labarre} and \textit{P.-E. Maingé}, Set-Valued Var. Anal. 30, No. 2, 425--451 (2022; Zbl 1498.37139) Full Text: DOI OpenURL
Ryoo, Cheon Seoung Verified computations of solutions for some unilateral boundary value problems for second order equations. (English) Zbl 1499.65680 J. Appl. Math. Inform. 39, No. 3-4, 295-302 (2021). MSC: 65N30 65N15 65G20 65G30 PDF BibTeX XML Cite \textit{C. S. Ryoo}, J. Appl. Math. Inform. 39, No. 3--4, 295--302 (2021; Zbl 1499.65680) Full Text: DOI OpenURL
Sharma, Janak Raj; Kumar, Sunil A class of computationally efficient numerical algorithms for locating multiple zeros. (English) Zbl 1488.65119 Afr. Mat. 32, No. 5-6, 853-864 (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{J. R. Sharma} and \textit{S. Kumar}, Afr. Mat. 32, No. 5--6, 853--864 (2021; Zbl 1488.65119) Full Text: DOI OpenURL
Ek, David; Forsgren, Anders Approximate solution of system of equations arising in interior-point methods for bound-constrained optimization. (English) Zbl 1469.90137 Comput. Optim. Appl. 79, No. 1, 155-191 (2021). MSC: 90C30 90C51 PDF BibTeX XML Cite \textit{D. Ek} and \textit{A. Forsgren}, Comput. Optim. Appl. 79, No. 1, 155--191 (2021; Zbl 1469.90137) Full Text: DOI arXiv OpenURL
Lohmann, Christoph An algebraic flux correction scheme facilitating the use of Newton-like solution strategies. (English) Zbl 07308028 Comput. Math. Appl. 84, 56-76 (2021). MSC: 65M60 65N30 76M10 65M12 65N12 PDF BibTeX XML Cite \textit{C. Lohmann}, Comput. Math. Appl. 84, 56--76 (2021; Zbl 07308028) Full Text: DOI Link OpenURL
Bartholomew-Biggs, Michael; Beddiaf, Salah; Christianson, Bruce A comparison of methods for traversing regions of non-convexity in optimization problems. (English) Zbl 1471.65046 Numer. Algorithms 85, No. 1, 231-253 (2020). Reviewer: Nada Djuranović-Miličić (Beograd) MSC: 65K05 90C26 90C30 PDF BibTeX XML Cite \textit{M. Bartholomew-Biggs} et al., Numer. Algorithms 85, No. 1, 231--253 (2020; Zbl 1471.65046) Full Text: DOI Link OpenURL
Etling, Tommy; Herzog, Roland; Loayza, Estefanía; Wachsmuth, Gerd First and second order shape optimization based on restricted mesh deformations. (English) Zbl 1475.49050 SIAM J. Sci. Comput. 42, No. 2, A1200-A1225 (2020). Reviewer: Juan-Enrique Martínez-Legaz (Barcelona) MSC: 49Q10 65N30 49M15 PDF BibTeX XML Cite \textit{T. Etling} et al., SIAM J. Sci. Comput. 42, No. 2, A1200--A1225 (2020; Zbl 1475.49050) Full Text: DOI arXiv OpenURL
Argyros, Ioannis K.; Magreñán, Á. Alberto; Moreno, Daniel; Orcos, Lara; Sicilia, Juan Antonio Weaker conditions for inexact mutitpoint Newton-like methods. (English) Zbl 1433.65092 J. Math. Chem. 58, No. 3, 706-716 (2020). MSC: 65H10 65J15 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., J. Math. Chem. 58, No. 3, 706--716 (2020; Zbl 1433.65092) Full Text: DOI OpenURL
Sharma, Janak Raj; Kumar, Deepak On a class of efficient higher order Newton-like methods. (English) Zbl 1472.49056 Math. Model. Anal. 24, No. 1, 105-126 (2019). MSC: 49M15 41A25 65H10 65J10 90C53 PDF BibTeX XML Cite \textit{J. R. Sharma} and \textit{D. Kumar}, Math. Model. Anal. 24, No. 1, 105--126 (2019; Zbl 1472.49056) Full Text: DOI OpenURL
Sysala, Stanislav; Haslinger, Jaroslav; Repin, Sergey Reliable computation and local mesh adaptivity in limit analysis. (English) Zbl 1463.49041 Chleboun, J. (ed.) et al., Programs and algorithms of numerical mathematics 19. Proceedings of the 19th seminar (PANM), Hejnice, Czech Republic, June 24–29, 2018. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics. 149-158 (2019). Reviewer: Ondřej Bartoš (Praha) MSC: 49M15 74C05 74S05 90C25 PDF BibTeX XML Cite \textit{S. Sysala} et al., in: Programs and algorithms of numerical mathematics 19. Proceedings of the 19th seminar (PANM), Hejnice, Czech Republic, June 24--29, 2018. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics. 149--158 (2019; Zbl 1463.49041) Full Text: DOI OpenURL
Boţ, Radu Ioan; Csetnek, Ernö Robert Newton-like dynamics associated to nonconvex optimization problems. (English) Zbl 1432.34025 Hosseini, Seyedehsomayeh (ed.) et al., Nonsmooth optimization and its applications. Based on the workshop “Nonsmooth Optimization and its Applications”, Bonn, Germany, May 15–19, 2017. Cham: Birkhäuser. ISNM, Int. Ser. Numer. Math. 170, 131-149 (2019). Reviewer: Aurelian Cernea (Bucharest) MSC: 34A60 47J25 47H05 90C26 90C30 65K10 PDF BibTeX XML Cite \textit{R. I. Boţ} and \textit{E. R. Csetnek}, ISNM, Int. Ser. Numer. Math. 170, 131--149 (2019; Zbl 1432.34025) Full Text: DOI arXiv OpenURL
