×

Stability of traveling wave solutions of nonlinear dispersive equations of NLS type. (English) Zbl 1467.35299

Summary: We present a rigorous modulational stability theory for periodic traveling wave solutions to equations of nonlinear Schrödinger type. For Hamiltonian dispersive equations with a non-singular symplectic form and \(d\) conserved quantities (in addition to the Hamiltonian), one expects that generically \(\mathcal{L}\), the linearization around a periodic traveling wave, will have a particular Jordan structure. The kernel \(\ker (\mathcal L)\) and the first generalized kernel \(\ker (\mathcal L^2) /\ker (\mathcal{L})\) are expected to be \(d\) dimensional, with no higher generalized kernels. The breakup of this Jordan block under perturbations arising from a change in boundary conditions dictates the modulational stability or instability of the underlying periodic traveling wave. This general picture is worked out in detail for equations of nonlinear Schrödinger (NLS) type. We give explicit genericity conditions that guarantee that the Jordan form is the generic one: these take the form of non-vanishing determinants of certain matrices whose entries can be expressed in terms of a finite number of moments of the traveling wave solution. Assuming that these genericity conditions are met we give a normal form for the small eigenvalues that result from the break-up of the generalized kernel, in the form of the eigenvalues of a quadratic matrix pencil. We compare these results to direct numerical simulation for the cubic and quintic focusing and defocusing NLS equations subject to both longitudinal and transverse perturbations. The stability of traveling waves of the cubic NLS subject to longitudinal perturbations has been previously studied using the integrability and our results agree with those in the literature. All of the remaining cases are new.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35C07 Traveling wave solutions
35B10 Periodic solutions to PDEs
35B20 Perturbations in context of PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alfimov, GL; Its, AR; Kulagin, NE, Modulation instability of solutions of the nonlinear Schrödinger equation, Teoret. Mat. Fiz., 84, 2, 163-172 (1990) · Zbl 0718.35088
[2] Baumgärtel, H., Analytic Perturbation Theory for Matrices and Operators, Operator Theory: Advances and Applications (1985), Basel: Birkhäuser Verlag, Basel · Zbl 0591.47013
[3] Benzoni-Gavage, S.; Mietka, C.; Rodrigues, LM, Co-periodic stability of periodic waves in some Hamiltonian PDEs, Nonlinearity, 29, 11, 3241 (2016) · Zbl 1362.35037
[4] Benzoni-Gavage, S., Noble, P., Rodrigues, L.M.: Stability of periodic waves in Hamiltonian PDEs. Journées équations aux dérivées partielles, 1-22 (2013)
[5] Benzoni-Gavage, S.; Noble, P.; Rodrigues, LM, Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary fluids, J. Nonlinear Sci., 24, 4, 711-768 (2014) · Zbl 1308.35021
[6] Bottman, N.; Deconinck, B.; Nivala, M., Elliptic solutions of the defocusing NLS equation are stable, J. Phys. A Math. Theor., 44, 28, 285201 (2011) · Zbl 1222.81157
[7] Bridges, T.; Fan, E., Solitary waves, periodic waves, and a stability analysis for Zufiria’s higher-order Boussinesq model for shallow water waves, Phys. Lett. A, 326, 5-6, 381-390 (2004) · Zbl 1138.76324
[8] Bronski, J.; Johnson, MA; Kapitula, T., An instability index theory for quadratic pencils and applications, Commun. Math. Phys., 327, 2, 521-550 (2014) · Zbl 1301.35081
[9] Bronski, JC; Hur, VM, Modulational instability and variational structure, Stud. Appl. Math., 132, 4, 285-331 (2014) · Zbl 1293.35276
[10] Bronski, JC; Johnson, MA, The modulational instability for a generalized Korteweg-de Vries equation, Arch. Ration. Mech. Anal., 197, 2, 357-400 (2010) · Zbl 1221.35325
[11] Bronski, JC; Johnson, MA; Kapitula, T., An index theorem for the stability of periodic travelling waves of Korteweg-de Vries type, Proc. R. Soc. Edinb. Sect. A Math., 141, 6, 1141-1173 (2011) · Zbl 1230.35118
[12] Carroll, L., Through the Looking Glass, and What Alice Found There (1900), Chicago: W.B Conkley Company, Chicago
