Leach, P. G. L.; Paliathanasis, Andronikos A systematic analysis of the properties of the generalised Painlevé-Ince equation. (English) Zbl 07312313 Quaest. Math. 44, No. 1, 1-6 (2021). MSC: 34M35 34M55 34C14 PDF BibTeX XML Cite \textit{P. G. L. Leach} and \textit{A. Paliathanasis}, Quaest. Math. 44, No. 1, 1--6 (2021; Zbl 07312313) Full Text: DOI
Sottocornola, Nicola An application of the Kowalewski conditions. (English) Zbl 07311017 Anal. Math. Phys. 11, No. 2, Paper No. 49, 13 p. (2021). MSC: 37J35 34M55 PDF BibTeX XML Cite \textit{N. Sottocornola}, Anal. Math. Phys. 11, No. 2, Paper No. 49, 13 p. (2021; Zbl 07311017) Full Text: DOI
Branquinho, Amílcar; Foulquié Moreno, Ana; Mañas, Manuel Matrix biorthogonal polynomials: eigenvalue problems and non-Abelian discrete Painlevé equations. A Riemann-Hilbert problem perspective. (English) Zbl 07310648 J. Math. Anal. Appl. 494, No. 2, Article ID 124605, 36 p. (2021). Reviewer: Vladimir P. Kostov (Nice) MSC: 37K20 37K60 39A36 37J70 37J65 33C47 33E17 34M55 34M50 15A16 PDF BibTeX XML Cite \textit{A. Branquinho} et al., J. Math. Anal. Appl. 494, No. 2, Article ID 124605, 36 p. (2021; Zbl 07310648) Full Text: DOI
Nagloo, Joel Model theory and differential equations. (English) Zbl 07308916 Notices Am. Math. Soc. 68, No. 2, 177-185 (2021). MSC: 03C60 12H05 34M55 PDF BibTeX XML Cite \textit{J. Nagloo}, Notices Am. Math. Soc. 68, No. 2, 177--185 (2021; Zbl 07308916) Full Text: DOI
Magnus, Alphonse P.; Ndayiragije, François; Ronveaux, André About families of orthogonal polynomials satisfying Heun’s differential equation. (English) Zbl 07303674 J. Approx. Theory 263, Article ID 105522, 30 p. (2021). MSC: 33C 34M35 34M55 41A21 42C05 81Q05 PDF BibTeX XML Cite \textit{A. P. Magnus} et al., J. Approx. Theory 263, Article ID 105522, 30 p. (2021; Zbl 07303674) Full Text: DOI
Jay, Laurent O. Symplecticness conditions of some low order partitioned methods for non-autonomous Hamiltonian systems. (English) Zbl 07300811 Numer. Algorithms 86, No. 2, 495-514 (2021). MSC: 65L06 37J65 65P10 PDF BibTeX XML Cite \textit{L. O. Jay}, Numer. Algorithms 86, No. 2, 495--514 (2021; Zbl 07300811) Full Text: DOI
Gordoa, P. R.; Pickering, Andrew On matrix fourth Painlevé hierarchies. (English) Zbl 07283591 J. Differ. Equations 271, 499-532 (2021). MSC: 34M55 37K35 37K10 33E17 PDF BibTeX XML Cite \textit{P. R. Gordoa} and \textit{A. Pickering}, J. Differ. Equations 271, 499--532 (2021; Zbl 07283591) Full Text: DOI
Chekhov, Leonid; Mazzocco, Marta; Rubtsov, Vladimir Quantised Painlevé monodromy manifolds, Sklyanin and Calabi-Yau algebras. (English) Zbl 07282544 Adv. Math. 376, Article ID 107442, 53 p. (2021). MSC: 14A22 32G34 37J65 53D55 17B63 20C08 PDF BibTeX XML Cite \textit{L. Chekhov} et al., Adv. Math. 376, Article ID 107442, 53 p. (2021; Zbl 07282544) Full Text: DOI
Liu, Hanze; Bai, Cheng-Lin; Xin, Xiangpeng Painlevé test, complete symmetry classifications and exact solutions to R-D types of equations. (English) Zbl 07280092 Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105547, 12 p. (2021). MSC: 37L20 37K35 37K10 35K57 PDF BibTeX XML Cite \textit{H. Liu} et al., Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105547, 12 p. (2021; Zbl 07280092) Full Text: DOI
Kudryashov, Nikolay A. The generalized Duffing oscillator. (English) Zbl 07274921 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105526, 16 p. (2021). MSC: 34C15 34C25 34A05 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105526, 16 p. (2021; Zbl 07274921) Full Text: DOI
Ali, I.; Seadawy, A. R.; Rizvi, S. T. R.; Younis, M.; Ali, K. Conserved quantities along with Painlevé analysis and optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model. (English) Zbl 07312212 Int. J. Mod. Phys. B 34, No. 30, Article ID 2050283, 15 p. (2020). MSC: 35Q55 78A60 35C07 35C08 PDF BibTeX XML Cite \textit{I. Ali} et al., Int. J. Mod. Phys. B 34, No. 30, Article ID 2050283, 15 p. (2020; Zbl 07312212) Full Text: DOI
Joshi, Nalini Discrete Painlevé equations. (English) Zbl 07308982 Notices Am. Math. Soc. 67, No. 6, 797-805 (2020). MSC: 39A12 39A36 33E17 34M55 PDF BibTeX XML Cite \textit{N. Joshi}, Notices Am. Math. Soc. 67, No. 6, 797--805 (2020; Zbl 07308982) Full Text: DOI
Domrin, A. V.; Suleimanov, B. I.; Shumkin, M. A. Global meromorphy of solutions of the Painlevé equations and their hierarchies. (English. Russian original) Zbl 07308455 Proc. Steklov Inst. Math. 311, 98-113 (2020); translation from Tr. Mat. Inst. Steklova 311, 106-122 (2020). MSC: 30 32 PDF BibTeX XML Cite \textit{A. V. Domrin} et al., Proc. Steklov Inst. Math. 311, 98--113 (2020; Zbl 07308455); translation from Tr. Mat. Inst. Steklova 311, 106--122 (2020) Full Text: DOI
Suzuki, Takao; Okubo, Naoto Cluster algebra and \(q\)-Painlevé equations: higher order generalization and degeneration structure. (English) Zbl 07304001 RIMS Kôkyûroku Bessatsu B78, 53-75 (2020). MSC: 39A13 17B80 34M55 37J70 37J65 37J37 13F60 PDF BibTeX XML Cite \textit{T. Suzuki} and \textit{N. Okubo}, RIMS Kôkyûroku Bessatsu B78, 53--75 (2020; Zbl 07304001) Full Text: Link
