×

Reduced pre-Lie algebraic structures, the weak and weakly deformed Balinsky-Novikov type symmetry algebras and related Hamiltonian operators. (English) Zbl 1423.17024

Summary: The Lie algebraic scheme for constructing Hamiltonian operators is differential-algebraically recast and an effective approach is devised for classifying the underlying algebraic structures of integrable Hamiltonian systems. Lie-Poisson analysis on the adjoint space to toroidal loop Lie algebras is employed to construct new reduced pre-Lie algebraic structures in which the corresponding Hamiltonian operators exist and generate integrable dynamical systems. It is also shown that the Balinsky-Novikov type algebraic structures, obtained as a Hamiltonicity condition, are derivations on the Lie algebras naturally associated with differential toroidal loop algebras. We study nonassociative and noncommutive algebras and the related Lie-algebraic symmetry structures on the multidimensional torus, generating via the Adler-Kostant-Symes scheme multi-component and multi-dimensional Hamiltonian operators. In the case of multidimensional torus, we have constructed a new weak Balinsky-Novikov type algebra, which is instrumental for describing integrable multidimensional and multicomponent heavenly type equations. We have also studied the current algebra symmetry structures, related with a new weakly deformed Balinsky-Novikov type algebra on the axis, which is instrumental for describing integrable multicomponent dynamical systems on functional manifolds. Moreover, using the non-associative and associative left-symmetric pre-Lie algebra theory of Zelmanov, we also explicate Balinsky-Novikov algebras, including their fermionic version and related multiplicative and Lie structures.

MSC:

17B68 Virasoro and related algebras
35Q53 KdV equations (Korteweg-de Vries equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
58J70 Invariance and symmetry properties for PDEs on manifolds
17D25 Lie-admissible algebras
17B20 Simple, semisimple, reductive (super)algebras
17A36 Automorphisms, derivations, other operators (nonassociative rings and algebras)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chapoton, F.; Livernet, M.; Pre-Lie algebras and the rooted trees operad; Int. Math. Res. Not.: 2001; ,395-408. · Zbl 1053.17001
[2] Szczesny, M.; Pre-Lie algebras and indicence categories of colored rooted trees; arXiv: 2010; .
[3] Vinberg, E.B.; The theory of homogeneous convex cones; Transl. Moscow Math. Soc.: 1963; Volume 12 ,340403. · Zbl 0138.43301
[4] Matsushima, Y.; Affine structures on complex manifolds; Osaka J. Math.: 1968; Volume 5 ,215-222. · Zbl 0183.26201
[5] Gerstenhaber, M.; The cohomology structure of an associative ring; Ann. Math.: 1963; Volume 78 ,267-288. · Zbl 0131.27302
[6] Kreimer, D.; On the Hopf algebra structure of perturbative quantum field theory; Adv. Theor. Math. Phys.: 1998; Volume 2 ,303-334. · Zbl 1041.81087
[7] Kremnizer, K.; Szczesny, M.; Feynman graphs, rooted trees, and Ringel-Hall algebras; Commun. Math. Phys.: 2009; Volume 289 ,561-577. · Zbl 1173.81008
[8] Moser, J.; Three integrable Hamiltonian systems connected with isospectral deformations; Adv. Math.: 1975; Volume 16 ,197-220. · Zbl 0303.34019
[9] Moser, J.; ; Integrable Hamiltonian Systems and Spectral Theory: Berlin/Heidelberg, Germany 1983; . · Zbl 0527.70022
[10] Moser, J.; Zehnder, E.; ; Notes on Dynamical Systems: New York, NY, USA 2005; . · Zbl 1087.37001
[11] Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H.; ; Nonlinear Dynamical Systems of Mathematical Physics: Singapore 2011; . · Zbl 1298.37001
[12] Blackmore, D.; Prykarpatsky, Y.A.; Bogolubov, N.N.; Prykarpatski, A.K.; Integrability of and differential- algebraic structures for spatially 1D hydrodynamical systems of Riemann type; Chaos Solit. Fractals: 2014; Volume 59 ,59-81. · Zbl 1348.37101
[13] Blaszak, M.; ; Bi-Hamiltonian Dynamical Systems: New York, NY, USA 1998; . · Zbl 0912.58017
[14] Faddeev, L.D.; Takhtadjan, L.A.; ; Hamiltonian Methods in the Theory of Solitons: New York, NY, USA 1986; . · Zbl 0632.58003
[15] Olver, P.; ; Applications of Lie Groups to Differential Equations: New York, NY, USA 1993; . · Zbl 0785.58003
[16] Dorfman, I.; ; Dirac Structures and Integrability of Nonlinear Evolution Equations: Chichester, UK 1993; .