Argyros, Ioannis K.; Legaz, M. J.; Magreñán, Á. A.; Moreno, D.; Sicilia, Juan Antonio Extended local convergence for some inexact methods with applications. (English) Zbl 1415.65123 J. Math. Chem. 57, No. 5, 1508-1523 (2019). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., J. Math. Chem. 57, No. 5, 1508--1523 (2019; Zbl 1415.65123) Full Text: DOI OpenURL
Argyros, I. K.; Khattri, S. K.; George, S. Local convergence of an at least sixth-order method in Banach spaces. (English) Zbl 1412.65036 J. Fixed Point Theory Appl. 21, No. 1, Paper No. 23, 11 p. (2019). MSC: 65J15 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., J. Fixed Point Theory Appl. 21, No. 1, Paper No. 23, 11 p. (2019; Zbl 1412.65036) Full Text: DOI OpenURL
Cacace, Simone; Camilli, Fabio Finite difference methods for mean field games systems. (English) Zbl 1422.91082 Cardaliaguet, Pierre (ed.) et al., PDE models for multi-agent phenomena. Selected papers based on the presentations at the workshop, Rome, Italy, November 28 – December 2, 2016. Cham: Springer. Springer INdAM Ser. 28, 21-47 (2018). MSC: 91A15 91A23 65N06 91-08 PDF BibTeX XML Cite \textit{S. Cacace} and \textit{F. Camilli}, Springer INdAM Ser. 28, 21--47 (2018; Zbl 1422.91082) Full Text: DOI OpenURL
Sharma, Janak Raj; Argyros, Ioannis K.; Kumar, Deepak Newton-like methods with increasing order of convergence and their convergence analysis in Banach space. (English) Zbl 1411.65080 S\(\vec{\text{e}}\)MA J. 75, No. 3, 545-561 (2018). MSC: 65J15 PDF BibTeX XML Cite \textit{J. R. Sharma} et al., S\(\vec{\text{e}}\)MA J. 75, No. 3, 545--561 (2018; Zbl 1411.65080) Full Text: DOI OpenURL
Argyros, Ioannis K.; Santhosh, George Ball convergence theorems for general iterative procedures and their applications. (English) Zbl 1424.65074 Southeast Asian Bull. Math. 42, No. 3, 315-326 (2018). MSC: 65J15 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{G. Santhosh}, Southeast Asian Bull. Math. 42, No. 3, 315--326 (2018; Zbl 1424.65074) OpenURL
Silva, G. N.; Santos, P. S. M.; Souza, S. S. Extended Newton-type method for nonlinear functions with values in a cone. (English) Zbl 1402.65047 Comput. Appl. Math. 37, No. 4, 5082-5097 (2018). MSC: 65J15 49M15 49M37 PDF BibTeX XML Cite \textit{G. N. Silva} et al., Comput. Appl. Math. 37, No. 4, 5082--5097 (2018; Zbl 1402.65047) Full Text: DOI OpenURL
Menini, Laura; Possieri, Corrado; Tornambè, Antonio A Newton-like algorithm to compute the inverse of a nonlinear map that converges in finite time. (English) Zbl 1388.93039 Automatica 89, 411-414 (2018). MSC: 93B40 93C85 93C10 93B07 49M15 PDF BibTeX XML Cite \textit{L. Menini} et al., Automatica 89, 411--414 (2018; Zbl 1388.93039) Full Text: DOI OpenURL
Attouch, Hedy; Baillon, Jean-Bernard Weak versus strong convergence of a regularized Newton dynamic for maximal monotone operators. (English) Zbl 1446.34073 Vietnam J. Math. 46, No. 1, 177-195 (2018). MSC: 34G25 47J25 47J35 49M15 65J15 90C53 34D05 PDF BibTeX XML Cite \textit{H. Attouch} and \textit{J.-B. Baillon}, Vietnam J. Math. 46, No. 1, 177--195 (2018; Zbl 1446.34073) Full Text: DOI HAL OpenURL
Ling, Yonghui; Xu, Xiubin On one-parameter family of Newton-like iterations for solving nonsymmetric algebraic Riccati equation from transport theory. (English) Zbl 1446.65026 J. Nonlinear Convex Anal. 18, No. 10, 1833-1848 (2017). MSC: 65H10 65F45 15A24 PDF BibTeX XML Cite \textit{Y. Ling} and \textit{X. Xu}, J. Nonlinear Convex Anal. 18, No. 10, 1833--1848 (2017; Zbl 1446.65026) Full Text: Link OpenURL
Karaca, Nazli; Yildirim, Isa A convergence analysis of three-step Newton-like method under weak conditions in Banach spaces. (English) Zbl 1399.65125 Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 10(59), No. 2, 63-76 (2017). MSC: 65J15 49M15 65K10 PDF BibTeX XML Cite \textit{N. Karaca} and \textit{I. Yildirim}, Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 10(59), No. 2, 63--76 (2017; Zbl 1399.65125) OpenURL
He, Jinsu; Wu, Afan; Shen, Weiping The semi-local convergence for inexact Newton-like methods under the \(\gamma\)-condition. (Chinese. English summary) Zbl 1399.65123 J. Zhejiang Norm. Univ., Nat. Sci. 40, No. 1, 9-16 (2017). MSC: 65J15 PDF BibTeX XML Cite \textit{J. He} et al., J. Zhejiang Norm. Univ., Nat. Sci. 40, No. 1, 9--16 (2017; Zbl 1399.65123) Full Text: DOI OpenURL
Bajović, Dragana; Jakovetić, Dušan; Krejić, Nataša; Jerinkić, Nataša Krklec Newton-like method with diagonal correction for distributed optimization. (English) Zbl 1371.90100 SIAM J. Optim. 27, No. 2, 1171-1203 (2017). MSC: 90C25 90C53 65K05 PDF BibTeX XML Cite \textit{D. Bajović} et al., SIAM J. Optim. 27, No. 2, 1171--1203 (2017; Zbl 1371.90100) Full Text: DOI arXiv OpenURL