Nakamura, Akane The Painlevé divisors of the autonomous 4-dimensional Painlevé-type equations. (English) Zbl 07304000 RIMS Kôkyûroku Bessatsu B78, 29-51 (2020). MSC: 34M55 33E17 14H70 PDF BibTeX XML Cite \textit{A. Nakamura}, RIMS Kôkyûroku Bessatsu B78, 29--51 (2020; Zbl 07304000) Full Text: Link
Masuda, Tetsu Bilinearization of the \(q\)-Sasano system of type \(D^{(1)}_7\) and special polynomials associated with its rational solutions. (English) Zbl 07303999 RIMS Kôkyûroku Bessatsu B78, 1-27 (2020). Reviewer: Thomas Ernst (Uppsala) MSC: 05A30 33D99 33E17 33E30 14E07 PDF BibTeX XML Cite \textit{T. Masuda}, RIMS Kôkyûroku Bessatsu B78, 1--27 (2020; Zbl 07303999) Full Text: Link
Kato, Mitsuo; Mano, Toshiyuki; Sekiguchi, Jiro Flat structure on the space of isomonodromic deformations. (English) Zbl 07302815 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 110, 36 p. (2020). MSC: 34M56 33E17 35N10 32S25 PDF BibTeX XML Cite \textit{M. Kato} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 110, 36 p. (2020; Zbl 07302815) Full Text: DOI
Ashok, Sujay K.; Jatkar, Dileep P.; Raman, Madhusudhan Triangle groups: automorphic forms and nonlinear differential equations. (English) Zbl 07302807 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 102, 13 p. (2020). MSC: 11F12 33E30 34M55 PDF BibTeX XML Cite \textit{S. K. Ashok} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 102, 13 p. (2020; Zbl 07302807) Full Text: DOI
Loray, Frank; Ramírez, Valente A map between moduli spaces of connections. (English) Zbl 07292472 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 125, 42 p. (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 14D20 32G34 34M55 14H52 53D30 PDF BibTeX XML Cite \textit{F. Loray} and \textit{V. Ramírez}, SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 125, 42 p. (2020; Zbl 07292472) Full Text: DOI
Yamada, Yasuhiko Theory and applications of the elliptic Painlevé equation. (English) Zbl 07290811 Gritsenko, Valery (ed.) et al., Partition functions and automorphic forms. Lecture notes based on the presentations at the international scientifc school, Dubna, Russia, January 29 – February 2, 2018. Cham: Springer (ISBN 978-3-030-42399-5/hbk; 978-3-030-42400-8/ebook). Moscow Lectures 5, 369-415 (2020). MSC: 81T32 34M55 39A12 58J26 34B20 PDF BibTeX XML Cite \textit{Y. Yamada}, Mosc. Lect. 5, 369--415 (2020; Zbl 07290811) Full Text: DOI
Tamilselvan, K.; Kanna, T.; Govindarajan, A. On the integrability aspects of nonparaxial nonlinear Schrödinger equation and the dynamics of solitary waves. (English) Zbl 1448.35483 Phys. Lett., A 384, No. 27, Article ID 126729, 8 p. (2020). MSC: 35Q55 35C08 34M55 PDF BibTeX XML Cite \textit{K. Tamilselvan} et al., Phys. Lett., A 384, No. 27, Article ID 126729, 8 p. (2020; Zbl 1448.35483) Full Text: DOI
Andreev, Fedor V.; Kitaev, Alexander V. Connection formulae for asymptotics of the fifth Painlevé transcendent on the imaginary axis. I. (English) Zbl 07279114 Stud. Appl. Math. 145, No. 3, 397-482 (2020). MSC: 34M55 PDF BibTeX XML Cite \textit{F. V. Andreev} and \textit{A. V. Kitaev}, Stud. Appl. Math. 145, No. 3, 397--482 (2020; Zbl 07279114) Full Text: DOI
Min, Chao; Chen, Yang Painlevé VI, Painlevé III, and the Hankel determinant associated with a degenerate Jacobi unitary ensemble. (English) Zbl 07279042 Math. Methods Appl. Sci. 43, No. 15, 9169-9184 (2020). MSC: 15B52 37J65 33E17 PDF BibTeX XML Cite \textit{C. Min} and \textit{Y. Chen}, Math. Methods Appl. Sci. 43, No. 15, 9169--9184 (2020; Zbl 07279042) Full Text: DOI
Georgiev, Georgi Comment on “Painleve analysis and integrability of the trapped ionic system” by M. Benkhali, J. Kharbach, I. El Fakkousy, W. Chatar, A. Rezzouk, and M. Ouazzani-Jamil. (English) Zbl 1448.81473 Phys. Lett., A 384, No. 36, Article ID 126932, 2 p. (2020). MSC: 81V45 34M55 37K10 PDF BibTeX XML Cite \textit{G. Georgiev}, Phys. Lett., A 384, No. 36, Article ID 126932, 2 p. (2020; Zbl 1448.81473) Full Text: DOI
Wazwaz, Abdul-Majid New \((3 + 1)\)-dimensional date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent coefficients: Painlevé integrability. (English) Zbl 1448.35438 Phys. Lett., A 384, No. 32, Article ID 126787, 4 p. (2020). MSC: 35Q51 35Q53 34M55 35C08 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Phys. Lett., A 384, No. 32, Article ID 126787, 4 p. (2020; Zbl 1448.35438) Full Text: DOI
Marchal, Olivier; Orantin, Nicolas Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the \(\mathfrak{s} \mathfrak{l}_2\) case. (English) Zbl 07277860 J. Math. Phys. 61, No. 6, 061506, 33 p. (2020). Reviewer: Tsvetana Stoyanova (Sofia) MSC: 34M56 81Q20 PDF BibTeX XML Cite \textit{O. Marchal} and \textit{N. Orantin}, J. Math. Phys. 61, No. 6, 061506, 33 p. (2020; Zbl 07277860) Full Text: DOI
Wang, Dan; Zhu, Mengkun; Chen, Yang Orthogonal polynomials, bi-confluent Heun equations and semi-classical weights. (English) Zbl 07273568 J. Difference Equ. Appl. 26, No. 7, 1000-1012 (2020). MSC: 33C47 34M55 35C20 65Q99 PDF BibTeX XML Cite \textit{D. Wang} et al., J. Difference Equ. Appl. 26, No. 7, 1000--1012 (2020; Zbl 07273568) Full Text: DOI