[13] Crosta, M.; Fratalocchi, A.; Trillo, S., Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrödinger equation, Phys. Rev. A, 84, 063809 (2011)
[14] Deconinck, B.; Segal, BL, The stability spectrum for elliptic solutions to the focusing NLS equation, Phys. D, 346, 1-19 (2017) · Zbl 1415.35251
[15] Demirkaya, A.; Hakkaev, S., On the spectral stability of periodic waves of the coupled schrödinger equations, Phys. Lett. A, 379, 45-46, 2908-2914 (2015) · Zbl 1349.35349
[16] Dodgson, CL, Condensation of determinants, being a new and brief method for computing their arithmetical values, Proc. R. Soc. Lond., 15, 150 (1867)
[17] Ercolani, N.; Forest, MG; McLaughlin, DW, Modulational stability of two-phase sine-Gordon wavetrains, Stud. Appl. Math., 71, 2, 91-101 (1984) · Zbl 0557.35120
[18] Fibich, G., The Nonlinear Schrödinger Equation, Applied Mathematical Sciences. Singular Solutions and Optical Collapse (2015), Cham: Springer, Cham · Zbl 1351.35001
[19] Flaschka, H.; Forest, MG; McLaughlin, DW, Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation, Commun. Pure Appl. Math., 33, 6, 739-784 (1980) · Zbl 0454.35080
[20] Fuchs, L., Die Periodicitätsmoduln der hyperelliptischen Integrale als Functionen eines Parameters aufgefasst, J. Reine Angew. Math., 71, 91-127 (1870) · JFM 02.0248.01
[21] Gallay, T.; Haragus, M., Orbital stability of periodic waves for the nonlinear Schrödinger equation, J. Dyn. Differ. Equ., 19, 4, 825-865 (2007) · Zbl 1132.35079
[22] Gardner, RA, Spectral analysis of long wavelength periodic waves and applications, J. Reine Angew. Math., 491, 149-181 (1997) · Zbl 0883.35055
[23] Givental, AB, Sturm’s theorem for hyperelliptic integrals, Algebra i Analiz, 1, 5, 95-102 (1989)
[24] Grava, T.; Tian, FR, The generation, propagation, and extinction of multiphases in the KdV zero-dispersion limit, Commun. Pure Appl. Math., 55, 12, 1569-1639 (2002) · Zbl 1024.37045
[25] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74, 1, 160-197 (1987) · Zbl 0656.35122
[26] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., 94, 2, 308-348 (1990) · Zbl 0711.58013
[27] Gustafson, S.; Le Coz, S.; Tsai, TP, Stability of periodic waves of 1d cubic nonlinear Schrödinger equations, Appl. Math. Res. Express, 2017, 2, 431-487 (2017) · Zbl 1403.35277
[28] Hakkaev, S.; Stanislavova, M.; Stefanov, A., Spectral stability for classical periodic waves of the Ostrovsky and short pulse models, Stud. Appl. Math., 139, 3, 405-433 (2017) · Zbl 1373.35246
[29] Haragus, M., Transverse spectral stability of small periodic traveling waves for the KP equation, Stud. Appl. Math., 126, 2, 157-185 (2011) · Zbl 1218.35208
[30] Jin, J.; Liao, S.; Lin, Z., Nonlinear modulational instability of dispersive PDE models, Arch. Ration. Mech. Anal., 231, 3, 1487-1530 (2019) · Zbl 1410.37067
[31] Jin, S.; Levermore, CD; McLaughlin, DW, The semiclassical limit of the defocusing NLS hierarchy, Commun. Pure Appl. Math., 52, 5, 613-654 (1999) · Zbl 0935.35148
[32] Johnson, MA, Nonlinear stability of periodic traveling wave solutions of the generalized Korteweg-de Vries equation, SIAM J. Math. Anal., 41, 5, 1921-1947 (2009) · Zbl 1200.35261
[33] Johnson, MA; Noble, P.; Rodrigues, LM; Zumbrun, K., Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations, Inventiones Mathematicae, 197, 1, 115-213 (2014) · Zbl 1304.35192
[34] Johnson, MA; Zumbrun, K., Transverse instability of periodic traveling waves in the generalized Kadomtsev-Petviashvili equation, SIAM J. Math. Anal., 42, 6, 2681-2702 (2010) · Zbl 1233.35025
[35] Johnson, MA; Zumbrun, K.; Bronski, JC, On the modulation equations and stability of periodic generalized Korteweg-de Vries waves via Bloch decompositions, Phys. D, 239, 23-24, 2057-2065 (2010) · Zbl 1211.37087
[36] Jones, CK; Marangell, R.; Miller, PD; Plaza, RG, On the stability analysis of periodic sine-Gordon traveling waves, Phys. D, 251, 63-74 (2013) · Zbl 1278.35046
[37] Jones, CK; Marangell, R.; Miller, PD; Plaza, RG, Spectral and modulational stability of periodic wavetrains for the nonlinear Klein-Gordon equation, J. Differ. Equ., 257, 12, 4632-4703 (2014) · Zbl 1304.35079