Egorova, V. N.; Tan, S.-H.; Lai, C.-H.; Company, R.; Jódar, L. Moving boundary transformation for American call options with transaction cost: finite difference methods and computing. (English) Zbl 1364.91151 Int. J. Comput. Math. 94, No. 2, 345-362 (2017). MSC: 91G60 65M06 65M12 91G20 60G40 PDF BibTeX XML Cite \textit{V. N. Egorova} et al., Int. J. Comput. Math. 94, No. 2, 345--362 (2017; Zbl 1364.91151) Full Text: DOI Link OpenURL
Argyros, Ioannis K.; George, Santhosh Unified convergence domains of Newton-like methods for solving operator equations. (English) Zbl 1410.65211 Appl. Math. Comput. 286, 106-114 (2016). MSC: 65J15 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, Appl. Math. Comput. 286, 106--114 (2016; Zbl 1410.65211) Full Text: DOI OpenURL
Grammont, Laurence; Vasconcelos, Paulo B.; Ahues, Mario A modified iterated projection method adapted to a nonlinear integral equation. (English) Zbl 1410.65219 Appl. Math. Comput. 276, 432-441 (2016). MSC: 65J15 35P05 45G10 65R20 PDF BibTeX XML Cite \textit{L. Grammont} et al., Appl. Math. Comput. 276, 432--441 (2016; Zbl 1410.65219) Full Text: DOI OpenURL
Verma, Ram U. Higher order Newton’s methods. (English) Zbl 1359.65075 Adv. Nonlinear Var. Inequal. 19, No. 2, 82-93 (2016). MSC: 65H05 PDF BibTeX XML Cite \textit{R. U. Verma}, Adv. Nonlinear Var. Inequal. 19, No. 2, 82--93 (2016; Zbl 1359.65075) OpenURL
Argyros, Ioannis K.; Verma, Ram U. The generalized Newton’s methods and local convergence analysis. (English) Zbl 1359.65071 Panam. Math. J. 26, No. 2, 74-79 (2016). MSC: 65H05 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{R. U. Verma}, Panam. Math. J. 26, No. 2, 74--79 (2016; Zbl 1359.65071) OpenURL
Argyros, Ioannis K.; Verma, Ram U. Generalized Newton-like methods for local convergence analysis. (English) Zbl 1355.65065 Commun. Appl. Nonlinear Anal. 23, No. 2, 57-62 (2016). MSC: 65H05 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{R. U. Verma}, Commun. Appl. Nonlinear Anal. 23, No. 2, 57--62 (2016; Zbl 1355.65065) OpenURL
Cacace, Simone; Camilli, Fabio A generalized Newton method for homogenization of Hamilton-Jacobi equations. (English) Zbl 1354.65129 SIAM J. Sci. Comput. 38, No. 6, A3589-A3617 (2016). MSC: 65K10 35F21 35B27 49M15 49J20 PDF BibTeX XML Cite \textit{S. Cacace} and \textit{F. Camilli}, SIAM J. Sci. Comput. 38, No. 6, A3589--A3617 (2016; Zbl 1354.65129) Full Text: DOI OpenURL
Argyros, Ioannis K.; Magreñán, Á. Alberto Local convergence and the dynamics of a two-step Newton-like method. (English) Zbl 1343.47067 Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 5, Article ID 1630012, 18 p. (2016). MSC: 47J25 37F10 37C25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{Á. A. Magreñán}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 5, Article ID 1630012, 18 p. (2016; Zbl 1343.47067) Full Text: DOI OpenURL
Pollock, Sara Stabilized and inexact adaptive methods for capturing internal layers in quasilinear PDE. (English) Zbl 1346.65051 J. Comput. Appl. Math. 308, 243-262 (2016). MSC: 65M60 35K59 65M12 65M50 PDF BibTeX XML Cite \textit{S. Pollock}, J. Comput. Appl. Math. 308, 243--262 (2016; Zbl 1346.65051) Full Text: DOI arXiv OpenURL
Argyros, Ioannis K.; George, Santhosh; Erappa, Shobha Monnanda Local convergence for a family of iterative methods based on decomposition techniques. (English) Zbl 1347.65101 Appl. Math. 43, No. 1, 133-143 (2016). Reviewer: Peter P. Zabreĭko (Minsk) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., Appl. Math. 43, No. 1, 133--143 (2016; Zbl 1347.65101) Full Text: DOI OpenURL
Gonçalves, M. L. N. Inexact Gauss-Newton like methods for injective-overdetermined systems of equations under a majorant condition. (English) Zbl 1343.65059 Numer. Algorithms 72, No. 2, 377-392 (2016). Reviewer: Constantin Popa (Constanţa) MSC: 65H10 PDF BibTeX XML Cite \textit{M. L. N. Gonçalves}, Numer. Algorithms 72, No. 2, 377--392 (2016; Zbl 1343.65059) Full Text: DOI arXiv OpenURL
Pollock, Sara An improved method for solving quasi-linear convection diffusion problems on a coarse mesh. (English) Zbl 1382.65369 SIAM J. Sci. Comput. 38, No. 2, A1121-A1145 (2016). MSC: 65N22 65N12 35J62 65N30 PDF BibTeX XML Cite \textit{S. Pollock}, SIAM J. Sci. Comput. 38, No. 2, A1121--A1145 (2016; Zbl 1382.65369) Full Text: DOI arXiv OpenURL
Liang, Juan; Li, Xiaowu; Wu, Zhinan; Zhang, Mingsheng; Wang, Lin; Pan, Feng Fifth-order iterative method for solving multiple roots of the highest multiplicity of nonlinear equation. (English) Zbl 1461.65069 Algorithms (Basel) 8, No. 3, 656-668 (2015). MSC: 65H04 PDF BibTeX XML Cite \textit{J. Liang} et al., Algorithms (Basel) 8, No. 3, 656--668 (2015; Zbl 1461.65069) Full Text: DOI OpenURL