Salatich, A. A.; Slavyanov, S. Yu.; Stesik, O. L. First-order ODE systems generating confluent Heun equations. (English. Russian original) Zbl 07272656 J. Math. Sci., New York 251, No. 3, 427-432 (2020); translation from Zap. Nauchn. Semin. POMI 485, 187-194 (2019). Reviewer: Mykola Grygorenko (Kyïv) MSC: 34M03 34M55 34M56 PDF BibTeX XML Cite \textit{A. A. Salatich} et al., J. Math. Sci., New York 251, No. 3, 427--432 (2020; Zbl 07272656); translation from Zap. Nauchn. Semin. POMI 485, 187--194 (2019) Full Text: DOI
Liu, Lei; Zhang, Jilong Some results on the Painlevé III difference equations with constant coefficients. (English) Zbl 1451.30065 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 2, 115-125 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 2, 65-78 (2020). MSC: 30D35 39A10 PDF BibTeX XML Cite \textit{L. Liu} and \textit{J. Zhang}, J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 2, 115--125 (2020; Zbl 1451.30065) Full Text: DOI
Filipuk, G.; Ishkhanyan, A.; Dereziński, J. On the derivatives of the Heun functions. (English) Zbl 07269734 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 3, 200-207 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 3, 21-29 (2020). Reviewer: Tsvetana Stoyanova (Sofia) MSC: 34M55 34M56 34M03 34M35 33E10 PDF BibTeX XML Cite \textit{G. Filipuk} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 3, 200--207 (2020; Zbl 07269734) Full Text: DOI
Kokocki, Piotr Total integrals of Ablowitz-Segur solutions for the inhomogeneous Painlevé II equation. (English) Zbl 07265664 Stud. Appl. Math. 144, No. 4, 504-547 (2020). Reviewer: Tsvetana Stoyanova (Sofia) MSC: 34M55 PDF BibTeX XML Cite \textit{P. Kokocki}, Stud. Appl. Math. 144, No. 4, 504--547 (2020; Zbl 07265664) Full Text: DOI
Pikulin, S. V. Parametrization of solutions to the Emden-Fowler equation and the Thomas-Fermi model of compressed atoms. (English. Russian original) Zbl 07264206 Comput. Math. Math. Phys. 60, No. 8, 1271-1283 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1315-1328 (2020). MSC: 34A34 34A12 34B40 34B16 34B08 34A05 34A45 65L10 PDF BibTeX XML Cite \textit{S. V. Pikulin}, Comput. Math. Math. Phys. 60, No. 8, 1271--1283 (2020; Zbl 07264206); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1315--1328 (2020) Full Text: DOI
Zhang, Zhengqi; Zhou, Zhi Numerical analysis of backward subdiffusion problems. (English) Zbl 1452.65216 Inverse Probl. 36, No. 10, Article ID 105006, 27 p. (2020). MSC: 65M32 65M30 65N30 65M22 65D32 65M15 33E17 35R11 26A33 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{Z. Zhou}, Inverse Probl. 36, No. 10, Article ID 105006, 27 p. (2020; Zbl 1452.65216) Full Text: DOI
Gjata, Oltiana; Zanolin, Fabio An example of chaotic dynamics for the motion of a charged particle in a magnetic field. (English) Zbl 07249035 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 201, Article ID 112091, 18 p. (2020). Reviewer: Aleksandra Tutueva (St. Petersburg) MSC: 34C28 34C25 34C05 37C60 37J65 PDF BibTeX XML Cite \textit{O. Gjata} and \textit{F. Zanolin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 201, Article ID 112091, 18 p. (2020; Zbl 07249035) Full Text: DOI
Peng, Chang-Wen; Huang, Hua-Wei The growth of meromorphic solutions for \(q\)-difference Painlevé IV equation. (English) Zbl 1450.30048 J. Math. Anal. Appl. 492, No. 2, Article ID 124485, 14 p. (2020). MSC: 30D30 34M05 PDF BibTeX XML Cite \textit{C.-W. Peng} and \textit{H.-W. Huang}, J. Math. Anal. Appl. 492, No. 2, Article ID 124485, 14 p. (2020; Zbl 1450.30048) Full Text: DOI
Tchakui, M. V.; Woafo, P.; Skokos, Ch. Chaotic dynamics of piezoelectric MEMS based on maximum Lyapunov exponent and smaller alignment index computations. (English) Zbl 1450.37083 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030025, 17 p. (2020). MSC: 37N15 37J65 74F15 PDF BibTeX XML Cite \textit{M. V. Tchakui} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2030025, 17 p. (2020; Zbl 1450.37083) Full Text: DOI
Wang, Haifeng; Li, Chuanzhong Affine Weyl group symmetries of Frobenius Painlevé equations. (English) Zbl 1451.37097 Math. Methods Appl. Sci. 43, No. 6, 3238-3252 (2020). MSC: 37L65 37K10 37K30 35Q53 34M55 PDF BibTeX XML Cite \textit{H. Wang} and \textit{C. Li}, Math. Methods Appl. Sci. 43, No. 6, 3238--3252 (2020; Zbl 1451.37097) Full Text: DOI
Gromak, V. I. Analytic properties of solutions to equations in the generalized hierarchy of the second Painlevé equation. (English. Russian original) Zbl 1448.35443 Differ. Equ. 56, No. 8, 993-1009 (2020); translation from Differ. Uravn. 56, No. 8, 1017-1033 (2020). MSC: 35Q53 37K35 PDF BibTeX XML Cite \textit{V. I. Gromak}, Differ. Equ. 56, No. 8, 993--1009 (2020; Zbl 1448.35443); translation from Differ. Uravn. 56, No. 8, 1017--1033 (2020) Full Text: DOI
Huang, Kaiyin; Shi, Shaoyun; Li, Wenlei Kovalevskaya exponents, weak Painlevé property and integrability for quasi-homogeneous differential systems. (English) Zbl 07241976 Regul. Chaotic Dyn. 25, No. 3, 295-312 (2020). MSC: 34A34 34C14 34M15 34M45 PDF BibTeX XML Cite \textit{K. Huang} et al., Regul. Chaotic Dyn. 25, No. 3, 295--312 (2020; Zbl 07241976) Full Text: DOI
Kudryashov, Nikolay A. Rational solutions of equations associated with the second Painlevé equation. (English) Zbl 1451.34004 Regul. Chaotic Dyn. 25, No. 3, 273-280 (2020). Reviewer: Yousuke Ohyama (Tokushima) MSC: 34A05 34M55 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Regul. Chaotic Dyn. 25, No. 3, 273--280 (2020; Zbl 1451.34004) Full Text: DOI