[17] Gel’fand, I.M.; Dorfman, I.Y.; Hamiltonian operators and algebraic structures related to them (Russian); Funktsional. Anal. Prilozhen.: 1979; Volume 13 ,13-30. · Zbl 0428.58009
[18] Dubrovin, B.A.; Novikov, S.P.; Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method; Sov. Math. Dokl.: 1983; Volume 27 ,665-669. · Zbl 0553.35011
[19] Dubrovin, B.A.; Novikov, S.P.; On Poisson brackets of hydrodynamic type; Sov. Math. Dokl.: 1984; Volume 30 ,651-654. · Zbl 0591.58012
[20] Balinsky, A.A.; Novikov, S.P.; Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras; Sov. Math. Dokl.: 1985; Volume 32 ,228-231. · Zbl 0606.58018
[21] Artemovych, O.D.; Blackmore, D.; Prykarpatski, A.K.; Poisson brackets, Novikov-Leibniz structures and integrable Riemann hydrodynamic systems; J. Nonlinear Math. Phys.: 2017; Volume 24 ,41-72. · Zbl 1420.35015
[22] Prykarpatsky, A.K.; Artemovych, O.D.; Popowicz, Z.; Pavlov, M.V.; Differential-algebraic integrability analysis of the generalized Riemann type and Korteweg-de Vries hydrodynamical equations; J. Phys. A Math. Theory: 2010; Volume 43 ,295205. · Zbl 1197.35187
[23] Prykarpatsky, Y.A.; Artemovych, O.D.; Pavlov, M.V.; Pryparpatsky, A.K.; Diffrential-algebraic and bi-Hamiltonian integrability analysis of the Riemann hierarchy revisited; J. Math. Phys.: 2012; Volume 53 ,103521. · Zbl 1297.37033
[24] Bai, C.; Meng, D.; Addendum: invariant bilinear forms; J. Phys. A: 2001; Volume 34 ,8193-8197. · Zbl 1013.17001
[25] Bai, C.; Meng, D.; Transitive Novikov algebras on four-dimensional nilpotent Lie algebras; Int. J. Theoret. Phys.: 2001; Volume 40 ,1761-1768. · Zbl 1001.17001
[26] Bai, C.; Meng, D.; The classification of Novikov algebras in low dimensions; J. Phys. A: 2001; Volume 34 ,1581-1594. · Zbl 1001.17002
[27] Bai, C.; Meng, D.; On fermionic Novikov algebras; J. Phys. A Math. Gen.: 2002; Volume 35 ,10053-10063. · Zbl 1044.17002
[28] Bai, C.; Meng, D.; He, L.; On the Novikov algebra structures adapted to the automorphism structure in a Lie group; J. Geom. Phys.: 2003; Volume 45-2 ,105-115. · Zbl 1033.17002
[29] Osborn, J.M.; Novikov algebras, Nova J; Algebra Geom.: 1992; Volume 1 ,1-13. · Zbl 0876.17005
[30] Strachan, I.A.B.; Szablikowski, B.M.; Novikov Algebras and a classification of multicomponent Camassa- Holm equations; Stud. Appl. Math.: 2014; Volume 133 ,84-117. · Zbl 1301.35139
[31] Holm, D.D.; Ivanov, R.I.; Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples; J. Phys. A: 2010; Volume 43 ,492001. · Zbl 1213.37097
[32] Bogdanov, L.V.; Interpolating differential reductions of multidimensional integrable hierarchies; TMF: 2011; Volume 167 ,354-363.
[33] Bogdanov, L.V.; Dryuma, V.S.; Manakov, S.V.; Dunajski generalization of the second heavenly equation: Dressing method and the hierarchy; J. Phys. A Math. Theory: 2007; Volume 40 ,14383-14393. · Zbl 1125.37047
[34] Bogdanov, L.V.; Konopelchenko, B.G.; On the heavenly equation and its reductions; J. Phys. A Math. Gen.: 2006; Volume 39 ,11793-11802. · Zbl 1099.37049
[35] Doubrov, B.; Ferapontov, E.V.; On the integrability of symplectic Monge-Ampère equations; J. Geom. Phys.: 2010; Volume 60 ,1604-1616. · Zbl 1195.35109
[36] Dunajski, M.; Anti-self-dual four-manifolds with a parallel real spinor; R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.: 2002; Volume 458 ,1205-1222. · Zbl 1006.53040
[37] Konopelchenko, B.G.; Grassmanians Gr(N−1,N+1), closed differential N−1 forms and N-dimensional integrable systems; arXiv: 2013; . · Zbl 1271.37040
[38] Krasil’shchik, I.; A natural geometric construction underlying a class of Lax pairs; Lobachevskii J. Math.: 2016; Volume 37 ,61-66. · Zbl 1380.37127
[39] Sergyeyev, A.; A simple construction of recursion operators for multidimensional dispersionless integrable systems; J. Math. Anal. Appl.: 2017; Volume 454 ,468-480. · Zbl 1373.37159
[40] Takasaki, K.; Takebe, T.; SDiff(2) Toda equation—Hierarchy, Tau function, and symmetries; Lett. Math. Phys.: 1991; Volume 23 ,205-214. · Zbl 0741.35083
[41] Takasaki, K.; Takebe, T.; Integrable hierarchies and dispersionless limit; Rev. Math. Phys.: 1995; Volume 7 ,743-808. · Zbl 0838.35117
[42] Zakharevich, I.; Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs; arXiv: 2000; .