Argyros, Ioannis Konstantinos; Magreñán, Ángel Alberto On the convergence of inexact two-point Newton-like methods on Banach spaces. (English) Zbl 1410.65213 Appl. Math. Comput. 265, 893-902 (2015). MSC: 65J15 90C30 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{Á. A. Magreñán}, Appl. Math. Comput. 265, 893--902 (2015; Zbl 1410.65213) Full Text: DOI OpenURL
Argyros, Ioannis K.; George, Santhosh Expanding the convergence domain of Newton-like methods and applications in Banach space. (English) Zbl 1336.65097 J. Math., Punjab Univ. 47, No. 1, 1-13 (2015). MSC: 65J15 47H10 49M15 90C30 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, J. Math., Punjab Univ. 47, No. 1, 1--13 (2015; Zbl 1336.65097) Full Text: Link OpenURL
Pollock, Sara A regularized Newton-like method for nonlinear PDE. (English) Zbl 1342.65220 Numer. Funct. Anal. Optim. 36, No. 11, 1493-1511 (2015). Reviewer: Vit Dolejsi (Praha) MSC: 65N30 65N50 65N22 65N20 35J60 65N12 PDF BibTeX XML Cite \textit{S. Pollock}, Numer. Funct. Anal. Optim. 36, No. 11, 1493--1511 (2015; Zbl 1342.65220) Full Text: DOI arXiv OpenURL
Argyros, Ioannis K.; George, Santhosh Improved local convergence analysis of inexact Newton-like methods under the majorant condition. (English) Zbl 1331.90078 Appl. Math. 42, No. 4, 343-357 (2015). MSC: 90C30 65G99 65K10 49M15 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, Appl. Math. 42, No. 4, 343--357 (2015; Zbl 1331.90078) Full Text: DOI OpenURL
Argyros, Ioannis K.; George, Santhosh Local convergence of a uniparametric Halley-type method in Banach space free of second derivative. (English) Zbl 1337.65046 Adv. Nonlinear Var. Inequal. 18, No. 2, 48-57 (2015). Reviewer: Peter P. Zabreĭko (Minsk) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, Adv. Nonlinear Var. Inequal. 18, No. 2, 48--57 (2015; Zbl 1337.65046) OpenURL
Nisha, Shwet; Parida, P. K. An improved bisection Newton-like method for enclosing simple zeros of nonlinear equations. (English) Zbl 1332.65067 S\(\vec{\text{e}}\)MA J. 72, No. 1, 83-92 (2015). Reviewer: Anton Iliev (Plovdiv) MSC: 65H05 PDF BibTeX XML Cite \textit{S. Nisha} and \textit{P. K. Parida}, S\(\vec{\text{e}}\)MA J. 72, No. 1, 83--92 (2015; Zbl 1332.65067) Full Text: DOI OpenURL
Argyros, Ioannis K.; George, Santhosh Local convergence for some high convergence order Newton-like methods with frozen derivatives. (English) Zbl 1329.65113 S\(\vec{\text{e}}\)MA J. 70, No. 1, 47-59 (2015). Reviewer: Peter P. Zabreĭko (Minsk) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, S\(\vec{\text{e}}\)MA J. 70, No. 1, 47--59 (2015; Zbl 1329.65113) Full Text: DOI OpenURL
Sahu, D. R.; Singh, Krishna Kumar; Zhao, Xiaopeng On the convergence analysis of a Newton-like method under weak smoothness assumptions. (English) Zbl 1357.65068 J. Nonlinear Convex Anal. 16, No. 7, 1425-1437 (2015). MSC: 65J15 46G05 49M15 65K10 PDF BibTeX XML Cite \textit{D. R. Sahu} et al., J. Nonlinear Convex Anal. 16, No. 7, 1425--1437 (2015; Zbl 1357.65068) Full Text: Link OpenURL
Frankel, Pierre; Garrigos, Guillaume; Peypouquet, Juan Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates. (English) Zbl 1316.49039 J. Optim. Theory Appl. 165, No. 3, 874-900 (2015). MSC: 49M37 49M15 90C26 90C30 65K10 PDF BibTeX XML Cite \textit{P. Frankel} et al., J. Optim. Theory Appl. 165, No. 3, 874--900 (2015; Zbl 1316.49039) Full Text: DOI arXiv OpenURL
Sahu, D. R.; Singh, K. K.; Singh, V. K.; Cho, Y. J. A Newton-like method for solving generalized operator equations and variational inequalities. (English) Zbl 1311.65058 J. Nonlinear Convex Anal. 16, No. 2, 217-229 (2015). MSC: 65J15 47H04 47H05 49M37 65K10 PDF BibTeX XML Cite \textit{D. R. Sahu} et al., J. Nonlinear Convex Anal. 16, No. 2, 217--229 (2015; Zbl 1311.65058) Full Text: Link OpenURL
Argyros, Ioannis Konstantinos; George, Santhosh; Magreñán, Ángel Alberto Expanding the convergence domain for Chun-Stanica-Neta family of third order methods in Banach spaces. (English) Zbl 1316.65058 J. Korean Math. Soc. 52, No. 1, 23-41 (2015). Reviewer: Jun Xian (Guangzhou) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., J. Korean Math. Soc. 52, No. 1, 23--41 (2015; Zbl 1316.65058) Full Text: DOI Link OpenURL
Szyld, Daniel B.; Xue, Fei Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems: II. Accelerated algorithms. (English) Zbl 1309.65060 Numer. Math. 129, No. 2, 383-403 (2015). Reviewer: Anton Iliev (Plovdiv) MSC: 65H17 PDF BibTeX XML Cite \textit{D. B. Szyld} and \textit{F. Xue}, Numer. Math. 129, No. 2, 383--403 (2015; Zbl 1309.65060) Full Text: DOI OpenURL
Szyld, Daniel B.; Xue, Fei Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems. I. Classical algorithms. (English) Zbl 1309.65059 Numer. Math. 129, No. 2, 353-381 (2015). Reviewer: Anton Iliev (Plovdiv) MSC: 65H17 65F15 PDF BibTeX XML Cite \textit{D. B. Szyld} and \textit{F. Xue}, Numer. Math. 129, No. 2, 353--381 (2015; Zbl 1309.65059) Full Text: DOI OpenURL