Kawakami, Hiroshi Four-dimensional Painlevé-type equations associated with ramified linear equations. I: Matrix Painlevé systems. (English) Zbl 07239955 Funkc. Ekvacioj, Ser. Int. 63, No. 1, 97-132 (2020). MSC: 34M55 34M56 33E17 PDF BibTeX XML Cite \textit{H. Kawakami}, Funkc. Ekvacioj, Ser. Int. 63, No. 1, 97--132 (2020; Zbl 07239955) Full Text: DOI
Bagderina, Yu. Yu. Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters. (English. Russian original) Zbl 1452.34087 Theor. Math. Phys. 202, No. 3, 295-308 (2020); translation from Teor. Mat. Fiz. 202, No. 3, 339-352 (2020). Reviewer: Valentine Tyshchenko (Grodno) MSC: 34M55 34C14 PDF BibTeX XML Cite \textit{Yu. Yu. Bagderina}, Theor. Math. Phys. 202, No. 3, 295--308 (2020; Zbl 1452.34087); translation from Teor. Mat. Fiz. 202, No. 3, 339--352 (2020) Full Text: DOI
Wang, Dan; Zhu, Mengkun; Chen, Yang On semiclassical orthogonal polynomials associated with a Freud-type weight. (English) Zbl 07236864 Math. Methods Appl. Sci. 43, No. 8, 5295-5313 (2020). Reviewer: Teresa E. Perez (Granada) MSC: 33C47 34M55 35C20 65Q99 PDF BibTeX XML Cite \textit{D. Wang} et al., Math. Methods Appl. Sci. 43, No. 8, 5295--5313 (2020; Zbl 07236864) Full Text: DOI
Noumi, Masatoshi; Ruijsenaars, Simon; Yamada, Yasuhiko The elliptic Painlevé Lax equation vs. van Diejen’s 8-coupling elliptic Hamiltonian. (English) Zbl 07227208 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 063, 16 p. (2020). MSC: 39A36 37J65 37J70 39A12 33E05 PDF BibTeX XML Cite \textit{M. Noumi} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 063, 16 p. (2020; Zbl 07227208) Full Text: DOI
Boalch, Philip; Yamakawa, Daisuke Diagrams for nonabelian Hodge spaces on the affine line. (Diagrammes pour les espaces de Hodge non abéliens sur la droite affine.) (English. French summary) Zbl 07226759 C. R., Math., Acad. Sci. Paris 358, No. 1, 59-65 (2020). MSC: 14D05 34M55 53D30 16G20 14H60 17B80 PDF BibTeX XML Cite \textit{P. Boalch} and \textit{D. Yamakawa}, C. R., Math., Acad. Sci. Paris 358, No. 1, 59--65 (2020; Zbl 07226759) Full Text: DOI
Takei, Yoshitsugu On the instanton-type expansions for Painlevé transcendents and elliptic functions. (English) Zbl 1444.33013 Filipuk, Galina (ed.) et al., Complex differential and difference equations. Proceedings of the school and conference held at Będlewo, Poland, September 2–15, 2018. Berlin: De Gruyter. De Gruyter Proc. Math., 365-377 (2020). MSC: 33E17 33E05 34C20 34M25 34M60 37J40 PDF BibTeX XML Cite \textit{Y. Takei}, in: Complex differential and difference equations. Proceedings of the school and conference held at Będlewo, Poland, September 2--15, 2018. Berlin: De Gruyter. 365--377 (2020; Zbl 1444.33013) Full Text: DOI
Kato, Mitsuo; Mano, Toshiyuki; Sekiguchi, Jiro Solutions to the extended WDVV equations and the Painlevé VI equation. (English) Zbl 1450.34069 Filipuk, Galina (ed.) et al., Complex differential and difference equations. Proceedings of the school and conference held at Będlewo, Poland, September 2–15, 2018. Berlin: De Gruyter. De Gruyter Proc. Math., 343-363 (2020). Reviewer: Dmitry Artamonov (Moskva) MSC: 34M56 33E17 32S25 PDF BibTeX XML Cite \textit{M. Kato} et al., in: Complex differential and difference equations. Proceedings of the school and conference held at Będlewo, Poland, September 2--15, 2018. Berlin: De Gruyter. 343--363 (2020; Zbl 1450.34069) Full Text: DOI
Mano, Toshiyuki Potential vector fields and isomonodromic tau functions in terms of flat coordinates. (English) Zbl 1450.34067 Filipuk, Galina (ed.) et al., Complex differential and difference equations. Proceedings of the school and conference held at Będlewo, Poland, September 2–15, 2018. Berlin: De Gruyter. De Gruyter Proc. Math., 327-342 (2020). Reviewer: Dmitry Artamonov (Moskva) MSC: 34M55 34M56 33E17 32S40 PDF BibTeX XML Cite \textit{T. Mano}, in: Complex differential and difference equations. Proceedings of the school and conference held at Będlewo, Poland, September 2--15, 2018. Berlin: De Gruyter. 327--342 (2020; Zbl 1450.34067) Full Text: DOI
van Assche, Walter Orthogonal and multiple orthogonal polynomials, random matrices, and Painlevé equations. (English) Zbl 1443.33028 Foupouagnigni, Mama (ed.) et al., Orthogonal polynomials. Proceedings of the 2nd AIMS-Volkswagen Stiftung workshop on introduction to orthogonal polynomials and applications, Douala, Cameroon, October 5–12, 2018. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 629-683 (2020). MSC: 33C45 33E17 34M55 60B20 PDF BibTeX XML Cite \textit{W. van Assche}, in: Orthogonal polynomials. Proceedings of the 2nd AIMS-Volkswagen Stiftung workshop on introduction to orthogonal polynomials and applications, Douala, Cameroon, October 5--12, 2018. Cham: Birkhäuser. 629--683 (2020; Zbl 1443.33028) Full Text: DOI
