×

Models induced from critical birth-death process with random initial conditions. (English) Zbl 1521.62496

Summary: In this work, we study a linear birth-death process starting from random initial conditions. First, we consider these initial conditions as a random number of particles following different standard probabilistic distributions - Negative-Binomial and its closest Geometric, Poisson or Pólya-Aeppli distributions. It is proved analytically and numerically that in these cases the random number of particles alive at any positive time follows the same probability law like the initial condition, but with different parameters depending on time. The random initial conditions cannot change the critical parameter of branching mechanism, but they impact the extinction probability. Finally, the numerical model is extended to an application for studying branching processes with more complex initial conditions. This is demonstrated with a linear birth-death process initialised with Pólya urn sampling scheme. The obtained preliminary results for particle distribution show close relation to Pólya-Aeppli distribution.

MSC:

62-XX Statistics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; Behner, F.; Bellagamba, L.; Boudreau, J.; Broglia, L.; Brunengo, A.; Burkhardt, H.; Chauvie, S.; Chuma, J.; Chytracek, R.; Cooperman, G.; Cosmo, G.; Degtyarenko, P.; Dell’Acqua, A.; Depaola, G.; Dietrich, D.; Enami, R.; Feliciello, A.; Ferguson, C.; Fesefeldt, H.; Folger, G.; Foppiano, F.; Forti, A.; Garelli, S.; Giani, S.; Giannitrapani, R.; Gibin, D.; Gómez Cadenas, J. J.; González, I.; Gracia Abril, G.; Greeniaus, G.; Greiner, W.; Grichine, V.; Grossheim, A.; Guatelli, S.; Gumplinger, P.; Hamatsu, R.; Hashimoto, K.; Hasui, H.; Heikkinen, A.; Howard, A.; Ivanchenko, V.; Johnson, A.; Jones, F. W.; Kallenbach, J.; Kanaya, N.; Kawabata, M.; Kawabata, Y.; Kawaguti, M.; Kelner, S.; Kent, P.; Kimura, A.; Kodama, T.; Kokoulin, R.; Kossov, M.; Kurashige, H.; Lamanna, E.; Lampén, T.; Lara, V.; Lefebure, V.; Lei, F.; Liendl, M.; Lockman, W.; Longo, F.; Magni, S.; Maire, M.; Medernach, E.; Minamimoto, K.; Mora de Freitas, P.; Morita, Y.; Murakami, K.; Nagamatu, M.; Nartallo, R.; Nieminen, P.; Nishimura, T.; Ohtsubo, K.; Okamura, M.; O’Neale, S.; Oohata, Y.; Paech, K.; Perl, J.; Pfeiffer, A.; Pia, M. G.; Ranjard, F.; Rybin, A.; Sadilov, S.; Di Salvo, E.; Santin, G.; Sasaki, T.; Savvas, N.; Sawada, Y.; Scherer, S.; Sei, S.; Sirotenko, V.; Smith, D.; Starkov, N.; Stoecker, H.; Sulkimo, J.; Takahata, M.; Tanaka, S.; Tcherniaev, E.; Safai Tehrani, E.; Tropeano, M.; Truscott, P.; Uno, H.; Urban, L.; Urban, P.; Verderi, M.; Walkden, A.; Wander, W.; Weber, H.; Wellisch, J. P.; Wenaus, T.; Williams, D. C.; Wright, D.; Yamada, T.; Yoshida, H.; Zschiesche, D., GEANT4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. A, 506, 250-303 (2003)
[2] Altrock, P.; Liu, L. L.; Michor, F., The mathematics of cancer: integrating quantitative models, Nat. Rev. Cancer, 15, 730-745 (2015)
[3] Andrieu, Ch.; de Freitas, N.; Doucet, A.; Jordan, M. I., An introduction to MCMC for machine learning, Mach. Learn., 50, 5-43 (2003) · Zbl 1033.68081
[4] Athreya, K.; Ney, P., Branching Processes (1972), Springer: Springer, New York
[5] Baake, E. and Wakolbinger, A., Feller’s contributions in mathematical biology, in The Selected Papers of William Feller, R. L. Schilling, Z. Vondracek, W. A. Woyczynski, eds., Vol. 2, Springer Verlag, Heidelberg, 2015, pp. 25-43.
[6] Battistoni, G., Muraro, S., Sala, P.R., Cerutti, F., Ferrari, A., Roesler, S., Fasso, A., and Ranft, J., The fluka code: description and benchmarking, AIP Conference Proceedings, Batavia, IL, USA, Vol. 896, 2006, pp. 31-49. Available at https://aip.scitation.org/toc/apc/896/1.
