×

Quasiderivations and quasicentroids of Novikov algebras. (English) Zbl 1486.17002

A Novikov algebra is a nonassociative algebra satisfying the identities \(x(yz)-y(xz)=(xy-yx)z\) (left-symmetric algebra) and \((xy)z=(xz)y\). Given a nonassociative algebra \(A\), a linear endomorphism \(D\) of \(A\) is said to be a quasiderivation if there is a linear endomorphism \(D'\) such that \(D(x)y+xD(y)=D'(xy)\) for all \(x,y\in A\).
The main result of the paper under review asserts that if \(A\) is a finite-dimensional Novikov algebra over a field of characteristic not two with \(A^2\neq 0\), such that any linear endomorphism of \(A\) is a quasiderivation, then the dimension of \(A\) is at most \(3\). Moreover, for any Novikov algebra \(A\), a nilpotent algebra \(B\), with \(B^3=0\), is constructed such that the Lie algebra of quasiderivations of \(A\) is naturally embedded in the Lie algebra of derivations of \(B\). The algebra \(B\) is the tensor product of \(A\) with the unique nontrivial nilpotent commutative associative algebra of dimension \(2\).
Remark: Some of the results, and their proofs, are valid for arbitrary nonassociative algebras.

MSC:

17A30 Nonassociative algebras satisfying other identities
17A36 Automorphisms, derivations, other operators (nonassociative rings and algebras)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Block, R., On torsion-free abelian groups and Lie algebras, Proc. Am. Math. Soc., 9, 4, 613-620 (1958) · Zbl 0087.26302 · doi:10.1090/S0002-9939-1958-0097444-2
[2] Benoist, Y.: La partie semi-simple de l’algèbre des dérivations d’une algèbre de Lie nilpotente. Comptes Rendus des Séances de l’Académie des Sciences 307: 901-904 (1988) · Zbl 0664.17007
[3] Balinskii, A.; Novikov, S., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Dokl. Akad. Nauk SSSR, 32, 1, 228-231 (1985) · Zbl 0606.58018
[4] Bai, C.; Meng, D., The classification of Novikov algebras in low dimensions, J. Phys. A: Math. Gen., 34, 8, 1581-1594 (2001) · Zbl 1001.17002 · doi:10.1088/0305-4470/34/8/305
[5] Bai, C.; Meng, D.; Sui, H., Derivations on Novikov Algebras, Int. J. Theor. Phys., 42, 3, 507-521 (2003) · Zbl 1112.17002 · doi:10.1023/A:1024437815600
[6] Chen, L.; Ma, Y.; Ni, L., Generalized derivations of Lie color algebras, RM, 63, 3-4, 923-936 (2013) · Zbl 1272.17022
[7] Chen, L.; Niu, Y.; Meng, D., Two kinds of Novikov algebras and their realizations, J. Pure. Appl. Algebra, 212, 902-909 (2008) · Zbl 1136.17002 · doi:10.1016/j.jpaa.2007.07.008
[8] Fialkow, L.: Generalized derivations, Topics in Modern Operator Theory. Birkh \(\ddot{a}\) user, Basel, 95-103 (1981)
[9] Filippov, V., \( \delta \)-Derivations of prime alternative and Mal’tsev algebras, Algebra Logic, 39, 5, 354-358 (2000) · Zbl 0965.17003 · doi:10.1007/BF02681620
[10] Filippov, V., On \(\delta \)-derivations of Lie algebras, Siber. Math. J., 39, 6, 1218-1230 (1998) · Zbl 0936.17020 · doi:10.1007/BF02674132
[11] Hopkins, N., Generalized derivations of nonassociative algebras, Int. J. Math. Game Theory Algebra, 5, 3, 215-224 (1996) · Zbl 0883.17005
[12] Huang, N.; Chen, L.; Wang, Y., Hom-Jordan algebras and their \(\alpha^k-(a, b, c)\)-derivations, Commun. Algebra, 46, 6, 2600-2614 (2018) · Zbl 1443.17010 · doi:10.1080/00927872.2017.1392535
[13] Leger, G.; Luks, E., Generalized derivations of Lie algebras, J. Algebra, 228, 1, 165-203 (2000) · Zbl 0961.17010 · doi:10.1006/jabr.1999.8250
[14] Melville, D., Centroids of nilpotent Lie algabras, Commun. Algebra, 20, 12, 3649-3682 (1992) · Zbl 0954.17502 · doi:10.1080/00927879208824533
[15] Vinberg, È., Generalized derivations of algebras, Trans. Am. Math. Soc. Ser., 2, 163, 185-188 (1995) · Zbl 0828.16040
[16] Xu, X., On simple Novikov algebras and their irreducible modules, J. Algebra, 185, 3, 905-934 (1996) · Zbl 0863.17003 · doi:10.1006/jabr.1996.0356
[17] Zhang, R.; Zhang, Y., Generalized derivations of Lie superalgebras, Commun. Algebra, 38, 10, 3737-3751 (2010) · Zbl 1211.17006 · doi:10.1080/00927870903236228
[18] Zel’manov, E., On a class of local translation invariant Lie algebras, Sov. Math. Doklady, 292, 6, 1294-1297 (1987) · Zbl 0629.17002
[19] Zhou, J.; Chen, L.; Ma, Y., Generalized derivations of Lie triple systems, Open Math., 14, 1, 260-271 (2016) · Zbl 1364.17003 · doi:10.1515/math-2016-0024
[20] Zhou, X.; Chen, L.; Sun, B., Two kinds of infinite-dimensional Novikov algebras and their sub-adjacent Lie algebras, Algebra Colloq., 26, 3, 495-506 (2019) · Zbl 1467.17020 · doi:10.1142/S1005386719000361
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.