[43] Hentosh, O.; Prykarpatsky, Y.A.; Blackmore, D.; Prykarpatski, A.K.; Lie-algebraic structure of Lax-Sato integrable heavenly equations and the Lagrange-d’Alembert principle; J. Geom. Phys.: 2017; Volume 120 ,208-227. · Zbl 1425.17036
[44] Sergyeyev, A.; New integrable (3+1)-dimensional systems and contact geometry; arXiv: ; ,2017. · Zbl 1384.37087
[45] Schief, W.K.; Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation; Phys. Lett. A: 1996; Volume 223 ,55-62. · Zbl 1037.83503
[46] Schief, W.K.; Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link; Symmetries And Integrability of Difference Equations: Cambridge, UK 1999; ,137-148. · Zbl 0924.35158
[47] Sergyeyev, A.; Szablikowski, B.M.; Central extensions of cotangent universal hierarchy: (2 + 1)-dimensional bi-Hamiltonian systems; Phys. Lett. A: 2008; Volume 372 ,7016-7023. · Zbl 1227.37013
[48] Szablikowski, B.; Hierarchies of Manakov-Santini Type by Means of Rota-Baxter and Other Identities; SIGMA: 2016; Volume 12 ,022. · Zbl 1343.37068
[49] Blackmore, D.; Hentosh, O.E.; Prykarpatski, A.; The Novel Lie-Algebraic Approach to Studying Integrable Heavenly Type Multi-Dimensional Dynamical Systems; J. Gener. Lie Theory Appl.: 2017; Volume 11 .
[50] Prykarpatski, A.K.; Hentosh, O.E.; Prykarpatsky, Y.A.; Geometric Structure of the Classical Lagrange- d’Alambert Principle and its Application to Integrable Nonlinear Dynamical Systems; Mathematics: 2017; Volume 5 . · Zbl 1430.17099
[51] Błaszak, M.; Szum, A.; Lie algebraic approach to the construction of (2 + 1)-dimensional lattice-field and field integrable Hamiltonian equations; J. Math. Phys.: 2001; Volume 35 ,4088-4116. · Zbl 1059.37060
[52] Błaszak, M.; Szum, A.; Prykarpatsky, A.; Central extension approach to integrable field and lattice-field systems in (2 + 1)-dimensions; Rep. Math. Phys.: 1999; Volume 37 ,27-32. · Zbl 0970.37060
[53] Cieśliński, J.; Prykarpatski, A.K.; Discrete approximations on functional classes for the integrable nonlinear Schrödinger dynamical system: A symplectic finite-dimensional reduction approach; J. Math. Anal. Appl.: 2015; Volume 430 ,279-295. · Zbl 1371.37121
[54] Cieśliński, J.; Prykarpatski, A.K.; The discrete nonlinear Schrödinger type hierarchy, its finite-dimensional reduction analysis and numerical integrability scheme; Nonlinear Oscillations: 2017; Volume 20 ,228-265.
[55] Benoist, Y.; Une nilvariete non-affine; J. Differ. Geom.: 1995; Volume 41 ,21-52. · Zbl 0828.22023
[56] Burde, D.; Affine structures on nilmanifolds; Int. J. Math.: 1996; Volume 7 ,599-616. · Zbl 0868.57034
[57] Kim, H.; Complete left-invariant affine structures on nilpotent Lie groups; J. Differ. Geom.: 1986; Volume 24 ,373-394. · Zbl 0591.53045
[58] Perea, A.M.; Flat left-invariant connections adapted to the automorphism structure of a Lie group; J. Differ. Geom.: 1981; Volume 16 ,445-474. · Zbl 0486.53026
[59] Zelmanov, E.; A class of local translation-invariant Lie algebras (Russian); Dokl. Akad. Nauk SSSR: 1987; Volume 292 ,1294-1297.