[7] Burden, C., polyaAeppli: Implementation of the Polya-Aeppli distribution, R package version 2.0, 2014. Available at https://CRAN.R-project.org/package=polyaAeppli.
[8] Chauvin, B.; Pouyanne, N.; Sahnoun, R., Limit distributions for large Pólya urns, Ann. Appl. Probab., 21, 1-32 (2011) · Zbl 1220.60006
[9] Dascaliuc, R.; Michalowski, N.; Thomann, E.; Waymire, E. C., A delayed yule process, Proc. Amer. Math. Soc., 146, 1335-1346 (2018) · Zbl 1379.60039
[10] Elia, M.; Taracco, G., A note on linear birth-and-death processes, Mathl. Comput. Modeling, 16, 61-69 (1992) · Zbl 0761.60074
[11] Hanel, R.; Corominas-Murtra, B.; Thurner, S., Understanding frequency distributions of path-dependent processes with non-multinomial maximum entropy approaches, New. J. Phys., 19 (2017)
[12] Harris, T., The Theory of Branching Processes (1963), Springer: Springer, New York
[13] Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G., and Thouw, T., CORSIKA: a Monte Carlo code to simulate extensive air showers, D-30167 Hannover, Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany), 1998.
[14] Kendal, D. G., Branching processes since 1873, J. London Math. Soc., 41, 385-406 (1966) · Zbl 0154.42505
[15] Knape, M.; Neininger, R., Plya urns via the contraction method, Comb. Probab. Comput., 23, 1148-1186 (2014) · Zbl 1301.60012
[16] Kristiansen, G.B., Kulikov, G.V., and Fomin, Y.A., Ultrahigh Energy Cosmic Rays, 1975, (in Russian).
[17] Mayster, P., Subordinated Markov branching processes and Lévy processes, Serdica Math. J., 40, 183-208 (2014) · Zbl 1488.60204
[18] Mayster, P., Consecutive subordination of Poisson processes and gamma processes, Compt. Rend. Acad. Bulg. Sci., 71, 735-742 (2018) · Zbl 1413.60081
[19] Mayster, P.; Tchorbadjieff, A., Supercritical Markov branching process with random initial condition, Compt. Rend. Acad. Bulg. Sci., 72, 21-28 (2019) · Zbl 1438.60110
[20] Sevasyanov, B.A., Branching processes, Moskow, Nauka, 1971, (in Russian); B. A. Sewastjanow, Verzweigungsprozesse, R. Oldenbourg Verlag, Munich, 1975, (in German).
[21] Slavtchova-Bojkova, M.; Trayanov, P.; Dimitrov, S., Branching processes in continuous time as models of mutations: computational approaches and algorithms, Comput. Stat. Data. Anal., 113, 111-124 (2017) · Zbl 1464.62162
[22] Snyder, D. L.; Miller, M. I., Random Point Processes in Time and Space (1991), Springer: Springer, New York · Zbl 0744.60050
[23] Putze, A.; Derome, L.; Maurin, D.; Perroto, L.; Taillet, R., A markov chain Monte Carlo technique to sample transport and source parameters of galactic cosmic rays, Astron. Astrophys., 497, 991-1007 (2009)
[24] Tavaré, S., The linear birth – death process: an inferential retrospective, Adv. Appl. Probab., 50, 253-269 (2018) · Zbl 1436.62100
[25] Tchorbadjieff, A., Using branching processes to simulate cosmic rays cascades, Pliska Stud. Math., 27, 103-114 (2017) · Zbl 1424.60095
[26] R Foundation for Statistical Computing, R: A Language and Environment for Statistical Computing, 2018, Available at https://www.R-project.org/.
[27] Scholz, F. W.; Stephens, M. A., K-Sample Anderson-Darling tests, J. Am. Stat. Assoc., 82, 918-924 (1987)
[28] Scholz, F. and Zhu, A., kSamples: K-Sample Rank Tests and their Combinations, R package version 1.2-8, 2018, Available at https://CRAN.R-project.org/package=kSamples.
[29] Walsh, B., Markov Chain Monte Carlo and Gibbs Sampling, Lecture Notes for EEB 581, version 26, 2004.
[30] Yule, G. U., A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S, Philos. Trans. R. Soc. B., 213, 21-87 (1925)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.