Zhanlav, Tugal; Dorjgotov, Khongorzul Third order convergence theorem for a family of Newton like methods in Banach space. (English) Zbl 1340.65113 Rev. Anal. Numér. Théor. Approx. 43, No. 1, 81-90 (2014). MSC: 65J15 PDF BibTeX XML Cite \textit{T. Zhanlav} and \textit{K. Dorjgotov}, Rev. Anal. Numér. Théor. Approx. 43, No. 1, 81--90 (2014; Zbl 1340.65113) OpenURL
Argyros, I. K.; Khattri, S. K. Local convergence for a family of third order methods in Banach spaces. (English) Zbl 1316.65052 J. Math., Punjab Univ. 46, No. 2, 53-62 (2014). MSC: 65H10 65G99 65K10 47H07 49M15 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. K. Khattri}, J. Math., Punjab Univ. 46, No. 2, 53--62 (2014; Zbl 1316.65052) Full Text: Link OpenURL
Argyros, Ioannis K.; George, Santhosh Local convergence of a multi-point-parameter Newton-like methods in Banach space. (English) Zbl 1321.65086 Nonlinear Funct. Anal. Appl. 19, No. 3, 379-390 (2014). Reviewer: Bangti Jin (London) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, Nonlinear Funct. Anal. Appl. 19, No. 3, 379--390 (2014; Zbl 1321.65086) OpenURL
Argyros, I. K.; Khattri, S. K. Fixed points for operators with generalized Hölder derivative. (English) Zbl 1308.65083 Asian-Eur. J. Math. 7, No. 4, Article ID 1450053, 24 p. (2014). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. K. Khattri}, Asian-Eur. J. Math. 7, No. 4, Article ID 1450053, 24 p. (2014; Zbl 1308.65083) Full Text: DOI OpenURL
Chen, Chuanjun; Zhao, Xin An analysis of a two-grid method for characteristic finite element solutions of nonlinear convection-diffusion equations. (Chinese. English summary) Zbl 1313.65262 Acta Math. Sci., Ser. A, Chin. Ed. 34, No. 3, 643-654 (2014). MSC: 65M60 65M15 65M55 35K55 PDF BibTeX XML Cite \textit{C. Chen} and \textit{X. Zhao}, Acta Math. Sci., Ser. A, Chin. Ed. 34, No. 3, 643--654 (2014; Zbl 1313.65262) OpenURL
Grammont, Laurence; Ahues, Mario; D’Almeida, Filomena D. For nonlinear infinite dimensional equations, which to begin with: linearization or discretization? (English) Zbl 1307.65077 J. Integral Equations Appl. 26, No. 3, 413-436 (2014). MSC: 65J15 47J25 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{L. Grammont} et al., J. Integral Equations Appl. 26, No. 3, 413--436 (2014; Zbl 1307.65077) Full Text: DOI Euclid OpenURL
Armand, Paul; Benoist, Joël; Omheni, Riadh; Pateloup, Vincent Study of a primal-dual algorithm for equality constrained minimization. (English) Zbl 1304.49050 Comput. Optim. Appl. 59, No. 3, 405-433 (2014). MSC: 49M15 49M37 65K05 90C06 90C30 90C51 PDF BibTeX XML Cite \textit{P. Armand} et al., Comput. Optim. Appl. 59, No. 3, 405--433 (2014; Zbl 1304.49050) Full Text: DOI OpenURL
Sahu, D. R. Altering points and applications. (English) Zbl 06305809 Nonlinear Stud. 21, No. 2, 349-365 (2014). MSC: 47H10 49J40 49M15 65K10 PDF BibTeX XML Cite \textit{D. R. Sahu}, Nonlinear Stud. 21, No. 2, 349--365 (2014; Zbl 06305809) Full Text: Link OpenURL
Li, Jian-Lei; Xue, Jun-Xiao; Li, Xiao-Yan A note on the relaxed Newton-like method for nonsymmetric algebraic Riccati equation. (English) Zbl 1291.65103 J. Comput. Anal. Appl. 17, No. 3, 574-578 (2014). Reviewer: Constantin Popa (Constanţa) MSC: 65F10 65F30 15A24 PDF BibTeX XML Cite \textit{J.-L. Li} et al., J. Comput. Anal. Appl. 17, No. 3, 574--578 (2014; Zbl 1291.65103) OpenURL
Vladimirov, Igor G.; Petersen, Ian R. A quasi-separation principle and Newton-like scheme for coherent quantum LQG control. (English) Zbl 1277.49045 Syst. Control Lett. 62, No. 7, 550-559 (2013). MSC: 49N10 81Q93 49M15 PDF BibTeX XML Cite \textit{I. G. Vladimirov} and \textit{I. R. Petersen}, Syst. Control Lett. 62, No. 7, 550--559 (2013; Zbl 1277.49045) Full Text: DOI arXiv OpenURL
Maingé, Paul-Emile First-order continuous Newton-like systems for monotone inclusions. (English) Zbl 1272.34086 SIAM J. Control Optim. 51, No. 2, 1615-1638 (2013). MSC: 34G25 47J25 47J30 47H05 34A45 PDF BibTeX XML Cite \textit{P.-E. Maingé}, SIAM J. Control Optim. 51, No. 2, 1615--1638 (2013; Zbl 1272.34086) Full Text: DOI OpenURL
Chuong, Thai Doan Newton-like methods for efficient solutions in vector optimization. (English) Zbl 1295.90068 Comput. Optim. Appl. 54, No. 3, 495-516 (2013). MSC: 90C29 90C48 90C53 PDF BibTeX XML Cite \textit{T. D. Chuong}, Comput. Optim. Appl. 54, No. 3, 495--516 (2013; Zbl 1295.90068) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd On the convergence of inexact two-step Newton-like algorithms using recurrent functions. (English) Zbl 1295.65063 J. Appl. Math. Comput. 38, No. 1-2, 41-61 (2012). MSC: 65J15 47J25 65R20 45G10 85A25 34B15 65L10 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, J. Appl. Math. Comput. 38, No. 1--2, 41--61 (2012; Zbl 1295.65063) Full Text: DOI OpenURL