[38] Kamchatnov, AM, Nonlinear Periodic Waves and Their Modulations (2000), River Edge, NJ: World Scientific Publishing Co. Inc,, River Edge, NJ · Zbl 0965.35002
[39] Kapitula, T.; Hibma, E.; Kim, HP; Timkovich, J., Instability indices for matrix polynomials, Linear Algebra Appl., 439, 11, 3412-3434 (2013) · Zbl 1283.15060
[40] Kapitula, T.; Kevrekidis, PG; Sandstede, B., Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems, Phys. D, 195, 3-4, 263-282 (2004) · Zbl 1056.37080
[41] Kapitula, T.; Kevrekidis, PG; Sandstede, B., Addendum: “Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems”, Phys. D, 201, 1-2, 199-201 (2005) · Zbl 1080.37070
[42] Kapitula, T.; Promislow, K., Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical Sciences (2013), New York: Springer, New York · Zbl 1297.37001
[43] Kapitula, T.; Sandstede, B., Instability mechanism for bright solitary-wave solutions to the cubic-quintic Ginzburg-Landau equation, JOSA B, 15, 11, 2757-2762 (1998)
[44] Kuchment, P., Floquet Theory for Partial Differential Equations, Operator Theory: Advances and Applications (1993), Basel: Birkhäuser Verlag, Basel · Zbl 0789.35002
[45] Kuznetsov, E.; Turitsyn, S., Talanov transformations in self-focusing problems and instability of stationary waveguides, Phys. Lett. A, 112, 6, 273-275 (1985)
[46] Lax, PD; Levermore, CD, The small dispersion limit of the Korteweg-de Vries equation I, Commun. Pure Appl. Math., 36, 3, 253-290 (1983) · Zbl 0532.35067
[47] Lax, PD; Levermore, CD, The small dispersion limit of the Korteweg-de Vries equation II, Commun. Pure Appl. Math., 36, 5, 571-593 (1983) · Zbl 0527.35073
[48] Lax, PD; Levermore, CD, The small dispersion limit of the Korteweg-de Vries equation III, Commun. Pure Appl. Math., 36, 6, 809-829 (1983) · Zbl 0527.35074
[49] Lidskiĭ, VB, On the theory of perturbations of nonselfadjoint operators, Ž. Vyčisl. Mat. i Mat. Fiz., 6, 1, 52-60 (1966)
[50] Lin, Z., Zeng, C.: Instability, Index Theorem, and Exponential Trichotomy for Linear Hamiltonian PDEs. arXiv:1703.04016, 2017
[51] Maddocks, JH; Overton, ML, Stability theory for dissipatively perturbed Hamiltonian systems, Commun. Pure Appl. Math., 48, 6, 583-610 (1995) · Zbl 0828.70010
[52] Marangell, R.; Miller, PD, Dynamical Hamiltonian-Hopf instabilities of periodic traveling waves in Klein-Gordon equations, Phys. D, 308, 87-93 (2015) · Zbl 1364.35299
[53] McKean, H.; Moll, V., Elliptic Curves (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0895.11002
[54] Moro, J.; Burke, JV; Overton, ML, On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure, SIAM J. Matrix Anal. Appl., 18, 4, 793-817 (1997) · Zbl 0889.15016
[55] Ndzana, FI; Mohamadou, A.; Kofané, TC, Modulational instability in the cubic-quintic nonlinear Schrödinger equation through the variational approach, Opt. Commun., 275, 2, 421-428 (2007)
[56] Rowlands, G., On the stability of solutions of the non-linear Schrödinger equation, IMA J. Appl. Math., 13, 3, 367-377 (1974) · Zbl 0336.35032
[57] Serre, D., Spectral stability of periodic solutions of viscous conservation laws: large wavelength analysis, Commun. Partial Differ. Equ., 30, 1-2, 259-282 (2005) · Zbl 1131.35046
[58] Stanislavova, M., Linear stability of solitary waves for the one-dimensional benney-luke and Klein-Gordon equations, Stud. Appl. Math., 134, 1, 1-23 (2015) · Zbl 1309.35117
[59] Stanislavova, M.; Stefanov, A., Spectral stability analysis for special solutions of second order in time pdes: the higher dimensional case, Phys. D, 262, 1-13 (2013) · Zbl 1286.35033
[60] Talanov, V., About self-focusing of light in media with cubic nonlinearity, Sov. Phys. JETP Lett., 11, 6, 303-305 (1970)
[61] Venakides, S.; Deift, P.; Oba, R., The Toda shock problem, Commun. Pure Appl. Math., 44, 8-9, 1171-1242 (1991) · Zbl 0749.35054
[62] Weinstein, M., Modulational stability of ground states of nonlinear schrödinger equations, SIAM J. Math. Anal., 16, 3, 472-491 (1985) · Zbl 0583.35028
[63] Whitham, GB, Non-linear dispersive waves, Proc. R. Soc. Ser. A, 283, 238-261 (1965) · Zbl 0125.44202
[64] Whitham, GB, Linear and Nonlinear. Waves Pure and Applied Mathematics (1974), Hoboken: Wiley, Hoboken · Zbl 0373.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.