Gómez-Ullate, David; Milson, Robert Exceptional orthogonal polynomials and rational solutions to Painlevé equations. (English) Zbl 1443.33014 Foupouagnigni, Mama (ed.) et al., Orthogonal polynomials. Proceedings of the 2nd AIMS-Volkswagen Stiftung workshop on introduction to orthogonal polynomials and applications, Douala, Cameroon, October 5–12, 2018. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 335-386 (2020). MSC: 33C45 34M55 PDF BibTeX XML Cite \textit{D. Gómez-Ullate} and \textit{R. Milson}, in: Orthogonal polynomials. Proceedings of the 2nd AIMS-Volkswagen Stiftung workshop on introduction to orthogonal polynomials and applications, Douala, Cameroon, October 5--12, 2018. Cham: Birkhäuser. 335--386 (2020; Zbl 1443.33014) Full Text: DOI
Hiroe, Kazuki On additive Deligne-Simpson problems. (English) Zbl 1442.14038 Iohara, Kenji (ed.) et al., Two algebraic byways from differential equations: Gröbner bases and quivers. Cham: Springer. Algorithms Comput. Math. 28, 271-323 (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 14D05 34M55 16G20 PDF BibTeX XML Cite \textit{K. Hiroe}, Algorithms Comput. Math. 28, 271--323 (2020; Zbl 1442.14038) Full Text: DOI
Iwaki, Kohei 2-parameter \(\tau\)-function for the first Painlevé equation: topological recursion and direct monodromy problem via exact WKB analysis. (English) Zbl 1448.81324 Commun. Math. Phys. 377, No. 2, 1047-1098 (2020). Reviewer: Predrag Punosevac (Pittsburgh) MSC: 81Q20 34M55 33E17 34M35 81T40 32G81 81T13 81T60 PDF BibTeX XML Cite \textit{K. Iwaki}, Commun. Math. Phys. 377, No. 2, 1047--1098 (2020; Zbl 1448.81324) Full Text: DOI
Clarkson, Peter A.; Gómez-Ullate, David; Grandati, Yves; Milson, Robert Cyclic Maya diagrams and rational solutions of higher order Painlevé systems. (English) Zbl 1441.81084 Stud. Appl. Math. 144, No. 3, 357-385 (2020). MSC: 81Q05 33C45 34M55 PDF BibTeX XML Cite \textit{P. A. Clarkson} et al., Stud. Appl. Math. 144, No. 3, 357--385 (2020; Zbl 1441.81084) Full Text: DOI
Adler, V. E. Nonautonomous symmetries of the KdV equation and step-like solutions. (English) Zbl 1436.35284 J. Nonlinear Math. Phys. 27, No. 3, 478-493 (2020). MSC: 35Q53 35G25 35C06 37B55 34M55 PDF BibTeX XML Cite \textit{V. E. Adler}, J. Nonlinear Math. Phys. 27, No. 3, 478--493 (2020; Zbl 1436.35284) Full Text: DOI
Alrashdi, Huda; Joshi, Nalini; Tran, Dinh Thi Hierarchies of \(q\)-discrete Painlevé equations. (English) Zbl 1436.33019 J. Nonlinear Math. Phys. 27, No. 3, 453-477 (2020). MSC: 33E17 34M55 37K35 34K17 PDF BibTeX XML Cite \textit{H. Alrashdi} et al., J. Nonlinear Math. Phys. 27, No. 3, 453--477 (2020; Zbl 1436.33019) Full Text: DOI
Nagloo, Joel Algebraic independence of generic Painlevé transcendents: \(P_{III}\) and \(P_{VI}\). (English) Zbl 1444.14065 Bull. Lond. Math. Soc. 52, No. 1, 100-108 (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 14H70 34M55 03C60 PDF BibTeX XML Cite \textit{J. Nagloo}, Bull. Lond. Math. Soc. 52, No. 1, 100--108 (2020; Zbl 1444.14065) Full Text: DOI
Dai, Dan; Xu, Shuai-Xia; Zhang, Lun On integrals of the tronquée solutions and the associated Hamiltonians for the Painlevé II equation. (English) Zbl 1450.34066 J. Differ. Equations 269, No. 3, 2430-2476 (2020). Reviewer: Yousuke Ohyama (Tokushima) MSC: 34M55 33E17 60B20 PDF BibTeX XML Cite \textit{D. Dai} et al., J. Differ. Equations 269, No. 3, 2430--2476 (2020; Zbl 1450.34066) Full Text: DOI
Filipuk, G.; Rebocho, M. N. Classification of Laguerre-Hahn orthogonal polynomials of class one. (English) Zbl 07198937 Math. Nachr. 293, No. 2, 244-262 (2020). MSC: 33C45 33C47 42C05 PDF BibTeX XML Cite \textit{G. Filipuk} and \textit{M. N. Rebocho}, Math. Nachr. 293, No. 2, 244--262 (2020; Zbl 07198937) Full Text: DOI
Bilman, Deniz; Ling, Liming; Miller, Peter D. Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy. (English) Zbl 1437.35617 Duke Math. J. 169, No. 4, 671-760 (2020). MSC: 35Q55 35Q51 37K10 37K15 35Q15 37K40 34M55 35B40 PDF BibTeX XML Cite \textit{D. Bilman} et al., Duke Math. J. 169, No. 4, 671--760 (2020; Zbl 1437.35617) Full Text: DOI Euclid
das Neves Rebocho, Maria Laguerre-Hahn orthogonal polynomials on the real line. (English) Zbl 1437.33007 Random Matrices Theory Appl. 9, No. 1, Article ID 2040001, 33 p. (2020). MSC: 33C45 33C47 42C05 PDF BibTeX XML Cite \textit{M. das Neves Rebocho}, Random Matrices Theory Appl. 9, No. 1, Article ID 2040001, 33 p. (2020; Zbl 1437.33007) Full Text: DOI
Kudryashov, Nikolay A. Lax pairs and special polynomials associated with self-similar reductions of Sawada – Kotera and Kupershmidt equations. (English) Zbl 1441.34096 Regul. Chaotic Dyn. 25, No. 1, 59-77 (2020). Reviewer: Mykola Grygorenko (Kyïv) MSC: 34M55 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Regul. Chaotic Dyn. 25, No. 1, 59--77 (2020; Zbl 1441.34096) Full Text: DOI
Charlier, Christophe; Lenells, Jonatan Airy and Painlevé asymptotics for the mKdV equation. (English) Zbl 1443.37054 J. Lond. Math. Soc., II. Ser. 101, No. 1, 194-225 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 37K40 37K15 37J65 41A60 34M55 35Q15 35Q53 PDF BibTeX XML Cite \textit{C. Charlier} and \textit{J. Lenells}, J. Lond. Math. Soc., II. Ser. 101, No. 1, 194--225 (2020; Zbl 1443.37054) Full Text: DOI
