×

Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. (English) Zbl 1423.76419

Summary: We develop a computational model to study the interaction of a fluid with a poroelastic material. The coupling of Stokes and Biot equations represents a prototype problem for these phenomena, which feature multiple facets. On one hand, it shares common traits with fluid-structure interaction. On the other hand it resembles the Stokes-Darcy coupling. For these reasons, the numerical simulation of the Stokes-Biot coupled system is a challenging task. The need of large memory storage and the difficulty to characterize appropriate solvers and related preconditioners for the equations at hand are typical shortcomings of classical discretization methods applied to this problem, such as the finite element method for spatial discretization and finite differences for time stepping. The application of loosely coupled time advancing schemes mitigates these issues, because it allows to solve each equation of the system independently with respect to the others, at each time step. In this work, we develop and thoroughly analyze a loosely coupled scheme for Stokes-Biot equations. The scheme is based on Nitsche’s method for enforcing interface conditions. Once the interface operators corresponding to the interface conditions have been defined, time lagging allows us to build up a loosely coupled scheme with good stability properties. The stability of the scheme is guaranteed provided that appropriate stabilization operators are introduced into the variational formulation of each subproblem. The error of the resulting method is also analyzed, showing that splitting the equations pollutes the optimal approximation properties of the underlying discretization schemes. In order to restore good approximation properties, while maintaining the computational efficiency of the loosely coupled approach, we consider the application of the loosely coupled scheme as a preconditioner for the monolithic approach. Both theoretical insight and numerical results confirm that this is a promising way to develop efficient solvers for the problem at hand.

MSC:

76S05 Flows in porous media; filtration; seepage
76M10 Finite element methods applied to problems in fluid mechanics
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D07 Stokes and related (Oseen, etc.) flows

Software:

FreeFem++
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Causin, P.; Gerbeau, J. F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg., 194, 42-44, 4506-4527 (2005) · Zbl 1101.74027
[2] Forster, C.; Wall, W. A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 196, 7, 1278-1293 (2007) · Zbl 1173.74418
[3] Connors, J. M.; Howell, J. S., A fluid-fluid interaction method using decoupled subproblems and differing time steps, Numer. Methods Partial Differential Equations, 28, 4, 1283-1308 (2012) · Zbl 1345.86005
[4] Connors, J. M.; Howell, J. S.; Layton, W. J., Decoupled time stepping methods for fluid-fluid interaction, SIAM J. Numer. Anal., 50, 3, 1297-1319 (2012) · Zbl 1457.65102
[5] D’Angelo, C.; Zunino, P., A finite element method based on weighted interior penalties for heterogeneous incompressible flows, SIAM J. Numer. Anal., 47, 5, 3990-4020 (2009) · Zbl 1426.76101
[6] Cao, Y.; Gunzburger, M.; Hu, X.; Hua, F.; Wang, X.; Zhao, W., Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 47, 6, 4239-4256 (2010) · Zbl 1252.76040
[7] Cao, Y.; Gunzburger, M.; Hua, F.; Wang, X., Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition, Commun. Math. Sci., 8, 1, 1-25 (2010) · Zbl 1189.35244
[8] Cesmelioglu, A.; Girault, V.; Rivière, B., Time-dependent coupling of Navier-Stokes and Darcy flows, ESAIM Math. Model. Numer. Anal., 47, 2, 539-554 (2013) · Zbl 1267.76096
[9] D’Angelo, C.; Zunino, P., Numerical approximation with Nitsche’s coupling of transient Stokes’/Darcy’s flow problems applied to hemodynamics, Appl. Numer. Math., 62, 4, 378-395 (2012) · Zbl 1316.76120
[10] Discacciati, M.; Miglio, E.; Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43, 1-2, 57-74 (2002) · Zbl 1023.76048
[11] Layton, W. J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 6, 2195-2218 (2002) · Zbl 1037.76014
[12] Layton, W.; Tran, H.; Trenchea, C., Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows, SIAM J. Numer. Anal., 51, 1, 248-272 (2013) · Zbl 1370.76173
[13] Rivière, B.; Yotov, I., Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42, 5, 1959-1977 (2005) · Zbl 1084.35063
[14] Donea, J.; Giuliani, S.; Halleux, J. P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 33, 1-3, 689-723 (1982) · Zbl 0508.73063
[15] Kennedy, J. M.; Belytschko, T. B., Theory and application of a finite element method for arbitrary Lagrangian-Eulerian fluids and structures, Nucl. Eng. Des., 68, 2, 129-146 (1982)
[16] Maday, Y., Analysis of coupled models for fluid-structure interaction of internal flows, (Cardiovascular Mathematics. Cardiovascular Mathematics, MS&A. Model. Simul. Appl., vol. 1 (2009), Springer: Springer Italia, Milan), 279-306
[17] Bukač, M.; Yotov, I.; Zakerzadeh, R.; Zunino, P., Effects of poroelasticity on fluidstructure interaction in arteries: a computational sensitivity study, (Quarteroni, A., Modeling the Heart and the Circulatory System. Modeling the Heart and the Circulatory System, Modeling, Simulation and Applications, vol. 13 (2014), Springer: Springer Italia) · Zbl 1307.92010
[18] Bukač, M.; Layton, W.; Moraiti, M.; Trang, H.; Trenchea, C., Analysis of partitioned methods for Biot system, Technical Report (2013), submitted for publication
[19] Mikelić, A.; Wheeler, M. F., On the interface law between a deformable porous medium containing a viscous fluid and an elastic body, Math. Models Methods Appl. Sci., 22, 11, 1250031 (2012), 32 · Zbl 1257.35030
[20] Showalter, R. E., Poroelastic filtration coupled to Stokes flow, (Control Theory of Partial Differential Equations. Control Theory of Partial Differential Equations, Lect. Notes Pure Appl. Math., vol. 242 (2005), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL), 229-241 · Zbl 1084.76070
[21] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits, Comput. Methods Appl. Mech. Engrg., 200, 23-24, 2094-2116 (2011) · Zbl 1228.74106
[22] Mikelić, A.; Wheeler, M. F., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 3, 455-461 (2013) · Zbl 1392.35235
[23] White, J. A.; Borja, R. I., Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15, 4, 647-659 (2011) · Zbl 1367.76034
[24] Ganis, B.; Girault, V.; Mear, M.; Singh, G.; Wheeler, M. F., Modeling fractures in a poro-elastic medium, Technical Report 09 (2013), The Institute for Computational Engineering and Sciences (ICES), The University of Texas: The Institute for Computational Engineering and Sciences (ICES), The University of Texas Austin
[25] Girault, V.; Wheeler, M. F.; Ganis, B.; Mear, M. E., A lubrication fracture model in a poro-elastic medium, Technical Report 32 (2013), The Institute for Computational Engineering and Sciences (ICES), The University of Texas: The Institute for Computational Engineering and Sciences (ICES), The University of Texas Austin · Zbl 1309.76194
[26] Ganis, B.; Mear, M.; Sakhaee-Pour, A.; Wheeler, M. F.; Wick, T., Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method, Comput. Geosci., 18, 5, 613-624 (2014) · Zbl 1392.76078
[27] Lesinigo, M.; D’Angelo, C.; Quarteroni, A., A multiscale Darcy-Brinkman model for fluid flow in fractured porous media, Numer. Math., 117, 4, 717-752 (2011) · Zbl 1305.76109
[28] Martin, V.; Jaffré, J.; Roberts, J. E., Modeling fractures and barriers as interfaces for flow in porous media, SIAM J. Sci. Comput., 26, 5, 1667-1691 (2005), (electronic) · Zbl 1083.76058
[29] Badia, S.; Quaini, A.; Quarteroni, A., Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction, J. Comput. Phys., 228, 21, 7986-8014 (2009) · Zbl 1391.74234
[30] Quaini, A., Algorithms for fluid-structure interaction problems arising in hemodynamics (2009), EPFL: EPFL Switzerland, (Ph.D. thesis)
[31] Bukač, M.; Yotov, I.; Zunino, P., An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure, Numer. Methods Partial Differential Equations (2014)
[32] Burman, E.; Fernández, M. A., Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Engrg., 198, 5-8, 766-784 (2009) · Zbl 1229.76045
[33] Burman, E.; Fernández, M. A., Explicit strategies for incompressible fluid-structure interaction problems: Nitsche type mortaring versus Robin-Robin coupling, Internat. J. Numer. Methods Engrg., 97, 10, 739-758 (2014) · Zbl 1352.74104
[34] Fernandez, M. A.; Le Tallec, P., Linear stability analysis in fluid-structure interaction with transpiration. Part I: formulation and mathematical analysis, Comput. Methods Appl. Mech. Engrg., 192, 43, 4805-4835 (2003) · Zbl 1054.74016
[35] Hansbo, P., Nitsche’s method for interface problems in computational mechanics, GAMM-Mitt., 28, 2, 183-206 (2005) · Zbl 1179.65147
[36] Quarteroni, A.; Valli, A., (Numerical Approximation of Partial Differential Equations. Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, vol. 23 (1994), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0852.76051
[37] Ern, A.; Guermond, J. L., (Theory and Practice of Finite Elements. Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159 (2004), Springer-Verlag: Springer-Verlag New York) · Zbl 1059.65103
[38] Eisenstat, S. C.; Elman, H. C.; Schultz, M. H., Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20, 2, 345-357 (1983) · Zbl 0524.65019
[39] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 3-4, 251-265 (2012) · Zbl 1266.68090
[40] O. Pironneau, F. Hecht, J. Morice, freeFEM++, www.freefem.org/; O. Pironneau, F. Hecht, J. Morice, freeFEM++, www.freefem.org/
[41] Bukač, M.; Čanić, S.; Glowinski, R.; Tambača, J.; Quaini, A., Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement, J. Comput. Phys., 235, 515-541 (2013)
[42] Ma, X.; Lee, G. C.; Wu, S. G., Numerical simulation for the propagation of nonlinear pulsatile waves in arteries, J. Biomech. Eng., 114, 490 (1992)
[43] Brezzi, F.; Pitkäranta, J., On the stabilization of finite element approximations of the Stokes equations, (Efficient Solutions of Elliptic Systems (Kiel, 1984). Efficient Solutions of Elliptic Systems (Kiel, 1984), Notes Numer. Fluid Mech., vol. 10 (1984), Vieweg: Vieweg Braunschweig), 11-19 · Zbl 0552.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.