Argyros, Ioannis K. On the semilocal convergence of Newton-like methods using decreasing majorizing sequences. (English) Zbl 1279.65061 Panam. Math. J. 22, No. 3, 69-79 (2012). Reviewer: Yisheng Song (Hong Kong) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros}, Panam. Math. J. 22, No. 3, 69--79 (2012; Zbl 1279.65061) OpenURL
Byrd, Richard H.; Chin, Gillian M.; Nocedal, Jorge; Wu, Yuchen Sample size selection in optimization methods for machine learning. (English) Zbl 1252.49044 Math. Program. 134, No. 1 (B), 127-155 (2012). MSC: 49M15 49M37 65K05 68T05 90C30 PDF BibTeX XML Cite \textit{R. H. Byrd} et al., Math. Program. 134, No. 1 (B), 127--155 (2012; Zbl 1252.49044) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd Majorizing sequences for iterative procedures in Banach spaces. (English) Zbl 1257.65026 J. Complexity 28, No. 5-6, 562-581 (2012). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, J. Complexity 28, No. 5--6, 562--581 (2012; Zbl 1257.65026) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd On a generalization of Moret’s theorem for inexact Newton-like methods. (English) Zbl 1261.65054 Panam. Math. J. 22, No. 1, 67-73 (2012). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, Panam. Math. J. 22, No. 1, 67--73 (2012; Zbl 1261.65054) OpenURL
Argyros, Ioannis K.; Hilouj, Said On the semilocal convergence of the secant method with regularly continuous divided differences. (English) Zbl 1261.65053 Commun. Appl. Nonlinear Anal. 19, No. 2, 55-69 (2012). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilouj}, Commun. Appl. Nonlinear Anal. 19, No. 2, 55--69 (2012; Zbl 1261.65053) OpenURL
Argyros, Ioannis K.; Cho, Yeaol Je; Hilout, Saïd Numerical methods for equations and its applications. (English) Zbl 1254.65068 Boca Raton, FL: CRC Press (ISBN 978-1-57808-753-2/hbk; 978-1-46-651711-0/ebook). viii, 465 p. (2012). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 65J15 65K15 65-02 47J25 49J40 65R20 45G10 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., Numerical methods for equations and its applications. Boca Raton, FL: CRC Press (2012; Zbl 1254.65068) OpenURL
Ferreira, O. P.; Gonçalves, M. L. N.; Oliveira, P. R. Local convergence analysis of inexact Gauss-Newton like methods under majorant condition. (English) Zbl 1241.65052 J. Comput. Appl. Math. 236, No. 9, 2487-2498 (2012). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{O. P. Ferreira} et al., J. Comput. Appl. Math. 236, No. 9, 2487--2498 (2012; Zbl 1241.65052) Full Text: DOI arXiv OpenURL
Zhu, Xiaojing; Pu, Dingguo A line search filter algorithm with inexact step computations for equality constrained optimization. (English) Zbl 1244.65091 Appl. Numer. Math. 62, No. 3, 212-223 (2012). Reviewer: Nada Djuranović-Miličić (Belgrade) MSC: 65K05 90C30 90C55 90C53 PDF BibTeX XML Cite \textit{X. Zhu} and \textit{D. Pu}, Appl. Numer. Math. 62, No. 3, 212--223 (2012; Zbl 1244.65091) Full Text: DOI OpenURL
Wu, Li Two-grid mixed finite-element methods for nonlinear Schrödinger equations. (English) Zbl 1252.65171 Numer. Methods Partial Differ. Equations 28, No. 1, 63-73 (2012). MSC: 65M60 35Q55 65M55 PDF BibTeX XML Cite \textit{L. Wu}, Numer. Methods Partial Differ. Equations 28, No. 1, 63--73 (2012; Zbl 1252.65171) Full Text: DOI OpenURL
Wang, P. A third-order family of Newton-like iteration methods for solving nonlinear equations. (English) Zbl 1360.65149 J. Numer. Math. Stoch. 3, No. 1, 13-19 (2011). MSC: 65H05 PDF BibTeX XML Cite \textit{P. Wang}, J. Numer. Math. Stoch. 3, No. 1, 13--19 (2011; Zbl 1360.65149) Full Text: Link OpenURL
Argyros, Ioannis K. Newton-like methods with at least quadratic order of convergence for the computation of fixed points. (English) Zbl 1291.65155 J. Math., Punjab Univ. 43, 9-18 (2011). MSC: 65H10 47H09 47H10 47J25 65J15 PDF BibTeX XML Cite \textit{I. K. Argyros}, J. Math., Punjab Univ. 43, 9--18 (2011; Zbl 1291.65155) OpenURL
Argyros, Ioannis K.; Hilout, Saïd; Khattri, Sanjay K. On the convergence of Newton-like methods using outer inverses but not Lipschitz conditions. (English) Zbl 1261.65058 Nonlinear Funct. Anal. Appl. 16, No. 2, 253-271 (2011). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., Nonlinear Funct. Anal. Appl. 16, No. 2, 253--271 (2011; Zbl 1261.65058) OpenURL
De Lima Guedes, Aline; Moura Neto, Francisco Duarte; Mendes Platt, Gustavo Double azeotropy: calculations with Newton-like methods and continuous GRASP (C-GRASP). (English) Zbl 1245.80005 Int. J. Math. Model. Numer. Optim. 2, No. 4, 387-404 (2011). MSC: 80A22 76T10 80M25 80M50 90C30 90C15 65H10 65K10 PDF BibTeX XML Cite \textit{A. De Lima Guedes} et al., Int. J. Math. Model. Numer. Optim. 2, No. 4, 387--404 (2011; Zbl 1245.80005) Full Text: DOI OpenURL