Diarra, Karamoko; Loray, Frank Classification of algebraic solutions of irregular Garnier systems. (English) Zbl 1445.34126 Compos. Math. 156, No. 5, 881-907 (2020). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 34M03 34M55 34M56 PDF BibTeX XML Cite \textit{K. Diarra} and \textit{F. Loray}, Compos. Math. 156, No. 5, 881--907 (2020; Zbl 1445.34126) Full Text: DOI
Filipuk, Galina; Rebocho, Maria das Neves The symmetric semi-classical orthogonal polynomials of class two and some of their extensions. (English) Zbl 1439.33003 Bull. Malays. Math. Sci. Soc. (2) 43, No. 3, 2235-2253 (2020). Reviewer: Bujar Fejzullahu (Presevo) MSC: 33C45 33C47 42C05 PDF BibTeX XML Cite \textit{G. Filipuk} and \textit{M. d. N. Rebocho}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 3, 2235--2253 (2020; Zbl 1439.33003) Full Text: DOI
Min, Chao; Chen, Yang Painlevé V, Painlevé XXXIV and the degenerate Laguerre unitary ensemble. (English) Zbl 1440.15038 Random Matrices Theory Appl. 9, No. 2, Article ID 2050016, 22 p. (2020). MSC: 15B52 33E17 34M55 37J65 PDF BibTeX XML Cite \textit{C. Min} and \textit{Y. Chen}, Random Matrices Theory Appl. 9, No. 2, Article ID 2050016, 22 p. (2020; Zbl 1440.15038) Full Text: DOI
Gritsenko, Valery (ed.); Spiridonov, Vyacheslav P. (ed.) Partition functions and automorphic forms. Lecture notes based on the presentations at the international scientifc school, Dubna, Russia, January 29 – February 2, 2018. (English) Zbl 07190024 Moscow Lectures 5. Cham: Springer (ISBN 978-3-030-42399-5/hbk; 978-3-030-42400-8/ebook). xiii, 415 p. (2020). MSC: 81-06 81-01 81T18 11F03 81R10 11F46 83C45 81R40 81T60 14D21 81T30 58J26 57K32 34M55 81T20 33C75 00B25 PDF BibTeX XML Cite \textit{V. Gritsenko} (ed.) and \textit{V. P. Spiridonov} (ed.), Partition functions and automorphic forms. Lecture notes based on the presentations at the international scientifc school, Dubna, Russia, January 29 -- February 2, 2018. Cham: Springer (2020; Zbl 07190024) Full Text: DOI
Seydaoğlu, Muaz; Koçak, Hüseyin; Erdoğan, Utku An efficient numerical treatment for the asymptotic behaviour of the nonlinear Airy-type problems. (English) Zbl 07183982 J. Comput. Appl. Math. 375, Article ID 112833, 11 p. (2020). MSC: 65P10 37M15 34M55 37J65 PDF BibTeX XML Cite \textit{M. Seydaoğlu} et al., J. Comput. Appl. Math. 375, Article ID 112833, 11 p. (2020; Zbl 07183982) Full Text: DOI
Hai, Pham Viet; Putinar, Mihai Complex symmetric evolution equations. (English) Zbl 1433.81078 Anal. Math. Phys. 10, No. 1, Paper No. 14, 36 p. (2020). MSC: 81Q05 81Q10 47D08 47D06 81R05 37J65 PDF BibTeX XML Cite \textit{P. V. Hai} and \textit{M. Putinar}, Anal. Math. Phys. 10, No. 1, Paper No. 14, 36 p. (2020; Zbl 1433.81078) Full Text: DOI
Feng, Lian-Li; Tian, Shou-Fu; Zhang, Tian-Tian Bäcklund transformations, nonlocal symmetries and soliton-cnoidal interaction solutions of the \((2+1)\)-dimensional Boussinesq equation. (English) Zbl 1435.35296 Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 141-155 (2020). MSC: 35Q35 35Q51 35Q53 68W30 37K35 76B15 35C08 PDF BibTeX XML Cite \textit{L.-L. Feng} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 141--155 (2020; Zbl 1435.35296) Full Text: DOI
Ashok, Sujay K.; Jatkar, Dileep P.; Raman, Madhusudhan Aspects of Hecke symmetry: anomalies, curves, and chazy equations. (English) Zbl 1444.34108 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 001, 26 p. (2020). Reviewer: Tsvetana Stoyanova (Sofia) MSC: 34M55 11F12 33E30 PDF BibTeX XML Cite \textit{S. K. Ashok} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 001, 26 p. (2020; Zbl 1444.34108) Full Text: DOI
Xu, Hong Yan; Tu, Jin Existence of rational solutions for \(q\)-difference Painlevé equations. (English) Zbl 1437.39001 Electron. J. Differ. Equ. 2020, Paper No. 14, 14 p. (2020). Reviewer: Jacques Sauloy (Toulouse) MSC: 39A13 39A12 30D35 34M55 37J65 PDF BibTeX XML Cite \textit{H. Y. Xu} and \textit{J. Tu}, Electron. J. Differ. Equ. 2020, Paper No. 14, 14 p. (2020; Zbl 1437.39001) Full Text: Link
Bothner, Thomas; Miller, Peter D. Rational solutions of the Painlevé-III equation: large parameter asymptotics. (English) Zbl 1435.34093 Constr. Approx. 51, No. 1, 123-224 (2020). Reviewer: Tsvetana Stoyanova (Sofia) MSC: 34M55 34M50 33E17 34E05 PDF BibTeX XML Cite \textit{T. Bothner} and \textit{P. D. Miller}, Constr. Approx. 51, No. 1, 123--224 (2020; Zbl 1435.34093) Full Text: DOI
Yemm, Liam T.; Bassom, Andrew P. New complex-valued solutions of Painlevé IV: an application to the nonlinear Schrödinger equation. (English) Zbl 1431.35162 Appl. Math. Lett. 101, Article ID 106060, 7 p. (2020). MSC: 35Q53 35Q55 37K35 35B06 PDF BibTeX XML Cite \textit{L. T. Yemm} and \textit{A. P. Bassom}, Appl. Math. Lett. 101, Article ID 106060, 7 p. (2020; Zbl 1431.35162) Full Text: DOI
Tian, Shou-Fu Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation. (English) Zbl 1429.35017 Appl. Math. Lett. 100, Article ID 106056, 8 p. (2020). MSC: 35B06 35Q35 35C08 PDF BibTeX XML Cite \textit{S.-F. Tian}, Appl. Math. Lett. 100, Article ID 106056, 8 p. (2020; Zbl 1429.35017) Full Text: DOI