[60] Semenov-Tian-Shansky, M.; What is a classical R-matrix?; Func. Anal. Appl.: 1983; Volume 17 ,259-272. · Zbl 0535.58031
[61] Abraham, R.; Marsden, J.E.; ; Foundations of Mechanics: San Francisco, CA, USA 1978; . · Zbl 0393.70001
[62] Arnold, V.I.; ; Mathematical Methods of Classical Mechanics: New York, NY, USA 1989; . · Zbl 0692.70003
[63] Oevel, W.; Dirac constraints in field theory: Lifts of Hamiltonian systems to the cotangent bundle; J. Math. Phys.: 1988; Volume 29 ,210-219. · Zbl 0656.70011
[64] Oevel, W.; R-structures, Yang-Baxter equations and related involution theorems; J. Math. Phys.: 1989; Volume 30 ,1140-1149. · Zbl 0689.35077
[65] Reyman, A.G.; Semenov-Tian-Shansky, M.A.; ; Integrable Systems (Russian): Moscow, Russia 2003; .
[66] Li, L.-C.; Parmentier, S.; Nonlinear Poisson structures and r-matrices; Commun. Math. Phys.: 1989; Volume 125 ,545-563. · Zbl 0695.58011
[67] Godbillon, C.; ; Geometrie Differentielle Et Mecanique Analytique: Paris, France 1969; . · Zbl 0174.24602
[68] Prykarpatsky, A.K.; Mykytyuk, I.V.; ; Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects: Dordrecht, The Netherlands 1998; . · Zbl 0937.37055
[69] Bĺaszak, M.B.; Szablikowski, B.M.; Classical R-matrix theory for bi-Hamiltonian field systems; J. Phys. A Math. Theory: 2009; Volume 42 ,404002. · Zbl 1187.37093
[70] Auslander, L.; Simply transitive groups of affine motions; Am. Math. J.: 1977; Volume 99 ,215-222. · Zbl 0357.22006
[71] Osborn, J.M.; Simple Novikov algebras with an idempotent; Commun. Algebra: 1992; Volume 20 ,2729-2753. · Zbl 0772.17001
[72] Osborn, J.M.; Zelmanov, E.; Nonassociative algebras related to Hamiltonian operarors in the formal calculus of variations; J. Pure Appl. Algebra: 1995; Volume 101 ,335-352. · Zbl 0847.17001
[73] Xu, X.; On simple Novikov algebras and their irreducible modules Novikov algebras; J. Algebra: 1996; Volume 185 ,905-934. · Zbl 0863.17003
[74] Burde, D.; Dekimpe, K.; Novikov structures on solvable Lie algebras; J. Geom. Phys.: 2006; Volume 56 ,1837-1855. · Zbl 1095.17004
[75] Burde, D.; Dekimpe, K.; Vercammen, K.; Novikov algebras and Novikov structures on Lie algebras; Linear Algebra Appl.: 2008; Volume 429 ,31-41. · Zbl 1140.17001
[76] Burde, D.; de Graaf, W.; Classification of Novikov algebras; Appl. Algebra Eng. Commun. Comput.: 2013; Volume 24 ,1-15. · Zbl 1301.17023
[77] Baehr, H.C.; Dimakis, A.; Müller-Hoissen, F.; Differential calculi on commutative algebras; J. Phys. A: 1995; Volume 28 ,31973222. · Zbl 0864.58001
[78] Burde, D.; Simple left-symmetric algebras with solvable Lie algebras; Manuscripta Math.: 1998; Volume 95 ,397-411. · Zbl 0907.17008
[79] Jacobson, N.; A note on nonassociative algebras; Duke Math. J.: 1937; Volume 3 ,544-548. · JFM 63.0088.03
[80] Farrand, S.M.; Finston, D.R.; On the multiplication ideal of a nonassociative algebra; Arch. Math.: 1987; Volume 48 ,298-818. · Zbl 0594.17003
[81] Finston, D.R.; On multiplicative algebras; Trans. Am. Math. Soc.: 1986; Volume 293 ,807-818. · Zbl 0609.16018
[82] Filippov, V.T.; On right-symmetric and Novikon nil algebras of bounded index (Russian); Mat. Zametki: 2001; Volume 70 ,289-295. · Zbl 1042.17002
[83] Jacobson, N.; ; Lie Algebras: New York, NY, USA 1962; . · Zbl 0121.27504
[84] Jacobson, N.; ; Structure and Representations of Jordan Algebras: Providence, RI, USA 1968; . · Zbl 0218.17010
[85] Zhevlakov, K.A.; Slinko, A.M.; Shestakov, I.P.; Shirshov, A.I.; ; Rings That Are Nearly Associative, Translated From Russian By Harry F. Smoth: New York, NY, USA 1982; ,4729-4738. · Zbl 0487.17001
[86] Levitzki, J.; On problem of A. Kurosh; Bull. Am. Math. Soc.: 1946; Volume 50 ,1033-1035. · Zbl 0060.07404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.