Li, Jian-Lei; Huang, Ting-Zhu; Zhang, Zhi-Jiang The relaxed Newton-like method for a nonsymmetric algebraic Riccati equation. (English) Zbl 1232.65069 J. Comput. Anal. Appl. 13, No. 6, 1132-1142 (2011). Reviewer: Vasilis Dimitriou (Chania) MSC: 65F30 15A24 65F10 PDF BibTeX XML Cite \textit{J.-L. Li} et al., J. Comput. Anal. Appl. 13, No. 6, 1132--1142 (2011; Zbl 1232.65069) OpenURL
Li, Xiaowu; Mu, Chunlai; Ma, Jinwen; Hou, Linke Fifth-order iterative method for finding multiple roots of nonlinear equations. (English) Zbl 1222.65047 Numer. Algorithms 57, No. 3, 389-398 (2011). Reviewer: Hang Lau (Montréal) MSC: 65H05 PDF BibTeX XML Cite \textit{X. Li} et al., Numer. Algorithms 57, No. 3, 389--398 (2011; Zbl 1222.65047) Full Text: DOI OpenURL
Wu, Li Two-grid strategy for unsteady state nonlinear Schrödinger equations. (English) Zbl 1217.65195 Int. J. Pure Appl. Math. 68, No. 4, 465-475 (2011). MSC: 65M60 35Q55 65M55 PDF BibTeX XML Cite \textit{L. Wu}, Int. J. Pure Appl. Math. 68, No. 4, 465--475 (2011; Zbl 1217.65195) Full Text: Link OpenURL
Argyros, Ioannis K.; Hilout, Saïd Convergence domains under Zabrejko-Zinčenko conditions using recurrent functions. (English) Zbl 1221.65130 Appl. Math. 38, No. 2, 193-209 (2011). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 47J25 65R20 45G10 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, Appl. Math. 38, No. 2, 193--209 (2011; Zbl 1221.65130) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd Convergence conditions for the secant method. (English) Zbl 1221.65129 Cubo 12, No. 1, 161-174 (2010). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 47J25 65R10 45G10 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, Cubo 12, No. 1, 161--174 (2010; Zbl 1221.65129) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd On Newton-like methods of “bounded deterioration” using recurrent functions. (English) Zbl 1213.65078 Aequationes Math. 79, No. 1-2, 61-82 (2010). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 47J25 65R20 45G10 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, Aequationes Math. 79, No. 1--2, 61--82 (2010; Zbl 1213.65078) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd A unified approach for the convergence of certain numerical algorithms, using recurrent functions. (English) Zbl 1214.65027 Computing 90, No. 3-4, 131-164 (2010). Reviewer: Werner H. Schmidt (Greifswald) MSC: 65J15 47J25 35J65 65N38 35C15 65H04 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, Computing 90, No. 3--4, 131--164 (2010; Zbl 1214.65027) Full Text: DOI OpenURL
Petković, Miodrag S.; Milošević, Dušan M.; Petković, Ivan On the improved Newton-like methods for the inclusion of polynomial zeros. (English) Zbl 1221.65113 Int. J. Comput. Math. 87, No. 8, 1726-1735 (2010). Reviewer: Günter Mayer (Rostock) MSC: 65H04 65G30 65G20 30C15 65E05 PDF BibTeX XML Cite \textit{M. S. Petković} et al., Int. J. Comput. Math. 87, No. 8, 1726--1735 (2010; Zbl 1221.65113) Full Text: DOI OpenURL
Chen, Kun-Chu; Wang, Chern-Shuh; Yen, Ching-Chang Numerical algorithms for the largest structured singular value of a \(\mu\)-synthesis control system. (English) Zbl 1206.65168 Taiwanese J. Math. 14, No. 3A, 973-998 (2010). Reviewer: Frank Uhlig (Auburn) MSC: 65K10 65F15 15A42 93B40 93C73 93B52 PDF BibTeX XML Cite \textit{K.-C. Chen} et al., Taiwanese J. Math. 14, No. 3A, 973--998 (2010; Zbl 1206.65168) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd Improved generalized differentiability conditions for Newton-like methods. (English) Zbl 1196.65100 J. Complexity 26, No. 3, 316-333 (2010). Reviewer: Erwin Schechter (Moers) MSC: 65J15 65L10 65R20 34B15 45G10 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, J. Complexity 26, No. 3, 316--333 (2010; Zbl 1196.65100) Full Text: DOI OpenURL
Argyros, Ioannis K.; Cho, Yeol Je; Hilout, Saïd On the midpoint method for solving equations. (English) Zbl 1198.65095 Appl. Math. Comput. 216, No. 8, 2321-2332 (2010). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 47J25 47H04 PDF BibTeX XML Cite \textit{I. K. Argyros} et al., Appl. Math. Comput. 216, No. 8, 2321--2332 (2010; Zbl 1198.65095) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd A convergence analysis of Newton-like method for singular equations using recurrent functions. (English) Zbl 1197.65056 Numer. Funct. Anal. Optim. 31, No. 2, 112-130 (2010). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, Numer. Funct. Anal. Optim. 31, No. 2, 112--130 (2010; Zbl 1197.65056) Full Text: DOI OpenURL