Euler, Norbert (ed.); Nucci, Maria Clara (ed.) Nonlinear systems and their remarkable mathematical structures. Volume 2. (English) Zbl 1436.37001 Boca Raton, FL: CRC Press (ISBN 978-0-367-20847-9/hbk; 978-0-429-26374-3/ebook). xiv, 526 p. (2020). Reviewer: Giuseppe Gaeta (Milano) MSC: 37-01 34-01 70-01 37Jxx 37Kxx 70Fxx 70Gxx 70Hxx 70Kxx PDF BibTeX XML Cite \textit{N. Euler} (ed.) and \textit{M. C. Nucci} (ed.), Nonlinear systems and their remarkable mathematical structures. Volume 2. Boca Raton, FL: CRC Press (2020; Zbl 1436.37001) Full Text: DOI
Ramani, A.; Grammaticos, B.; Tamizhmani, T. Interrelations of discrete Painlevé equations through limiting procedures. (English) Zbl 1436.34081 J. Nonlinear Math. Phys. 27, No. 1, 95-105 (2020). MSC: 34M55 PDF BibTeX XML Cite \textit{A. Ramani} et al., J. Nonlinear Math. Phys. 27, No. 1, 95--105 (2020; Zbl 1436.34081) Full Text: DOI
Pickering, Andrew; Gordoa, Pilar R.; Wattis, Jonathan A. D. The second Painlevé equation, a related nonautonomous semidiscrete equation, and a limit to the first Painlevé equation: scalar and matrix cases. (English) Zbl 1451.37086 Physica D 391, 72-86 (2019). MSC: 37J65 39A36 PDF BibTeX XML Cite \textit{A. Pickering} et al., Physica D 391, 72--86 (2019; Zbl 1451.37086) Full Text: DOI
Gordoa, P. R.; Pickering, Andrew Bäcklund transformations for a new extended Painlevé hierarchy. (English) Zbl 07263944 Commun. Nonlinear Sci. Numer. Simul. 69, 78-97 (2019). MSC: 34M55 37K35 37K10 33E17 PDF BibTeX XML Cite \textit{P. R. Gordoa} and \textit{A. Pickering}, Commun. Nonlinear Sci. Numer. Simul. 69, 78--97 (2019; Zbl 07263944) Full Text: DOI
Cassatella-Contra, Giovanni A.; Mañas, Manuel Riemann-Hilbert problem and matrix discrete Painlevé II systems. (English) Zbl 1451.35099 Stud. Appl. Math. 143, No. 3, 272-314 (2019). MSC: 35Q15 35Q07 35Q53 33E17 PDF BibTeX XML Cite \textit{G. A. Cassatella-Contra} and \textit{M. Mañas}, Stud. Appl. Math. 143, No. 3, 272--314 (2019; Zbl 1451.35099) Full Text: DOI
Hao, Xiazhi; Liu, Yinping; Li, Zhibin; Ma, Wen-Xiu Painlevé analysis, soliton solutions and lump-type solutions of the (3+1)-dimensional generalized KP equation. (English) Zbl 1442.35376 Comput. Math. Appl. 77, No. 3, 724-730 (2019). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{X. Hao} et al., Comput. Math. Appl. 77, No. 3, 724--730 (2019; Zbl 1442.35376) Full Text: DOI
Chen, BaoQin; Li, Sheng Uniqueness of meromorphic solutions sharing values with a meromorphic function to \(w(z + 1)w(z - 1) = H(z)w^m(z)\). (English) Zbl 07254386 Adv. Difference Equ. 2019, Paper No. 372, 9 p. (2019). MSC: 30D35 39B32 PDF BibTeX XML Cite \textit{B. Chen} and \textit{S. Li}, Adv. Difference Equ. 2019, Paper No. 372, 9 p. (2019; Zbl 07254386) Full Text: DOI
Sakovich, Sergei A new Painlevé-integrable equation possessing KdV-type solitons. (English) Zbl 1440.35297 Nonlinear Phenom. Complex Syst., Minsk 22, No. 3, 299-304 (2019). MSC: 35Q53 35Q51 37K10 PDF BibTeX XML Cite \textit{S. Sakovich}, Nonlinear Phenom. Complex Syst., Minsk 22, No. 3, 299--304 (2019; Zbl 1440.35297)
Peng, Changwen; Huang, Huawei; Tao, Lei; Qiu, Ke’e; Shi, Changmei The order of growth of meromorphic solution for \(q\)-difference Painleve equation. (Chinese. English summary) Zbl 07234997 J. Nanchang Univ., Nat. Sci. 43, No. 5, 409-412 (2019). MSC: 39 34M05 34M10 30D35 PDF BibTeX XML Cite \textit{C. Peng} et al., J. Nanchang Univ., Nat. Sci. 43, No. 5, 409--412 (2019; Zbl 07234997) Full Text: DOI
Ge, Nannan; Ren, Xiaojing Residual symmetry and interaction solution of the \( (2+1)\)-dimensional Kadomtsev-Petviashvili equation. (Chinese. English summary) Zbl 1449.35378 Math. Appl. 32, No. 4, 778-784 (2019). MSC: 35Q53 35B06 PDF BibTeX XML Cite \textit{N. Ge} and \textit{X. Ren}, Math. Appl. 32, No. 4, 778--784 (2019; Zbl 1449.35378)
Yu, Jianping; Wang, Fudong; Ma, Wenxiu; Sun, Yongli; Khalique, Chaudry Masood Multiple-soliton solutions and lumps of a \((3+1)\)-dimensional generalized KP equation. (English) Zbl 1439.35420 Nonlinear Dyn. 95, No. 2, 1687-1692 (2019). MSC: 35Q51 37K10 35C08 37K40 PDF BibTeX XML Cite \textit{J. Yu} et al., Nonlinear Dyn. 95, No. 2, 1687--1692 (2019; Zbl 1439.35420) Full Text: DOI
Jia, Ting-Ting; Gao, Yi-Tian; Feng, Yu-Jie; Hu, Lei; Su, Jing-Jing; Li, Liu-Qing; Ding, Cui-Cui On the quintic time-dependent coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics. (English) Zbl 1437.35631 Nonlinear Dyn. 96, No. 1, 229-241 (2019). MSC: 35Q55 78A60 35Q35 35C08 PDF BibTeX XML Cite \textit{T.-T. Jia} et al., Nonlinear Dyn. 96, No. 1, 229--241 (2019; Zbl 1437.35631) Full Text: DOI
Chen, Yang; Filipuk, Galina; das Neves Rebocho, Maria Nonlinear difference equations for a modified Laguerre weight: Laguerre-Freud equation sand asymptotics. (English) Zbl 1442.39001 Jaen J. Approx. 11, No. 1-2, 47-65 (2019). MSC: 39A05 39A12 37K35 33C47 42C05 PDF BibTeX XML Cite \textit{Y. Chen} et al., Jaen J. Approx. 11, No. 1--2, 47--65 (2019; Zbl 1442.39001) Full Text: Link
Bermudez, David; Fernández, David J.; Negro, Javier Generation of Painlevé V transcendents. (English) Zbl 1447.34077 Kielanowski, Piotr (ed.) et al., Geometric methods in physics XXXVII. Workshop and summer school, Białowieża, Poland, July 1–7, 2018. Dedicated to Daniel Sternheimer on the occasion of his 80th birthday. Cham: Birkhäuser. Trends Math., 24-33 (2019). Reviewer: Dmitry Artamonov (Moskva) MSC: 34M55 PDF BibTeX XML Cite \textit{D. Bermudez} et al., in: Geometric methods in physics XXXVII. Workshop and summer school, Białowieża, Poland, July 1--7, 2018. Dedicated to Daniel Sternheimer on the occasion of his 80th birthday. Cham: Birkhäuser. 24--33 (2019; Zbl 1447.34077) Full Text: DOI
Babich, Mikhail V. On canonical parametrization of phase spaces of isomonodromic deformation equations. (English) Zbl 1450.34068 Kielanowski, Piotr (ed.) et al., Geometric methods in physics XXXVII. Workshop and summer school, Białowieża, Poland, July 1–7, 2018. Dedicated to Daniel Sternheimer on the occasion of his 80th birthday. Cham: Birkhäuser. Trends Math., 3-12 (2019). Reviewer: Tsvetana Stoyanova (Sofia) MSC: 34M56 34M55 PDF BibTeX XML Cite \textit{M. V. Babich}, in: Geometric methods in physics XXXVII. Workshop and summer school, Białowieża, Poland, July 1--7, 2018. Dedicated to Daniel Sternheimer on the occasion of his 80th birthday. Cham: Birkhäuser. 3--12 (2019; Zbl 1450.34068) Full Text: DOI
Arsie, Alessandro; Lorenzoni, Paolo \(F\)-manifolds, multi-flat structures and Painlevé transcendents. (English) Zbl 1441.53074 Asian J. Math. 23, No. 5, 877-904 (2019). MSC: 53D45 34M55 PDF BibTeX XML Cite \textit{A. Arsie} and \textit{P. Lorenzoni}, Asian J. Math. 23, No. 5, 877--904 (2019; Zbl 1441.53074) Full Text: DOI
Adler, V. E.; Shabat, A. B. Some exact solutions of the Volterra lattice. (English. Russian original) Zbl 1440.37071 Theor. Math. Phys. 201, No. 1, 1442-1456 (2019); translation from Teor. Mat. Fiz. 201, No. 1, 37-53 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 37K60 39A36 33C15 34M55 PDF BibTeX XML Cite \textit{V. E. Adler} and \textit{A. B. Shabat}, Theor. Math. Phys. 201, No. 1, 1442--1456 (2019; Zbl 1440.37071); translation from Teor. Mat. Fiz. 201, No. 1, 37--53 (2019) Full Text: DOI
Babich, M. V.; Slavyanov, S. Yu. Relations between second-order Fuchsian equations and first-order Fuchsian systems. (English. Russian original) Zbl 07182101 J. Math. Sci., New York 240, No. 5, 646-650 (2019); translation from Zap. Nauchn. Semin. POMI 468, 221-227 (2018). Reviewer: Dmitry Sinelshchikov (Moskva) MSC: 34M35 34M55 PDF BibTeX XML Cite \textit{M. V. Babich} and \textit{S. Yu. Slavyanov}, J. Math. Sci., New York 240, No. 5, 646--650 (2019; Zbl 07182101); translation from Zap. Nauchn. Semin. POMI 468, 221--227 (2018) Full Text: DOI
Deift, Percy Riemann-Hilbert problems. (English) Zbl 1443.34097 Borodin, Alexei (ed.) et al., Random matrices. Providence, RI: American Mathematical Society (AMS); Princeton, NJ: Institute for Advanced Study (IAS). IAS/Park City Math. Ser. 26, 1-40 (2019). MSC: 34M50 34M55 33C10 33C45 34M60 33C05 PDF BibTeX XML Cite \textit{P. Deift}, IAS/Park City Math. Ser. 26, 1--40 (2019; Zbl 1443.34097) Full Text: DOI
Gu, Yongyi; Zheng, Xiaoxiao; Meng, Fanning Painlevé analysis and abundant meromorphic solutions of a class of nonlinear algebraic differential equations. (English) Zbl 1435.34094 Math. Probl. Eng. 2019, Article ID 9210725, 11 p. (2019). MSC: 34M55 34A09 34B18 PDF BibTeX XML Cite \textit{Y. Gu} et al., Math. Probl. Eng. 2019, Article ID 9210725, 11 p. (2019; Zbl 1435.34094) Full Text: DOI
Wazwaz, Abdul-Majid; Kaur, Lakhveer New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. (English) Zbl 1430.37078 Nonlinear Dyn. 97, No. 1, 83-94 (2019). MSC: 37K10 35Q35 37K40 35C08 35Q51 PDF BibTeX XML Cite \textit{A.-M. Wazwaz} and \textit{L. Kaur}, Nonlinear Dyn. 97, No. 1, 83--94 (2019; Zbl 1430.37078) Full Text: DOI
Umeta, Yoko A certain property of a unified family of \(P_{\mathrm{J}}\)-hierarchies (J=I, II, IV, 34) with a large parameter. (English) Zbl 07161661 RIMS Kôkyûroku Bessatsu B75, 101-111 (2019). MSC: 34M40 34M55 34M60 PDF BibTeX XML Cite \textit{Y. Umeta}, RIMS Kôkyûroku Bessatsu B75, 101--111 (2019; Zbl 07161661)
M’Hamed-Messaoud, Khaled; Laadj, Toufik; Kessi, Arezki First order fifth degree Fuchs differential equation with fixed critical points. (English) Zbl 1441.34047 Int. J. Dyn. Syst. Differ. Equ. 9, No. 3, 286-297 (2019). MSC: 34C07 PDF BibTeX XML Cite \textit{K. M'Hamed-Messaoud} et al., Int. J. Dyn. Syst. Differ. Equ. 9, No. 3, 286--297 (2019; Zbl 1441.34047) Full Text: DOI
Acosta-Humánez, Primitivo B.; van der Put, Marius; Top, Jaap Variations for some Painlevé equations. (English) Zbl 1429.33034 SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 088, 10 p. (2019). MSC: 33E17 34M55 PDF BibTeX XML Cite \textit{P. B. Acosta-Humánez} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 15, Paper 088, 10 p. (2019; Zbl 1429.33034) Full Text: DOI arXiv
Desiraju, Harini The \(\tau\)-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant. (English) Zbl 1431.34096 J. Math. Phys. 60, No. 11, 113505, 15 p. (2019). MSC: 34M55 47B35 33E17 PDF BibTeX XML Cite \textit{H. Desiraju}, J. Math. Phys. 60, No. 11, 113505, 15 p. (2019; Zbl 1431.34096) Full Text: DOI
Chen, Yang; Filipuk, Galina; Zhan, Longjun Orthogonal polynomials, asymptotics, and Heun equations. (English) Zbl 1427.42031 J. Math. Phys. 60, No. 11, 113501, 34 p. (2019). MSC: 42C05 34M55 30E05 47B35 33C05 33C15 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Math. Phys. 60, No. 11, 113501, 34 p. (2019; Zbl 1427.42031) Full Text: DOI