Argyros, Ioannis K.; Hilout, Saïd A Newton-like method for nonsmooth variational inequalities. (English) Zbl 1188.65090 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 9-10, 3857-3864 (2010). Reviewer: Bülent Karasözen (Ankara) MSC: 65K15 47H04 49M15 65J15 49J40 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 9--10, 3857--3864 (2010; Zbl 1188.65090) Full Text: DOI OpenURL
Argyros, Ioannis K. Local convergence of Newton-like methods for generalized equations. (English) Zbl 1197.65057 East Asian Math. J. 25, No. 4, 425-431 (2009). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 47J25 47H04 PDF BibTeX XML Cite \textit{I. K. Argyros}, East Asian Math. J. 25, No. 4, 425--431 (2009; Zbl 1197.65057) OpenURL
Alefeld, Goetz Verified numerical computation for nonlinear equations. (English) Zbl 1186.65056 Japan J. Ind. Appl. Math. 26, No. 2-3, 297-315 (2009). Reviewer: Jiří Rohn (Praha) MSC: 65G30 65H05 65G20 PDF BibTeX XML Cite \textit{G. Alefeld}, Japan J. Ind. Appl. Math. 26, No. 2--3, 297--315 (2009; Zbl 1186.65056) Full Text: DOI Euclid OpenURL
Argyros, Ioannis K.; Hilout, Saïd On the convergence of Steffensen’s method on Banach spaces under the gamma condition. (English) Zbl 1186.65070 Commun. Appl. Nonlinear Anal. 16, No. 4, 73-84 (2009). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. Hilout}, Commun. Appl. Nonlinear Anal. 16, No. 4, 73--84 (2009; Zbl 1186.65070) OpenURL
Hernández, M. A.; Romero, N. Toward a unified theory for third \(R\)-order iterative methods for operators with unbounded second derivative. (English) Zbl 1181.65080 Appl. Math. Comput. 215, No. 6, 2248-2261 (2009). MSC: 65J15 47J25 45G10 65R20 PDF BibTeX XML Cite \textit{M. A. Hernández} and \textit{N. Romero}, Appl. Math. Comput. 215, No. 6, 2248--2261 (2009; Zbl 1181.65080) Full Text: DOI OpenURL
Parhi, S. K.; Gupta, D. K. A third order method for fixed points in Banach spaces. (English) Zbl 1205.65190 J. Math. Anal. Appl. 359, No. 2, 642-652 (2009). Reviewer: B. Döring (Düsseldorf) MSC: 65J15 47J05 47H10 47J25 65R20 45G10 PDF BibTeX XML Cite \textit{S. K. Parhi} and \textit{D. K. Gupta}, J. Math. Anal. Appl. 359, No. 2, 642--652 (2009; Zbl 1205.65190) Full Text: DOI OpenURL
Wang, Jin-Hua; Huang, Shuechin; Li, Chong Extended Newton’s method for mappings on Riemannian manifolds with values in a cone. (English) Zbl 1182.65084 Taiwanese J. Math. 13, No. 2B, 633-656 (2009). Reviewer: Peter Zabreiko (Minsk) MSC: 65J15 58C15 47J22 47J25 PDF BibTeX XML Cite \textit{J.-H. Wang} et al., Taiwanese J. Math. 13, No. 2B, 633--656 (2009; Zbl 1182.65084) Full Text: DOI OpenURL
Argyros, Ioannis K. On a class of Newton-like methods for solving nonlinear equations. (English) Zbl 1168.65349 J. Comput. Appl. Math. 228, No. 1, 115-122 (2009). MSC: 65J15 65K10 65G99 65J99 49M15 49J53 47J20 47H04 PDF BibTeX XML Cite \textit{I. K. Argyros}, J. Comput. Appl. Math. 228, No. 1, 115--122 (2009; Zbl 1168.65349) Full Text: DOI OpenURL
Argyros, Ioannis K. On the secant method for solving nonsmooth equations and nondiscrete induction. (English) Zbl 1177.65079 Nonlinear Funct. Anal. Appl. 13, No. 1, 147-158 (2008). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros}, Nonlinear Funct. Anal. Appl. 13, No. 1, 147--158 (2008; Zbl 1177.65079) OpenURL
Gupta, Dharmendra K.; Parida, Pradip K. A Newton-like method in Banach spaces under mild differentiability conditions. (English) Zbl 1157.65069 Kodai Math. J. 31, No. 3, 414-430 (2008). MSC: 65Q05 47H10 PDF BibTeX XML Cite \textit{D. K. Gupta} and \textit{P. K. Parida}, Kodai Math. J. 31, No. 3, 414--430 (2008; Zbl 1157.65069) Full Text: DOI OpenURL
Jin, Li A stable differential equation approach for inequality constrained optimization problems. (English) Zbl 1166.65029 Appl. Math. Comput. 206, No. 1, 186-192 (2008). Reviewer: Andrea Walther (Paderborn) MSC: 65K05 90C30 65L05 65L20 34A34 PDF BibTeX XML Cite \textit{L. Jin}, Appl. Math. Comput. 206, No. 1, 186--192 (2008; Zbl 1166.65029) Full Text: DOI OpenURL
Li, Chong; Shen, Weiping Local convergence of inexact methods under the Hölder condition. (English) Zbl 1181.65082 J. Comput. Appl. Math. 222, No. 2, 544-560 (2008). Reviewer: Otu Vaarmann (Tallinn) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{C. Li} and \textit{W. Shen}, J. Comput. Appl. Math. 222, No. 2, 544--560 (2008; Zbl 1181.65082) Full Text: DOI OpenURL
Argyros, Ioannis K. Local convergence of inexact Newton methods under general conditions. (English) Zbl 1151.65044 Int. J. Mod. Math. 3, No. 1, 11-19 (2008). Reviewer: Iulian Coroian (Baia Mare) MSC: 65H10 PDF BibTeX XML Cite \textit{I. K. Argyros}, Int. J. Mod. Math. 3, No. 1, 11--19 (2008; Zbl 1151.65044) OpenURL